3
11
This repository has been archived on 2024-05-16. You can view files and clone it, but cannot push or open issues or pull requests.
blender-addons-contrib/mocap/mocap_tools.py
Campbell Barton 9406de5f31 Cleanup: remove <pep8 compliant> comment
This is no longer necessary, see: T98554.
2022-06-03 11:52:13 +10:00

939 lines
37 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
from math import sqrt, radians, floor, ceil
import bpy
import time
from mathutils import Vector, Matrix
# A Python implementation of n sized Vectors.
# Mathutils has a max size of 4, and we need at least 5 for Simplify Curves and even more for Cross Correlation.
# Vector utility functions
class NdVector:
vec = []
def __init__(self, vec):
self.vec = vec[:]
def __len__(self):
return len(self.vec)
def __mul__(self, otherMember):
# assume anything with list access is a vector
if isinstance(otherMember, NdVector):
a = self.vec
b = otherMember.vec
n = len(self)
return sum([a[i] * b[i] for i in range(n)])
else:
# int/float
return NdVector([otherMember * x for x in self.vec])
def __sub__(self, otherVec):
a = self.vec
b = otherVec.vec
n = len(self)
return NdVector([a[i] - b[i] for i in range(n)])
def __add__(self, otherVec):
a = self.vec
b = otherVec.vec
n = len(self)
return NdVector([a[i] + b[i] for i in range(n)])
def __div__(self, scalar):
return NdVector([x / scalar for x in self.vec])
@property
def length(self):
return sqrt(self * self)
@property
def lengthSq(self):
return (self * self)
def normalize(self):
len = self.length
if len > 0:
self.vec = [x / len for x in self.vec]
def copy(self):
return NdVector(self.vec)
def __getitem__(self, i):
return self.vec[i]
@property
def x(self):
return self.vec[0]
@property
def y(self):
return self.vec[1]
def resize_2d(self):
return Vector((self.x, self.y))
#Sampled Data Point class for Simplify Curves
class dataPoint:
index = 0
# x,y1,y2,y3 coordinate of original point
co = NdVector((0, 0, 0, 0, 0))
#position according to parametric view of original data, [0,1] range
u = 0
#use this for anything
temp = 0
def __init__(self, index, co, u=0):
self.index = index
self.co = co
self.u = u
# Helper to convert from a sampled fcurve back to editable keyframes one.
def make_editable_fcurves(fcurves):
for fc in fcurves:
if fc.sampled_points:
fc.convert_to_keyframes(floor(fc.sampled_points[0].co[0]), ceil(fc.sampled_points[-1].co[0]) + 1)
#Cross Correlation Function
#http://en.wikipedia.org/wiki/Cross_correlation
#IN: curvesA, curvesB - bpy_collection/list of fcurves to analyze. Auto-Correlation is when they are the same.
# margin - When searching for the best "start" frame, how large a neighborhood of frames should we inspect (similar to epsilon in Calculus)
#OUT: startFrame, length of new anim, and curvesA
def crossCorrelationMatch(curvesA, curvesB, margin):
dataA = []
dataB = []
start = int(max(curvesA[0].range()[0], curvesB[0].range()[0]))
end = int(min(curvesA[0].range()[1], curvesB[0].range()[1]))
#transfer all fcurves data on each frame to a single NdVector.
for i in range(1, end):
vec = []
for fcurve in curvesA:
if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesB]:
vec.append(fcurve.evaluate(i))
dataA.append(NdVector(vec))
vec = []
for fcurve in curvesB:
if fcurve.data_path in [otherFcurve.data_path for otherFcurve in curvesA]:
vec.append(fcurve.evaluate(i))
dataB.append(NdVector(vec))
#Comparator for Cross Correlation. "Classic" implementation uses dot product, as do we.
def comp(a, b):
return a * b
#Create Rxy, which holds the Cross Correlation data.
N = len(dataA)
Rxy = [0.0] * N
for i in range(N):
for j in range(i, min(i + N, N)):
Rxy[i] += comp(dataA[j], dataB[j - i])
for j in range(i):
Rxy[i] += comp(dataA[j], dataB[j - i + N])
Rxy[i] /= float(N)
#Find the Local maximums in the Cross Correlation data via numerical derivative.
def LocalMaximums(Rxy):
Rxyd = [Rxy[i] - Rxy[i - 1] for i in range(1, len(Rxy))]
maxs = []
for i in range(1, len(Rxyd) - 1):
a = Rxyd[i - 1]
b = Rxyd[i]
#sign change (zerocrossing) at point i, denoting max point (only)
if (a >= 0 and b < 0) or (a < 0 and b >= 0):
maxs.append((i, max(Rxy[i], Rxy[i - 1])))
return [x[0] for x in maxs]
#~ return max(maxs, key=lambda x: x[1])[0]
#flms - the possible offsets of the first part of the animation. In Auto-Corr, this is the length of the loop.
flms = LocalMaximums(Rxy[0:int(len(Rxy))])
ss = []
#for every local maximum, find the best one - i.e. also has the best start frame.
for flm in flms:
diff = []
for i in range(len(dataA) - flm):
diff.append((dataA[i] - dataB[i + flm]).lengthSq)
def lowerErrorSlice(diff, e):
#index, error at index
bestSlice = (0, 100000)
for i in range(e, len(diff) - e):
errorSlice = sum(diff[i - e:i + e + 1])
if errorSlice < bestSlice[1]:
bestSlice = (i, errorSlice, flm)
return bestSlice
s = lowerErrorSlice(diff, margin)
ss.append(s)
#Find the best result and return it.
ss.sort(key=lambda x: x[1])
return ss[0][2], ss[0][0], dataA
#Uses auto correlation (cross correlation of the same set of curves) and trims the active_object's fcurves
#Except for location curves (which in mocap tend to be not cyclic, e.g. a walk cycle forward)
#Transfers the fcurve data to a list of NdVector (length of list is number of fcurves), and calls the cross correlation function.
#Then trims the fcurve accordingly.
#IN: Nothing, set the object you want as active and call. Assumes object has animation_data.action!
#OUT: Trims the object's fcurves (except location curves).
def autoloop_anim():
context = bpy.context
obj = context.active_object
def locCurve(x):
x.data_path == "location"
fcurves = [x for x in obj.animation_data.action.fcurves if not locCurve(x)]
margin = 10
flm, s, data = crossCorrelationMatch(fcurves, fcurves, margin)
loop = data[s:s + flm]
#performs blending with a root falloff on the seam's neighborhood to ensure good tiling.
for i in range(1, margin + 1):
w1 = sqrt(float(i) / margin)
loop[-i] = (loop[-i] * w1) + (loop[0] * (1 - w1))
for curve in fcurves:
pts = curve.keyframe_points
for i in range(len(pts) - 1, -1, -1):
pts.remove(pts[i])
for c, curve in enumerate(fcurves):
pts = curve.keyframe_points
for i in range(len(loop)):
pts.insert(i + 2, loop[i][c])
context.scene.frame_end = flm
#simplifyCurves: performs the bulk of the samples to bezier conversion.
#IN: curveGroup - which can be a collection of singleFcurves, or grouped (via nested lists) .
# error - threshold of permittable error (max distance) of the new beziers to the original data
# reparaError - threshold of error where we should try to fix the parameterization rather than split the existing curve. > error, usually by a small constant factor for best performance.
# maxIterations - maximum number of iterations of reparameterizations we should attempt. (Newton-Rahpson is not guaranteed to converge, so this is needed).
# group_mode - boolean, indicating whether we should place bezier keyframes on the same x (frame), or optimize each individual curve.
#OUT: None. Deletes the existing curves and creates the new beziers.
def simplifyCurves(curveGroup, error, reparaError, maxIterations, group_mode):
#Calculates the unit tangent of point v
def unitTangent(v, data_pts):
tang = NdVector((0, 0, 0, 0, 0))
if v != 0:
#If it's not the first point, we can calculate a leftside tangent
tang += data_pts[v].co - data_pts[v - 1].co
if v != len(data_pts) - 1:
#If it's not the last point, we can calculate a rightside tangent
tang += data_pts[v + 1].co - data_pts[v].co
tang.normalize()
return tang
#assign parametric u value for each point in original data, via relative arc length
#http://en.wikipedia.org/wiki/Arc_length
def chordLength(data_pts, s, e):
totalLength = 0
for pt in data_pts[s:e + 1]:
i = pt.index
if i == s:
chordLength = 0
else:
chordLength = (data_pts[i].co - data_pts[i - 1].co).length
totalLength += chordLength
pt.temp = totalLength
for pt in data_pts[s:e + 1]:
if totalLength == 0:
print(s, e)
pt.u = (pt.temp / totalLength)
# get binomial coefficient lookup table, this function/table is only called with args
# (3,0),(3,1),(3,2),(3,3),(2,0),(2,1),(2,2)!
binomDict = {(3, 0): 1,
(3, 1): 3,
(3, 2): 3,
(3, 3): 1,
(2, 0): 1,
(2, 1): 2,
(2, 2): 1,
}
#value at pt t of a single bernstein Polynomial
def bernsteinPoly(n, i, t):
binomCoeff = binomDict[(n, i)]
return binomCoeff * pow(t, i) * pow(1 - t, n - i)
# fit a single cubic to data points in range [s(tart),e(nd)].
def fitSingleCubic(data_pts, s, e):
# A - matrix used for calculating C matrices for fitting
def A(i, j, s, e, t1, t2):
if j == 1:
t = t1
if j == 2:
t = t2
u = data_pts[i].u
return t * bernsteinPoly(3, j, u)
# X component, used for calculating X matrices for fitting
def xComponent(i, s, e):
di = data_pts[i].co
u = data_pts[i].u
v0 = data_pts[s].co
v3 = data_pts[e].co
a = v0 * bernsteinPoly(3, 0, u)
b = v0 * bernsteinPoly(3, 1, u)
c = v3 * bernsteinPoly(3, 2, u)
d = v3 * bernsteinPoly(3, 3, u)
return (di - (a + b + c + d))
t1 = unitTangent(s, data_pts)
t2 = unitTangent(e, data_pts)
c11 = sum([A(i, 1, s, e, t1, t2) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
c12 = sum([A(i, 1, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
c21 = c12
c22 = sum([A(i, 2, s, e, t1, t2) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
x1 = sum([xComponent(i, s, e) * A(i, 1, s, e, t1, t2) for i in range(s, e + 1)])
x2 = sum([xComponent(i, s, e) * A(i, 2, s, e, t1, t2) for i in range(s, e + 1)])
# calculate Determinate of the 3 matrices
det_cc = c11 * c22 - c21 * c12
det_cx = c11 * x2 - c12 * x1
det_xc = x1 * c22 - x2 * c12
# if matrix is not homogenous, fudge the data a bit
if det_cc == 0:
det_cc = 0.01
# alpha's are the correct offset for bezier handles
alpha0 = det_xc / det_cc # offset from right (first) point
alpha1 = det_cx / det_cc # offset from left (last) point
sRightHandle = data_pts[s].co.copy()
sTangent = t1 * abs(alpha0)
sRightHandle += sTangent # position of first pt's handle
eLeftHandle = data_pts[e].co.copy()
eTangent = t2 * abs(alpha1)
eLeftHandle += eTangent # position of last pt's handle.
# return a 4 member tuple representing the bezier
return (data_pts[s].co,
sRightHandle,
eLeftHandle,
data_pts[e].co)
# convert 2 given data points into a cubic bezier.
# handles are offset along the tangent at
# a 3rd of the length between the points.
def fitSingleCubic2Pts(data_pts, s, e):
alpha0 = alpha1 = (data_pts[s].co - data_pts[e].co).length / 3
sRightHandle = data_pts[s].co.copy()
sTangent = unitTangent(s, data_pts) * abs(alpha0)
sRightHandle += sTangent # position of first pt's handle
eLeftHandle = data_pts[e].co.copy()
eTangent = unitTangent(e, data_pts) * abs(alpha1)
eLeftHandle += eTangent # position of last pt's handle.
#return a 4 member tuple representing the bezier
return (data_pts[s].co,
sRightHandle,
eLeftHandle,
data_pts[e].co)
#evaluate bezier, represented by a 4 member tuple (pts) at point t.
def bezierEval(pts, t):
sumVec = NdVector((0, 0, 0, 0, 0))
for i in range(4):
sumVec += pts[i] * bernsteinPoly(3, i, t)
return sumVec
#calculate the highest error between bezier and original data
#returns the distance and the index of the point where max error occurs.
def maxErrorAmount(data_pts, bez, s, e):
maxError = 0
maxErrorPt = s
if e - s < 3:
return 0, None
for pt in data_pts[s:e + 1]:
bezVal = bezierEval(bez, pt.u)
normalize_error = pt.co.length
if normalize_error == 0:
normalize_error = 1
tmpError = (pt.co - bezVal).length / normalize_error
if tmpError >= maxError:
maxError = tmpError
maxErrorPt = pt.index
return maxError, maxErrorPt
#calculated bezier derivative at point t.
#That is, tangent of point t.
def getBezDerivative(bez, t):
n = len(bez) - 1
sumVec = NdVector((0, 0, 0, 0, 0))
for i in range(n - 1):
sumVec += (bez[i + 1] - bez[i]) * bernsteinPoly(n - 1, i, t)
return sumVec
#use Newton-Raphson to find a better parameterization of datapoints,
#one that minimizes the distance (or error)
# between bezier and original data.
def newtonRaphson(data_pts, s, e, bez):
for pt in data_pts[s:e + 1]:
if pt.index == s:
pt.u = 0
elif pt.index == e:
pt.u = 1
else:
u = pt.u
qu = bezierEval(bez, pt.u)
qud = getBezDerivative(bez, u)
#we wish to minimize f(u),
#the squared distance between curve and data
fu = (qu - pt.co).length ** 2
fud = (2 * (qu.x - pt.co.x) * (qud.x)) - (2 * (qu.y - pt.co.y) * (qud.y))
if fud == 0:
fu = 0
fud = 1
pt.u = pt.u - (fu / fud)
#Create data_pts, a list of dataPoint type, each is assigned index i, and an NdVector
def createDataPts(curveGroup, group_mode):
make_editable_fcurves(curveGroup if group_mode else (curveGroup,))
if group_mode:
print([x.data_path for x in curveGroup])
comp_cos = (0,) * (4 - len(curveGroup)) # We need to add that number of null cos to get our 5D vector.
kframes = sorted(set(kf.co.x for fc in curveGroup for kf in fc.keyframe_points))
data_pts = [dataPoint(i, NdVector((fra,) + tuple(fc.evaluate(fra) for fc in curveGroup) + comp_cos))
for i, fra in enumerate(kframes)]
else:
data_pts = [dataPoint(i, NdVector((kf.co.x, kf.co.y, 0, 0, 0)))
for i, kf in enumerate(curveGroup.keyframe_points)]
return data_pts
#Recursively fit cubic beziers to the data_pts between s and e
def fitCubic(data_pts, s, e):
# if there are less than 3 points, fit a single basic bezier
if e - s < 3:
bez = fitSingleCubic2Pts(data_pts, s, e)
else:
#if there are more, parameterize the points
# and fit a single cubic bezier
chordLength(data_pts, s, e)
bez = fitSingleCubic(data_pts, s, e)
#calculate max error and point where it occurs
maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
#if error is small enough, reparameterization might be enough
if maxError < reparaError and maxError > error:
for i in range(maxIterations):
newtonRaphson(data_pts, s, e, bez)
if e - s < 3:
bez = fitSingleCubic2Pts(data_pts, s, e)
else:
bez = fitSingleCubic(data_pts, s, e)
#recalculate max error and point where it occurs
maxError, maxErrorPt = maxErrorAmount(data_pts, bez, s, e)
#repara wasn't enough, we need 2 beziers for this range.
#Split the bezier at point of maximum error
if maxError > error:
fitCubic(data_pts, s, maxErrorPt)
fitCubic(data_pts, maxErrorPt, e)
else:
#error is small enough, return the beziers.
beziers.append(bez)
return
# deletes the sampled points and creates beziers.
def createNewCurves(curveGroup, beziers, group_mode):
#remove all existing data points
if group_mode:
for fcurve in curveGroup:
for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
fcurve.keyframe_points.remove(fcurve.keyframe_points[i], fast=True)
else:
fcurve = curveGroup
for i in range(len(fcurve.keyframe_points) - 1, 0, -1):
fcurve.keyframe_points.remove(fcurve.keyframe_points[i], fast=True)
#insert the calculated beziers to blender data.
if group_mode:
for fullbez in beziers:
for i, fcurve in enumerate(curveGroup):
bez = [Vector((vec[0], vec[i + 1])) for vec in fullbez]
newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y, options={'FAST'})
newKey.handle_right = (bez[1].x, bez[1].y)
newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y, options={'FAST'})
newKey.handle_left = (bez[2].x, bez[2].y)
else:
for bez in beziers:
for vec in bez:
vec.resize_2d()
newKey = fcurve.keyframe_points.insert(frame=bez[0].x, value=bez[0].y, options={'FAST'})
newKey.handle_right = (bez[1].x, bez[1].y)
newKey = fcurve.keyframe_points.insert(frame=bez[3].x, value=bez[3].y, options={'FAST'})
newKey.handle_left = (bez[2].x, bez[2].y)
# We used fast remove/insert, time to update the curves!
for fcurve in (curveGroup if group_mode else (curveGroup,)):
fcurve.update()
# indices are detached from data point's frame (x) value and
# stored in the dataPoint object, represent a range
data_pts = createDataPts(curveGroup, group_mode)
if not data_pts:
return
s = 0 # start
e = len(data_pts) - 1 # end
beziers = []
#begin the recursive fitting algorithm.
fitCubic(data_pts, s, e)
#remove old Fcurves and insert the new ones
createNewCurves(curveGroup, beziers, group_mode)
#Main function of simplification, which called by Operator
#IN:
# sel_opt- either "sel" (selected) or "all" for which curves to effect
# error- maximum error allowed, in fraction (20% = 0.0020, which is the default),
# i.e. divide by 10000 from percentage wanted.
# group_mode- boolean, to analyze each curve separately or in groups,
# where a group is all curves that effect the same property/RNA path
def fcurves_simplify(context, obj, sel_opt="all", error=0.002, group_mode=True):
# main vars
fcurves = obj.animation_data.action.fcurves
if sel_opt == "sel":
sel_fcurves = [fcurve for fcurve in fcurves if fcurve.select]
else:
sel_fcurves = fcurves[:]
#Error threshold for Newton Raphson reparamatizing
reparaError = error * 32
maxIterations = 16
if group_mode:
fcurveDict = {}
#this loop sorts all the fcurves into groups of 3 or 4,
#based on their RNA Data path, which corresponds to
#which property they effect
for curve in sel_fcurves:
if curve.data_path in fcurveDict: # if this bone has been added, append the curve to its list
fcurveDict[curve.data_path].append(curve)
else:
fcurveDict[curve.data_path] = [curve] # new bone, add a new dict value with this first curve
fcurveGroups = fcurveDict.values()
else:
fcurveGroups = sel_fcurves
if error > 0.00000:
#simplify every selected curve.
totalt = 0
for i, fcurveGroup in enumerate(fcurveGroups):
print("Processing curve " + str(i + 1) + "/" + str(len(fcurveGroups)))
t = time.clock()
simplifyCurves(fcurveGroup, error, reparaError, maxIterations, group_mode)
t = time.clock() - t
print(str(t)[:5] + " seconds to process last curve")
totalt += t
print(str(totalt)[:5] + " seconds, total time elapsed")
return
def detect_min_max(v):
"""
Converted from MATLAB script at http://billauer.co.il/peakdet.html
Yields indices of peaks, i.e. local minima/maxima.
% Eli Billauer, 3.4.05 (Explicitly not copyrighted).
% This function is released to the public domain; Any use is allowed.
"""
min_val, max_val = float('inf'), -float('inf')
check_max = True
for i, val in enumerate(v):
if val > max_val:
max_val = val
if val < min_val:
min_val = val
if check_max:
if val < max_val:
yield i
min_val = val
check_max = False
else:
if val > min_val:
yield i
max_val = val
check_max = True
def denoise(obj, fcurves):
"""
Implementation of non-linear blur filter.
Finds spikes in the fcurve, and replaces spikes that are too big with the average of the surrounding keyframes.
"""
make_editable_fcurves(fcurves)
for fcurve in fcurves:
org_pts = fcurve.keyframe_points[:]
for idx in detect_min_max(pt.co.y for pt in fcurve.keyframe_points[1:-1]):
# Find the neighbours
prev_pt = org_pts[idx - 1].co.y
next_pt = org_pts[idx + 1].co.y
this_pt = org_pts[idx]
# Check the distance from the min/max to the average of the surrounding points.
avg = (prev_pt + next_pt) / 2
is_peak = abs(this_pt.co.y - avg) > avg * 0.02
if is_peak:
diff = avg - fcurve.keyframe_points[idx].co.y
fcurve.keyframe_points[idx].co.y = avg
fcurve.keyframe_points[idx].handle_left.y += diff
fcurve.keyframe_points[idx].handle_right.y += diff
# Important to update the curve after modifying it!
fcurve.update()
# Receives armature, and rotations all bones by 90 degrees along the X axis
# This fixes the common axis issue BVH files have when importing.
# IN: Armature (bpy.types.Armature)
def rotate_fix_armature(arm_data):
global_matrix = Matrix.Rotation(radians(90), 4, "X")
bpy.ops.object.mode_set(mode='EDIT', toggle=False)
#disconnect all bones for ease of global rotation
connectedBones = []
for bone in arm_data.edit_bones:
if bone.use_connect:
connectedBones.append(bone.name)
bone.use_connect = False
#rotate all the bones around their center
for bone in arm_data.edit_bones:
bone.transform(global_matrix)
#reconnect the bones
for bone in connectedBones:
arm_data.edit_bones[bone].use_connect = True
bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
#Roughly scales the performer armature to match the enduser armature
#IN: perfromer_obj, enduser_obj, Blender objects whose .data is an armature.
def scale_fix_armature(performer_obj, enduser_obj):
perf_bones = performer_obj.data.bones
end_bones = enduser_obj.data.bones
def calculateBoundingRadius(bones):
# Calculate the average position of each bone
center = sum((bone.head_local for bone in bones), Vector())
center /= len(bones)
# The radius is defined as the max distance from the center.
radius = max((bone.head_local - center).length for bone in bones)
return radius
perf_rad = calculateBoundingRadius(performer_obj.data.bones)
end_rad = calculateBoundingRadius(enduser_obj.data.bones)
factor = end_rad / perf_rad
performer_obj.scale = factor * Vector((1, 1, 1))
#Guess Mapping
#Given a performer and enduser armature, attempts to guess the hierarchy mapping
def guessMapping(performer_obj, enduser_obj):
perf_bones = performer_obj.data.bones
end_bones = enduser_obj.data.bones
root = perf_bones[0]
def findBoneSide(bone):
if "Left" in bone:
return "Left", bone.replace("Left", "").lower().replace(".", "")
if "Right" in bone:
return "Right", bone.replace("Right", "").lower().replace(".", "")
if "L" in bone:
return "Left", bone.replace("Left", "").lower().replace(".", "")
if "R" in bone:
return "Right", bone.replace("Right", "").lower().replace(".", "")
return "", bone
def nameMatch(bone_a, bone_b):
# nameMatch - receives two strings, returns 2 if they are relatively the same, 1 if they are the same but R and L and 0 if no match at all
side_a, noside_a = findBoneSide(bone_a)
side_b, noside_b = findBoneSide(bone_b)
if side_a == side_b:
if noside_a in noside_b or noside_b in noside_a:
return 2
else:
if noside_a in noside_b or noside_b in noside_a:
return 1
return 0
def guessSingleMapping(perf_bone):
possible_bones = [end_bones[0]]
while possible_bones:
for end_bone in possible_bones:
match = nameMatch(perf_bone.name, end_bone.name)
if match == 2 and not perf_bone.map:
perf_bone.map = end_bone.name
#~ elif match == 1 and not perf_bone.map:
#~ oppo = perf_bones[oppositeBone(perf_bone)].map
# if oppo:
# perf_bone = oppo
newPossibleBones = []
for end_bone in possible_bones:
newPossibleBones += list(end_bone.children)
possible_bones = newPossibleBones
for child in perf_bone.children:
guessSingleMapping(child)
guessSingleMapping(root)
# Creates limit rotation constraints on the enduser armature based on range of motion (max min of fcurves) of the performer.
# IN: context (bpy.context, etc.), and 2 blender objects which are armatures
# OUT: creates the limit constraints.
def limit_dof(context, performer_obj, enduser_obj):
limitDict = {}
perf_bones = [bone for bone in performer_obj.pose.bones if bone.bone.map]
c_frame = context.scene.frame_current
for bone in perf_bones:
limitDict[bone.bone.map] = [1000, 1000, 1000, -1000, -1000, -1000]
for t in range(context.scene.frame_start, context.scene.frame_end):
context.scene.frame_set(t)
for bone in perf_bones:
end_bone = enduser_obj.pose.bones[bone.bone.map]
bake_matrix = bone.matrix
rest_matrix = end_bone.bone.matrix_local
if end_bone.parent and end_bone.bone.use_inherit_rotation:
srcParent = bone.parent
parent_mat = srcParent.matrix
parent_rest = end_bone.parent.bone.matrix_local
parent_rest_inv = parent_rest.inverted()
parent_mat_inv = parent_mat.inverted()
bake_matrix = parent_mat_inv @ bake_matrix
rest_matrix = parent_rest_inv @ rest_matrix
rest_matrix_inv = rest_matrix.inverted()
bake_matrix = rest_matrix_inv @ bake_matrix
mat = bake_matrix
euler = mat.to_euler()
limitDict[bone.bone.map][0] = min(limitDict[bone.bone.map][0], euler.x)
limitDict[bone.bone.map][1] = min(limitDict[bone.bone.map][1], euler.y)
limitDict[bone.bone.map][2] = min(limitDict[bone.bone.map][2], euler.z)
limitDict[bone.bone.map][3] = max(limitDict[bone.bone.map][3], euler.x)
limitDict[bone.bone.map][4] = max(limitDict[bone.bone.map][4], euler.y)
limitDict[bone.bone.map][5] = max(limitDict[bone.bone.map][5], euler.z)
for bone in enduser_obj.pose.bones:
existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
if existingConstraint:
bone.constraints.remove(existingConstraint[0])
end_bones = [bone for bone in enduser_obj.pose.bones if bone.name in limitDict.keys()]
for bone in end_bones:
#~ if not bone.is_in_ik_chain:
newCons = bone.constraints.new("LIMIT_ROTATION")
newCons.name = "DOF Limitation"
newCons.owner_space = "LOCAL"
newCons.min_x, newCons.min_y, newCons.min_z, newCons.max_x, newCons.max_y, newCons.max_z = limitDict[bone.name]
newCons.use_limit_x = True
newCons.use_limit_y = True
newCons.use_limit_z = True
context.scene.frame_set(c_frame)
# Removes the constraints that were added by limit_dof on the enduser_obj
def limit_dof_toggle_off(context, enduser_obj):
for bone in enduser_obj.pose.bones:
existingConstraint = [constraint for constraint in bone.constraints if constraint.name == "DOF Limitation"]
if existingConstraint:
bone.constraints.remove(existingConstraint[0])
# Reparameterizes a blender path via keyframing it's eval_time to match a stride_object's forward velocity.
# IN: Context, stride object (blender object with location keyframes), path object.
def path_editing(context, stride_obj, path):
y_fcurve = [fcurve for fcurve in stride_obj.animation_data.action.fcurves if fcurve.data_path == "location"][1]
s, e = context.scene.frame_start, context.scene.frame_end # y_fcurve.range()
s = int(s)
e = int(e)
y_s = y_fcurve.evaluate(s)
y_e = y_fcurve.evaluate(e)
direction = (y_e - y_s) / abs(y_e - y_s)
existing_cons = [constraint for constraint in stride_obj.constraints if constraint.type == "FOLLOW_PATH"]
for cons in existing_cons:
stride_obj.constraints.remove(cons)
path_cons = stride_obj.constraints.new("FOLLOW_PATH")
if direction < 0:
path_cons.forward_axis = "TRACK_NEGATIVE_Y"
else:
path_cons.forward_axis = "FORWARD_Y"
path_cons.target = path
path_cons.use_curve_follow = True
path.data.path_duration = e - s
try:
path.data.animation_data.action.fcurves
except AttributeError:
path.data.keyframe_insert("eval_time", frame=0)
eval_time_fcurve = [fcurve for fcurve in path.data.animation_data.action.fcurves if fcurve.data_path == "eval_time"]
eval_time_fcurve = eval_time_fcurve[0]
totalLength = 0
parameterization = {}
print("evaluating curve")
for t in range(s, e - 1):
if s == t:
chordLength = 0
else:
chordLength = (y_fcurve.evaluate(t) - y_fcurve.evaluate(t + 1))
totalLength += chordLength
parameterization[t] = totalLength
for t in range(s + 1, e - 1):
if totalLength == 0:
print("no forward motion")
parameterization[t] /= totalLength
parameterization[t] *= e - s
parameterization[e] = e - s
for t in parameterization.keys():
eval_time_fcurve.keyframe_points.insert(frame=t, value=parameterization[t])
y_fcurve.mute = True
print("finished path editing")
#Animation Stitching
#Stitches two retargeted animations together via NLA settings.
#IN: enduser_obj, a blender armature that has had two retargets applied.
def anim_stitch(context, enduser_obj):
stitch_settings = enduser_obj.data.stitch_settings
action_1 = stitch_settings.first_action
action_2 = stitch_settings.second_action
if stitch_settings.stick_bone != "":
selected_bone = enduser_obj.pose.bones[stitch_settings.stick_bone]
else:
selected_bone = enduser_obj.pose.bones[0]
scene = context.scene
TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
enduser_obj.data.active_mocap = action_1
anim_data = enduser_obj.animation_data
# add tracks for action 2
mocapAction = bpy.data.actions[TrackNamesB.base_track]
mocapTrack = anim_data.nla_tracks.new()
mocapTrack.name = TrackNamesB.base_track
mocapStrip = mocapTrack.strips.new(TrackNamesB.base_track, stitch_settings.blend_frame, mocapAction)
mocapStrip.extrapolation = "HOLD_FORWARD"
mocapStrip.blend_in = stitch_settings.blend_amount
mocapStrip.action_frame_start += stitch_settings.second_offset
mocapStrip.action_frame_end += stitch_settings.second_offset
constraintTrack = anim_data.nla_tracks.new()
constraintTrack.name = TrackNamesB.auto_fix_track
constraintAction = bpy.data.actions[TrackNamesB.auto_fix_track]
constraintStrip = constraintTrack.strips.new(TrackNamesB.auto_fix_track, stitch_settings.blend_frame, constraintAction)
constraintStrip.extrapolation = "HOLD_FORWARD"
constraintStrip.blend_in = stitch_settings.blend_amount
userTrack = anim_data.nla_tracks.new()
userTrack.name = TrackNamesB.manual_fix_track
userAction = bpy.data.actions[TrackNamesB.manual_fix_track]
userStrip = userTrack.strips.new(TrackNamesB.manual_fix_track, stitch_settings.blend_frame, userAction)
userStrip.extrapolation = "HOLD_FORWARD"
userStrip.blend_in = stitch_settings.blend_amount
#stride bone
if enduser_obj.parent:
if enduser_obj.parent.name == "stride_bone":
stride_bone = enduser_obj.parent
stride_anim_data = stride_bone.animation_data
stride_anim_data.use_nla = True
stride_anim_data.action = None
for track in stride_anim_data.nla_tracks:
stride_anim_data.nla_tracks.remove(track)
actionATrack = stride_anim_data.nla_tracks.new()
actionATrack.name = TrackNamesA.stride_action
actionAStrip = actionATrack.strips.new(TrackNamesA.stride_action, 0, bpy.data.actions[TrackNamesA.stride_action])
actionAStrip.extrapolation = "NOTHING"
actionBTrack = stride_anim_data.nla_tracks.new()
actionBTrack.name = TrackNamesB.stride_action
actionBStrip = actionBTrack.strips.new(TrackNamesB.stride_action, stitch_settings.blend_frame, bpy.data.actions[TrackNamesB.stride_action])
actionBStrip.action_frame_start += stitch_settings.second_offset
actionBStrip.action_frame_end += stitch_settings.second_offset
actionBStrip.extrapolation = "NOTHING"
#we need to change the stride_bone's action to add the offset
aStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesA.stride_action].fcurves if fcurve.data_path == "location"]
bStrideCurves = [fcurve for fcurve in bpy.data.actions[TrackNamesB.stride_action].fcurves if fcurve.data_path == "location"]
scene.frame_set(stitch_settings.blend_frame - 1)
desired_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
scene.frame_set(stitch_settings.blend_frame)
actual_pos = (enduser_obj.matrix_world * selected_bone.matrix.to_translation())
print(desired_pos, actual_pos)
offset = Vector(actual_pos) - Vector(desired_pos)
for i, fcurve in enumerate(bStrideCurves):
print(offset[i], i, fcurve.array_index)
for pt in fcurve.keyframe_points:
pt.co.y -= offset[i]
pt.handle_left.y -= offset[i]
pt.handle_right.y -= offset[i]
#actionBStrip.blend_in = stitch_settings.blend_amount
#Guesses setting for animation stitching via Cross Correlation
def guess_anim_stitch(context, enduser_obj):
stitch_settings = enduser_obj.data.stitch_settings
action_1 = stitch_settings.first_action
action_2 = stitch_settings.second_action
TrackNamesA = enduser_obj.data.mocapNLATracks[action_1]
TrackNamesB = enduser_obj.data.mocapNLATracks[action_2]
mocapA = bpy.data.actions[TrackNamesA.base_track]
mocapB = bpy.data.actions[TrackNamesB.base_track]
curvesA = mocapA.fcurves
curvesB = mocapB.fcurves
flm, s, data = crossCorrelationMatch(curvesA, curvesB, 10)
print("Guessed the following for start and offset: ", s, flm)
enduser_obj.data.stitch_settings.blend_frame = flm
enduser_obj.data.stitch_settings.second_offset = s