blender-addons/archipack/archipack_2d.py

969 lines
27 KiB
Python

# -*- coding:utf-8 -*-
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110- 1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
# ----------------------------------------------------------
# Author: Stephen Leger (s-leger)
#
# ----------------------------------------------------------
from mathutils import Vector, Matrix
from math import sin, cos, pi, atan2, sqrt, acos
import bpy
# allow to draw parts with gl for debug puropses
from .archipack_gl import GlBaseLine
class Projection(GlBaseLine):
def __init__(self):
GlBaseLine.__init__(self)
def proj_xy(self, t, next=None):
"""
length of projection of sections at crossing line / circle intersections
deformation unit vector for profil in xy axis
so f(x_profile) = position of point in xy plane
"""
if next is None:
return self.normal(t).v.normalized(), 1
v0 = self.normal(1).v.normalized()
v1 = next.normal(0).v.normalized()
direction = v0 + v1
adj = (v0 * self.length) * (v1 * next.length)
hyp = (self.length * next.length)
c = min(1, max(-1, adj / hyp))
size = 1 / cos(0.5 * acos(c))
return direction.normalized(), min(3, size)
def proj_z(self, t, dz0, next=None, dz1=0):
"""
length of projection along crossing line / circle
deformation unit vector for profil in z axis at line / line intersection
so f(y) = position of point in yz plane
"""
return Vector((0, 1)), 1
"""
NOTE (to myself):
In theory this is how it has to be done so sections follow path,
but in real world results are better when sections are z-up.
So return a dumb 1 so f(y) = y
"""
if next is None:
dz = dz0 / self.length
else:
dz = (dz1 + dz0) / (self.length + next.length)
return Vector((0, 1)), sqrt(1 + dz * dz)
# 1 / sqrt(1 + (dz0 / self.length) * (dz0 / self.length))
if next is None:
return Vector((-dz0, self.length)).normalized(), 1
v0 = Vector((self.length, dz0))
v1 = Vector((next.length, dz1))
direction = Vector((-dz0, self.length)).normalized() + Vector((-dz1, next.length)).normalized()
adj = v0 * v1
hyp = (v0.length * v1.length)
c = min(1, max(-1, adj / hyp))
size = -cos(pi - 0.5 * acos(c))
return direction.normalized(), size
class Line(Projection):
"""
2d Line
Internally stored as p: origin and v:size and direction
moving p will move both ends of line
moving p0 or p1 move only one end of line
p1
^
| v
p0 == p
"""
def __init__(self, p=None, v=None, p0=None, p1=None):
"""
Init by either
p: Vector or tuple origin
v: Vector or tuple size and direction
or
p0: Vector or tuple 1 point location
p1: Vector or tuple 2 point location
Will convert any into Vector 2d
both optionnals
"""
Projection.__init__(self)
if p is not None and v is not None:
self.p = Vector(p).to_2d()
self.v = Vector(v).to_2d()
elif p0 is not None and p1 is not None:
self.p = Vector(p0).to_2d()
self.v = Vector(p1).to_2d() - self.p
else:
self.p = Vector((0, 0))
self.v = Vector((0, 0))
self.line = None
@property
def copy(self):
return Line(self.p.copy(), self.v.copy())
@property
def p0(self):
return self.p
@property
def p1(self):
return self.p + self.v
@p0.setter
def p0(self, p0):
"""
Note: setting p0
move p0 only
"""
p1 = self.p1
self.p = Vector(p0).to_2d()
self.v = p1 - p0
@p1.setter
def p1(self, p1):
"""
Note: setting p1
move p1 only
"""
self.v = Vector(p1).to_2d() - self.p
@property
def length(self):
"""
3d length
"""
return self.v.length
@property
def angle(self):
"""
2d angle on xy plane
"""
return atan2(self.v.y, self.v.x)
@property
def a0(self):
return self.angle
@property
def angle_normal(self):
"""
2d angle of perpendicular
lie on the right side
p1
|--x
p0
"""
return atan2(-self.v.x, self.v.y)
@property
def reversed(self):
return Line(self.p, -self.v)
@property
def oposite(self):
return Line(self.p + self.v, -self.v)
@property
def cross_z(self):
"""
2d Vector perpendicular on plane xy
lie on the right side
p1
|--x
p0
"""
return Vector((self.v.y, -self.v.x))
@property
def cross(self):
return Vector((self.v.y, -self.v.x))
def signed_angle(self, u, v):
"""
signed angle between two vectors range [-pi, pi]
"""
return atan2(u.x * v.y - u.y * v.x, u.x * v.x + u.y * v.y)
def delta_angle(self, last):
"""
signed delta angle between end of line and start of this one
this value is object's a0 for segment = self
"""
if last is None:
return self.angle
return self.signed_angle(last.straight(1, 1).v, self.straight(1, 0).v)
def normal(self, t=0):
"""
2d Line perpendicular on plane xy
at position t in current segment
lie on the right side
p1
|--x
p0
"""
return Line(self.lerp(t), self.cross_z)
def sized_normal(self, t, size):
"""
2d Line perpendicular on plane xy
at position t in current segment
and of given length
lie on the right side when size > 0
p1
|--x
p0
"""
return Line(self.lerp(t), size * self.cross_z.normalized())
def lerp(self, t):
"""
3d interpolation
"""
return self.p + self.v * t
def intersect(self, line):
"""
2d intersection on plane xy
return
True if intersect
p: point of intersection
t: param t of intersection on current line
"""
c = line.cross_z
d = self.v.dot(c)
if d == 0:
return False, 0, 0
t = c.dot(line.p - self.p) / d
return True, self.lerp(t), t
def intersect_ext(self, line):
"""
same as intersect, but return param t on both lines
"""
c = line.cross_z
d = self.v.dot(c)
if d == 0:
return False, 0, 0, 0
dp = line.p - self.p
c2 = self.cross_z
u = c.dot(dp) / d
v = c2.dot(dp) / d
return u > 0 and v > 0 and u < 1 and v < 1, self.lerp(u), u, v
def point_sur_segment(self, pt):
""" _point_sur_segment
point: Vector 2d
t: param t de l'intersection sur le segment courant
d: distance laterale perpendiculaire positif a droite
"""
dp = pt - self.p
dl = self.length
if dl == 0:
return dp.length < 0.00001, 0, 0
d = (self.v.x * dp.y - self.v.y * dp.x) / dl
t = self.v.dot(dp) / (dl * dl)
return t > 0 and t < 1, d, t
def steps(self, len):
steps = max(1, round(self.length / len, 0))
return 1 / steps, int(steps)
def in_place_offset(self, offset):
"""
Offset current line
offset > 0 on the right part
"""
self.p += offset * self.cross_z.normalized()
def offset(self, offset):
"""
Return a new line
offset > 0 on the right part
"""
return Line(self.p + offset * self.cross_z.normalized(), self.v)
def tangeant(self, t, da, radius):
p = self.lerp(t)
if da < 0:
c = p + radius * self.cross_z.normalized()
else:
c = p - radius * self.cross_z.normalized()
return Arc(c, radius, self.angle_normal, da)
def straight(self, length, t=1):
return Line(self.lerp(t), self.v.normalized() * length)
def translate(self, dp):
self.p += dp
def rotate(self, a):
"""
Rotate segment ccw arroud p0
"""
ca = cos(a)
sa = sin(a)
self.v = Matrix([
[ca, -sa],
[sa, ca]
]) @ self.v
return self
def scale(self, length):
self.v = length * self.v.normalized()
return self
def tangeant_unit_vector(self, t):
return self.v.normalized()
def as_curve(self, context):
"""
Draw Line with open gl in screen space
aka: coords are in pixels
"""
curve = bpy.data.curves.new('LINE', type='CURVE')
curve.dimensions = '2D'
spline = curve.splines.new('POLY')
spline.use_endpoint_u = False
spline.use_cyclic_u = False
pts = self.pts
spline.points.add(len(pts) - 1)
for i, p in enumerate(pts):
x, y, z = p
spline.points[i].co = (x, y, 0, 1)
curve_obj = bpy.data.objects.new('LINE', curve)
context.scene.collection.objects.link(curve_obj)
curve_obj.select_set(state=True)
def make_offset(self, offset, last=None):
"""
Return offset between last and self.
Adjust last and self start to match
intersection point
"""
line = self.offset(offset)
if last is None:
return line
if hasattr(last, "r"):
res, d, t = line.point_sur_segment(last.c)
c = (last.r * last.r) - (d * d)
# print("t:%s" % t)
if c <= 0:
# no intersection !
p0 = line.lerp(t)
else:
# center is past start of line
if t > 0:
p0 = line.lerp(t) - line.v.normalized() * sqrt(c)
else:
p0 = line.lerp(t) + line.v.normalized() * sqrt(c)
# compute da of arc
u = last.p0 - last.c
v = p0 - last.c
da = self.signed_angle(u, v)
# da is ccw
if last.ccw:
# da is cw
if da < 0:
# so take inverse
da = 2 * pi + da
elif da > 0:
# da is ccw
da = 2 * pi - da
last.da = da
line.p0 = p0
else:
# intersect line / line
# 1 line -> 2 line
c = line.cross_z
d = last.v.dot(c)
if d == 0:
return line
v = line.p - last.p
t = c.dot(v) / d
c2 = last.cross_z
u = c2.dot(v) / d
# intersect past this segment end
# or before last segment start
# print("u:%s t:%s" % (u, t))
if u > 1 or t < 0:
return line
p = last.lerp(t)
line.p0 = p
last.p1 = p
return line
@property
def pts(self):
return [self.p0.to_3d(), self.p1.to_3d()]
class Circle(Projection):
def __init__(self, c, radius):
Projection.__init__(self)
self.r = radius
self.r2 = radius * radius
self.c = c
def intersect(self, line):
v = line.p - self.c
A = line.v.dot(line.v)
B = 2 * v.dot(line.v)
C = v.dot(v) - self.r2
d = B * B - 4 * A * C
if A <= 0.0000001 or d < 0:
# dosent intersect, find closest point of line
res, d, t = line.point_sur_segment(self.c)
return False, line.lerp(t), t
elif d == 0:
t = -B / 2 * A
return True, line.lerp(t), t
else:
AA = 2 * A
dsq = sqrt(d)
t0 = (-B + dsq) / AA
t1 = (-B - dsq) / AA
if abs(t0) < abs(t1):
return True, line.lerp(t0), t0
else:
return True, line.lerp(t1), t1
def translate(self, dp):
self.c += dp
class Arc(Circle):
"""
Represent a 2d Arc
TODO:
make it possible to define an arc by start point end point and center
"""
def __init__(self, c, radius, a0, da):
"""
a0 and da arguments are in radians
c Vector 2d center
radius float radius
a0 radians start angle
da radians delta angle from start to end
a0 = 0 on the right side
a0 = pi on the left side
da > 0 CCW contrary-clockwise
da < 0 CW clockwise
stored internally as radians
"""
Circle.__init__(self, Vector(c).to_2d(), radius)
self.line = None
self.a0 = a0
self.da = da
@property
def angle(self):
"""
angle of vector p0 p1
"""
v = self.p1 - self.p0
return atan2(v.y, v.x)
@property
def ccw(self):
return self.da > 0
def signed_angle(self, u, v):
"""
signed angle between two vectors
"""
return atan2(u.x * v.y - u.y * v.x, u.x * v.x + u.y * v.y)
def delta_angle(self, last):
"""
signed delta angle between end of line and start of this one
this value is object's a0 for segment = self
"""
if last is None:
return self.a0
return self.signed_angle(last.straight(1, 1).v, self.straight(1, 0).v)
def scale_rot_matrix(self, u, v):
"""
given vector u and v (from and to p0 p1)
apply scale factor to radius and
return a matrix to rotate and scale
the center around u origin so
arc fit v
"""
# signed angle old new vectors (rotation)
a = self.signed_angle(u, v)
# scale factor
scale = v.length / u.length
ca = scale * cos(a)
sa = scale * sin(a)
return scale, Matrix([
[ca, -sa],
[sa, ca]
])
@property
def p0(self):
"""
start point of arc
"""
return self.lerp(0)
@property
def p1(self):
"""
end point of arc
"""
return self.lerp(1)
@p0.setter
def p0(self, p0):
"""
rotate and scale arc so it intersect p0 p1
da is not affected
"""
u = self.p0 - self.p1
v = p0 - self.p1
scale, rM = self.scale_rot_matrix(u, v)
self.c = self.p1 + rM @ (self.c - self.p1)
self.r *= scale
self.r2 = self.r * self.r
dp = p0 - self.c
self.a0 = atan2(dp.y, dp.x)
@p1.setter
def p1(self, p1):
"""
rotate and scale arc so it intersect p0 p1
da is not affected
"""
p0 = self.p0
u = self.p1 - p0
v = p1 - p0
scale, rM = self.scale_rot_matrix(u, v)
self.c = p0 + rM @ (self.c - p0)
self.r *= scale
self.r2 = self.r * self.r
dp = p0 - self.c
self.a0 = atan2(dp.y, dp.x)
@property
def length(self):
"""
arc length
"""
return self.r * abs(self.da)
@property
def oposite(self):
a0 = self.a0 + self.da
if a0 > pi:
a0 -= 2 * pi
if a0 < -pi:
a0 += 2 * pi
return Arc(self.c, self.r, a0, -self.da)
def normal(self, t=0):
"""
Perpendicular line starting at t
always on the right side
"""
p = self.lerp(t)
if self.da < 0:
return Line(p, self.c - p)
else:
return Line(p, p - self.c)
def sized_normal(self, t, size):
"""
Perpendicular line starting at t and of a length size
on the right side when size > 0
"""
p = self.lerp(t)
if self.da < 0:
v = self.c - p
else:
v = p - self.c
return Line(p, size * v.normalized())
def lerp(self, t):
"""
Interpolate along segment
t parameter [0, 1] where 0 is start of arc and 1 is end
"""
a = self.a0 + t * self.da
return self.c + Vector((self.r * cos(a), self.r * sin(a)))
def steps(self, length):
"""
Compute step count given desired step length
"""
steps = max(1, round(self.length / length, 0))
return 1.0 / steps, int(steps)
def intersect_ext(self, line):
"""
same as intersect, but return param t on both lines
"""
res, p, v = self.intersect(line)
v0 = self.p0 - self.c
v1 = p - self.c
u = self.signed_angle(v0, v1) / self.da
return res and u > 0 and v > 0 and u < 1 and v < 1, p, u, v
# this is for wall
def steps_by_angle(self, step_angle):
steps = max(1, round(abs(self.da) / step_angle, 0))
return 1.0 / steps, int(steps)
def as_lines(self, steps):
"""
convert Arc to lines
"""
res = []
p0 = self.lerp(0)
for step in range(steps):
p1 = self.lerp((step + 1) / steps)
s = Line(p0=p0, p1=p1)
res.append(s)
p0 = p1
if self.line is not None:
p0 = self.line.lerp(0)
for step in range(steps):
p1 = self.line.lerp((step + 1) / steps)
res[step].line = Line(p0=p0, p1=p1)
p0 = p1
return res
def offset(self, offset):
"""
Offset circle
offset > 0 on the right part
"""
if self.da > 0:
radius = self.r + offset
else:
radius = self.r - offset
return Arc(self.c, radius, self.a0, self.da)
def tangeant(self, t, length):
"""
Tangent line so we are able to chain Circle and lines
Beware, counterpart on Line does return an Arc !
"""
a = self.a0 + t * self.da
ca = cos(a)
sa = sin(a)
p = self.c + Vector((self.r * ca, self.r * sa))
v = Vector((length * sa, -length * ca))
if self.da > 0:
v = -v
return Line(p, v)
def tangeant_unit_vector(self, t):
"""
Return Tangent vector of length 1
"""
a = self.a0 + t * self.da
ca = cos(a)
sa = sin(a)
v = Vector((sa, -ca))
if self.da > 0:
v = -v
return v
def straight(self, length, t=1):
"""
Return a tangent Line
Counterpart on Line also return a Line
"""
return self.tangeant(t, length)
def point_sur_segment(self, pt):
"""
Point pt lie on arc ?
return
True when pt lie on segment
t [0, 1] where it lie (normalized between start and end)
d distance from arc
"""
dp = pt - self.c
d = dp.length - self.r
a = atan2(dp.y, dp.x)
t = (a - self.a0) / self.da
return t > 0 and t < 1, d, t
def rotate(self, a):
"""
Rotate center so we rotate ccw around p0
"""
ca = cos(a)
sa = sin(a)
rM = Matrix([
[ca, -sa],
[sa, ca]
])
p0 = self.p0
self.c = p0 + rM @ (self.c - p0)
dp = p0 - self.c
self.a0 = atan2(dp.y, dp.x)
return self
# make offset for line / arc, arc / arc
def make_offset(self, offset, last=None):
line = self.offset(offset)
if last is None:
return line
if hasattr(last, "v"):
# intersect line / arc
# 1 line -> 2 arc
res, d, t = last.point_sur_segment(line.c)
c = line.r2 - (d * d)
if c <= 0:
# no intersection !
p0 = last.lerp(t)
else:
# center is past end of line
if t > 1:
# Arc take precedence
p0 = last.lerp(t) - last.v.normalized() * sqrt(c)
else:
# line take precedence
p0 = last.lerp(t) + last.v.normalized() * sqrt(c)
# compute a0 and da of arc
u = p0 - line.c
v = line.p1 - line.c
line.a0 = atan2(u.y, u.x)
da = self.signed_angle(u, v)
# da is ccw
if self.ccw:
# da is cw
if da < 0:
# so take inverse
da = 2 * pi + da
elif da > 0:
# da is ccw
da = 2 * pi - da
line.da = da
last.p1 = p0
else:
# intersect arc / arc x1 = self x0 = last
# rule to determine right side ->
# same side of d as p0 of self
dc = line.c - last.c
tmp = Line(last.c, dc)
res, d, t = tmp.point_sur_segment(self.p0)
r = line.r + last.r
dist = dc.length
if dist > r or \
dist < abs(last.r - self.r):
# no intersection
return line
if dist == r:
# 1 solution
p0 = dc * -last.r / r + self.c
else:
# 2 solutions
a = (last.r2 - line.r2 + dist * dist) / (2.0 * dist)
v2 = last.c + dc * a / dist
h = sqrt(last.r2 - a * a)
r = Vector((-dc.y, dc.x)) * (h / dist)
p0 = v2 + r
res, d1, t = tmp.point_sur_segment(p0)
# take other point if we are not on the same side
if d1 > 0:
if d < 0:
p0 = v2 - r
elif d > 0:
p0 = v2 - r
# compute da of last
u = last.p0 - last.c
v = p0 - last.c
last.da = self.signed_angle(u, v)
# compute a0 and da of current
u, v = v, line.p1 - line.c
line.a0 = atan2(u.y, u.x)
line.da = self.signed_angle(u, v)
return line
# DEBUG
@property
def pts(self):
n_pts = max(1, int(round(abs(self.da) / pi * 30, 0)))
t_step = 1 / n_pts
return [self.lerp(i * t_step).to_3d() for i in range(n_pts + 1)]
def as_curve(self, context):
"""
Draw 2d arc with open gl in screen space
aka: coords are in pixels
"""
curve = bpy.data.curves.new('ARC', type='CURVE')
curve.dimensions = '2D'
spline = curve.splines.new('POLY')
spline.use_endpoint_u = False
spline.use_cyclic_u = False
pts = self.pts
spline.points.add(len(pts) - 1)
for i, p in enumerate(pts):
x, y = p
spline.points[i].co = (x, y, 0, 1)
curve_obj = bpy.data.objects.new('ARC', curve)
context.scene.collection.objects.link(curve_obj)
curve_obj.select_set(state=True)
class Line3d(Line):
"""
3d Line
mostly a gl enabled for future use in manipulators
coords are in world space
"""
def __init__(self, p=None, v=None, p0=None, p1=None, z_axis=None):
"""
Init by either
p: Vector or tuple origin
v: Vector or tuple size and direction
or
p0: Vector or tuple 1 point location
p1: Vector or tuple 2 point location
Will convert any into Vector 3d
both optionnals
"""
if p is not None and v is not None:
self.p = Vector(p).to_3d()
self.v = Vector(v).to_3d()
elif p0 is not None and p1 is not None:
self.p = Vector(p0).to_3d()
self.v = Vector(p1).to_3d() - self.p
else:
self.p = Vector((0, 0, 0))
self.v = Vector((0, 0, 0))
if z_axis is not None:
self.z_axis = z_axis
else:
self.z_axis = Vector((0, 0, 1))
@property
def p0(self):
return self.p
@property
def p1(self):
return self.p + self.v
@p0.setter
def p0(self, p0):
"""
Note: setting p0
move p0 only
"""
p1 = self.p1
self.p = Vector(p0).to_3d()
self.v = p1 - p0
@p1.setter
def p1(self, p1):
"""
Note: setting p1
move p1 only
"""
self.v = Vector(p1).to_3d() - self.p
@property
def cross_z(self):
"""
3d Vector perpendicular on plane xy
lie on the right side
p1
|--x
p0
"""
return self.v.cross(Vector((0, 0, 1)))
@property
def cross(self):
"""
3d Vector perpendicular on plane defined by z_axis
lie on the right side
p1
|--x
p0
"""
return self.v.cross(self.z_axis)
def normal(self, t=0):
"""
3d Vector perpendicular on plane defined by z_axis
lie on the right side
p1
|--x
p0
"""
n = Line3d()
n.p = self.lerp(t)
n.v = self.cross
return n
def sized_normal(self, t, size):
"""
3d Line perpendicular on plane defined by z_axis and of given size
positioned at t in current line
lie on the right side
p1
|--x
p0
"""
p = self.lerp(t)
v = size * self.cross.normalized()
return Line3d(p, v, z_axis=self.z_axis)
def offset(self, offset):
"""
offset > 0 on the right part
"""
return Line3d(self.p + offset * self.cross.normalized(), self.v)
# unless override, 2d methods should raise NotImplementedError
def intersect(self, line):
raise NotImplementedError
def point_sur_segment(self, pt):
raise NotImplementedError
def tangeant(self, t, da, radius):
raise NotImplementedError