blender-addons/render_povray/render.py
Ankit Meel a65fb17335 Cleanup: Remove trailing period in descriptions.
Reduces warnings while running tests.
Also fix some descriptions with strings concatenated but without a
space in between.

Reviewed by campbellbarton
Differential Revision: https://developer.blender.org/D9655
2021-02-12 10:31:55 +05:30

6133 lines
287 KiB
Python

# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# #**** END GPL LICENSE BLOCK #****
# <pep8 compliant>
import bpy
import subprocess
import os
import sys
import time
from math import atan, pi, degrees, sqrt, cos, sin
####################
## Faster mesh export
import numpy as np
####################
import re
import random
import platform #
import subprocess #
import tempfile # generate temporary files with random names
from bpy.types import Operator
from imghdr import what # imghdr is a python lib to identify image file types
from bpy.utils import register_class
from . import df3 # for smoke rendering
from . import shading # for BI POV shaders emulation
from . import primitives # for import and export of POV specific primitives
from . import nodes # for POV specific nodes
##############################SF###########################
##############find image texture
def imageFormat(imgF):
"""Identify input image filetypes to transmit to POV."""
# First use the below explicit extensions to identify image file prospects
ext = {
'JPG': "jpeg",
'JPEG': "jpeg",
'GIF': "gif",
'TGA': "tga",
'IFF': "iff",
'PPM': "ppm",
'PNG': "png",
'SYS': "sys",
'TIFF': "tiff",
'TIF': "tiff",
'EXR': "exr",
'HDR': "hdr",
}.get(os.path.splitext(imgF)[-1].upper(), "")
# Then, use imghdr to really identify the filetype as it can be different
if not ext:
# maybe add a check for if path exists here?
print(" WARNING: texture image has no extension") # too verbose
ext = what(imgF) # imghdr is a python lib to identify image file types
return ext
def imgMap(ts):
"""Translate mapping type from Blender UI to POV syntax and return that string."""
image_map = ""
texdata = bpy.data.textures[ts.texture]
if ts.mapping == 'FLAT':
image_map = "map_type 0 "
elif ts.mapping == 'SPHERE':
image_map = "map_type 1 "
elif ts.mapping == 'TUBE':
image_map = "map_type 2 "
## map_type 3 and 4 in development (?) (ENV in pov 3.8)
## for POV-Ray, currently they just seem to default back to Flat (type 0)
# elif ts.mapping=="?":
# image_map = " map_type 3 "
# elif ts.mapping=="?":
# image_map = " map_type 4 "
if ts.use_interpolation: # Available if image sampling class reactivated?
image_map += " interpolate 2 "
if texdata.extension == 'CLIP':
image_map += " once "
# image_map += "}"
# if ts.mapping=='CUBE':
# image_map+= "warp { cubic } rotate <-90,0,180>"
# no direct cube type mapping. Though this should work in POV 3.7
# it doesn't give that good results(best suited to environment maps?)
# if image_map == "":
# print(" No texture image found ")
return image_map
def imgMapTransforms(ts):
"""Translate mapping transformations from Blender UI to POV syntax and return that string."""
# XXX TODO: unchecked textures give error of variable referenced before assignment XXX
# POV-Ray "scale" is not a number of repetitions factor, but ,its
# inverse, a standard scale factor.
# 0.5 Offset is needed relatively to scale because center of the
# scale is 0.5,0.5 in blender and 0,0 in POV
# Strange that the translation factor for scale is not the same as for
# translate.
# TODO: verify both matches with blender internal.
image_map_transforms = ""
image_map_transforms = (
"scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>"
% (
ts.scale[0],
ts.scale[1],
ts.scale[2],
ts.offset[0],
ts.offset[1],
ts.offset[2],
)
)
# image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
# ( 1.0 / ts.scale.x,
# 1.0 / ts.scale.y,
# 1.0 / ts.scale.z,
# (0.5 / ts.scale.x) + ts.offset.x,
# (0.5 / ts.scale.y) + ts.offset.y,
# ts.offset.z))
# image_map_transforms = ("translate <-0.5,-0.5,0> scale <-1,-1,1> * <%.4g,%.4g,%.4g> translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
# (1.0 / ts.scale.x,
# 1.0 / ts.scale.y,
# 1.0 / ts.scale.z,
# ts.offset.x,
# ts.offset.y,
# ts.offset.z))
return image_map_transforms
def imgMapBG(wts):
"""Translate world mapping from Blender UI to POV syntax and return that string."""
tex = bpy.data.textures[wts.texture]
image_mapBG = ""
# texture_coords refers to the mapping of world textures:
if wts.texture_coords == 'VIEW' or wts.texture_coords == 'GLOBAL':
image_mapBG = " map_type 0 "
elif wts.texture_coords == 'ANGMAP':
image_mapBG = " map_type 1 "
elif wts.texture_coords == 'TUBE':
image_mapBG = " map_type 2 "
if tex.use_interpolation:
image_mapBG += " interpolate 2 "
if tex.extension == 'CLIP':
image_mapBG += " once "
# image_mapBG += "}"
# if wts.mapping == 'CUBE':
# image_mapBG += "warp { cubic } rotate <-90,0,180>"
# no direct cube type mapping. Though this should work in POV 3.7
# it doesn't give that good results(best suited to environment maps?)
# if image_mapBG == "":
# print(" No background texture image found ")
return image_mapBG
def path_image(image):
"""Conform a path string to POV syntax to avoid POV errors."""
return bpy.path.abspath(image.filepath, library=image.library).replace(
"\\", "/"
)
# .replace("\\","/") to get only forward slashes as it's what POV prefers,
# even on windows
# end find image texture
# -----------------------------------------------------------------------------
def string_strip_hyphen(name):
"""Remove hyphen characters from a string to avoid POV errors."""
return name.replace("-", "")
def safety(name, Level):
"""append suffix characters to names of various material declinations.
Material declinations are necessary to POV syntax and used in shading.py
by the povHasnoSpecularMaps function to create the finish map trick and
the suffixes avoid name collisions.
Keyword arguments:
name -- the initial material name as a string
Level -- the enum number of the Level being written:
Level=1 is for texture with No specular nor Mirror reflection
Level=2 is for texture with translation of spec and mir levels
for when no map influences them
Level=3 is for texture with Maximum Spec and Mirror
"""
try:
if int(name) > 0:
prefix = "shader"
except:
prefix = ""
prefix = "shader_"
name = string_strip_hyphen(name)
if Level == 2:
return prefix + name
elif Level == 1:
return prefix + name + "0" # used for 0 of specular map
elif Level == 3:
return prefix + name + "1" # used for 1 of specular map
##############end safety string name material
##############################EndSF###########################
csg_list = []
def is_renderable(scene, ob):
return not ob.hide_render and ob not in csg_list
def renderable_objects(scene):
return [ob for ob in bpy.data.objects if is_renderable(scene, ob)]
def no_renderable_objects(scene):
return [ob for ob in csg_list]
tabLevel = 0
unpacked_images = []
user_dir = bpy.utils.resource_path('USER')
preview_dir = os.path.join(user_dir, "preview")
## Make sure Preview directory exists and is empty
smokePath = os.path.join(preview_dir, "smoke.df3")
'''
def write_global_setting(scene,file):
file.write("global_settings {\n")
file.write(" assumed_gamma %.6f\n"%scene.pov.assumed_gamma)
if scene.pov.global_settings_advanced:
if scene.pov.radio_enable == False:
file.write(" adc_bailout %.6f\n"%scene.pov.adc_bailout)
file.write(" ambient_light <%.6f,%.6f,%.6f>\n"%scene.pov.ambient_light[:])
file.write(" irid_wavelength <%.6f,%.6f,%.6f>\n"%scene.pov.irid_wavelength[:])
file.write(" charset %s\n"%scene.pov.charset)
file.write(" max_trace_level %s\n"%scene.pov.max_trace_level)
file.write(" max_intersections %s\n"%scene.pov.max_intersections)
file.write(" number_of_waves %s\n"%scene.pov.number_of_waves)
file.write(" noise_generator %s\n"%scene.pov.noise_generator)
# below properties not added to __init__ yet to avoid conflicts with material sss scale
# unless it would override then should be interfaced also in scene units property tab
# if scene.pov.sslt_enable:
# file.write(" mm_per_unit %s\n"%scene.pov.mm_per_unit)
# file.write(" subsurface {\n")
# file.write(" samples %s, %s\n"%(scene.pov.sslt_samples_max,scene.pov.sslt_samples_min))
# if scene.pov.sslt_radiosity:
# file.write(" radiosity on\n")
# file.write("}\n")
if scene.pov.radio_enable:
file.write(" radiosity {\n")
file.write(" pretrace_start %.6f\n"%scene.pov.radio_pretrace_start)
file.write(" pretrace_end %.6f\n"%scene.pov.radio_pretrace_end)
file.write(" count %s\n"%scene.pov.radio_count)
file.write(" nearest_count %s\n"%scene.pov.radio_nearest_count)
file.write(" error_bound %.6f\n"%scene.pov.radio_error_bound)
file.write(" recursion_limit %s\n"%scene.pov.radio_recursion_limit)
file.write(" low_error_factor %.6f\n"%scene.pov.radio_low_error_factor)
file.write(" gray_threshold %.6f\n"%scene.pov.radio_gray_threshold)
file.write(" maximum_reuse %.6f\n"%scene.pov.radio_maximum_reuse)
file.write(" minimum_reuse %.6f\n"%scene.pov.radio_minimum_reuse)
file.write(" brightness %.6f\n"%scene.pov.radio_brightness)
file.write(" adc_bailout %.6f\n"%scene.pov.radio_adc_bailout)
if scene.pov.radio_normal:
file.write(" normal on\n")
if scene.pov.radio_always_sample:
file.write(" always_sample on\n")
if scene.pov.radio_media:
file.write(" media on\n")
if scene.pov.radio_subsurface:
file.write(" subsurface on\n")
file.write(" }\n")
if scene.pov.photon_enable:
file.write(" photons {\n")
if scene.pov.photon_enable_count:
file.write(" count %s\n"%scene.pov.photon_count)
else:
file.write(" spacing %.6g\n"%scene.pov.photon_spacing)
if scene.pov.photon_gather:
file.write(" gather %s, %s\n"%(scene.pov.photon_gather_min,scene.pov.photon_gather_max))
if scene.pov.photon_autostop:
file.write(" autostop %.4g\n"%scene.pov.photon_autostop_value)
if scene.pov.photon_jitter_enable:
file.write(" jitter %.4g\n"%scene.pov.photon_jitter)
file.write(" max_trace_level %s\n"%scene.pov.photon_max_trace_level)
if scene.pov.photon_adc:
file.write(" adc_bailout %.6f\n"%scene.pov.photon_adc_bailout)
if scene.pov.photon_media_enable:
file.write(" media %s, %s\n"%(scene.pov.photon_media_steps,scene.pov.photon_media_factor))
if scene.pov.photon_map_file_save_load in {'save'}:
filePhName = 'Photon_map_file.ph'
if scene.pov.photon_map_file != '':
filePhName = scene.pov.photon_map_file+'.ph'
filePhDir = tempfile.gettempdir()
path = bpy.path.abspath(scene.pov.photon_map_dir)
if os.path.exists(path):
filePhDir = path
fullFileName = os.path.join(filePhDir,filePhName)
file.write(' save_file "%s"\n'%fullFileName)
scene.pov.photon_map_file = fullFileName
if scene.pov.photon_map_file_save_load in {'load'}:
fullFileName = bpy.path.abspath(scene.pov.photon_map_file)
if os.path.exists(fullFileName):
file.write(' load_file "%s"\n'%fullFileName)
file.write("}\n")
file.write("}\n")
'''
def write_object_modifiers(scene, ob, File):
"""Translate some object level POV statements from Blender UI
to POV syntax and write to exported file """
# Maybe return that string to be added instead of directly written.
'''XXX WIP
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod :
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
File.write("\tinside_vector <%.6g, %.6g, %.6g>\n" %
(ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2]))
onceCSG = 1
'''
if ob.pov.hollow:
File.write("\thollow\n")
if ob.pov.double_illuminate:
File.write("\tdouble_illuminate\n")
if ob.pov.sturm:
File.write("\tsturm\n")
if ob.pov.no_shadow:
File.write("\tno_shadow\n")
if ob.pov.no_image:
File.write("\tno_image\n")
if ob.pov.no_reflection:
File.write("\tno_reflection\n")
if ob.pov.no_radiosity:
File.write("\tno_radiosity\n")
if ob.pov.inverse:
File.write("\tinverse\n")
if ob.pov.hierarchy:
File.write("\thierarchy\n")
# XXX, Commented definitions
'''
if scene.pov.photon_enable:
File.write("photons {\n")
if ob.pov.target:
File.write("target %.4g\n"%ob.pov.target_value)
if ob.pov.refraction:
File.write("refraction on\n")
if ob.pov.reflection:
File.write("reflection on\n")
if ob.pov.pass_through:
File.write("pass_through\n")
File.write("}\n")
if ob.pov.object_ior > 1:
File.write("interior {\n")
File.write("ior %.4g\n"%ob.pov.object_ior)
if scene.pov.photon_enable and ob.pov.target and ob.pov.refraction and ob.pov.dispersion:
File.write("ior %.4g\n"%ob.pov.dispersion_value)
File.write("ior %s\n"%ob.pov.dispersion_samples)
if scene.pov.photon_enable == False:
File.write("caustics %.4g\n"%ob.pov.fake_caustics_power)
'''
def write_pov(filename, scene=None, info_callback=None):
"""Main export process from Blender UI to POV syntax and write to exported file """
import mathutils
# file = filename
file = open(filename, "w")
# Only for testing
if not scene:
scene = bpy.data.scenes[0]
render = scene.render
world = scene.world
global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
comments = scene.pov.comments_enable and not scene.pov.tempfiles_enable
linebreaksinlists = (
scene.pov.list_lf_enable and not scene.pov.tempfiles_enable
)
feature_set = bpy.context.preferences.addons[
__package__
].preferences.branch_feature_set_povray
using_uberpov = feature_set == 'uberpov'
pov_binary = PovrayRender._locate_binary()
if using_uberpov:
print("Unofficial UberPOV feature set chosen in preferences")
else:
print("Official POV-Ray 3.7 feature set chosen in preferences")
if 'uber' in pov_binary:
print(
"The name of the binary suggests you are probably rendering with Uber POV engine"
)
else:
print(
"The name of the binary suggests you are probably rendering with standard POV engine"
)
def setTab(tabtype, spaces):
TabStr = ""
if tabtype == 'NONE':
TabStr = ""
elif tabtype == 'TAB':
TabStr = "\t"
elif tabtype == 'SPACE':
TabStr = spaces * " "
return TabStr
tab = setTab(scene.pov.indentation_character, scene.pov.indentation_spaces)
if not scene.pov.tempfiles_enable:
def tabWrite(str_o):
"""Indent POV syntax from brackets levels and write to exported file """
global tabLevel
brackets = (
str_o.count("{")
- str_o.count("}")
+ str_o.count("[")
- str_o.count("]")
)
if brackets < 0:
tabLevel = tabLevel + brackets
if tabLevel < 0:
print("Indentation Warning: tabLevel = %s" % tabLevel)
tabLevel = 0
if tabLevel >= 1:
file.write("%s" % tab * tabLevel)
file.write(str_o)
if brackets > 0:
tabLevel = tabLevel + brackets
else:
def tabWrite(str_o):
"""write directly to exported file if user checked autonamed temp files (faster)."""
file.write(str_o)
def uniqueName(name, nameSeq):
"""Increment any generated POV name that could get identical to avoid collisions"""
if name not in nameSeq:
name = string_strip_hyphen(name)
return name
name_orig = name
i = 1
while name in nameSeq:
name = "%s_%.3d" % (name_orig, i)
i += 1
name = string_strip_hyphen(name)
return name
def writeMatrix(matrix):
"""Translate some tranform matrix from Blender UI
to POV syntax and write to exported file """
tabWrite(
"matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n"
% (
matrix[0][0],
matrix[1][0],
matrix[2][0],
matrix[0][1],
matrix[1][1],
matrix[2][1],
matrix[0][2],
matrix[1][2],
matrix[2][2],
matrix[0][3],
matrix[1][3],
matrix[2][3],
)
)
def MatrixAsPovString(matrix):
"""Translate some tranform matrix from Blender UI
to POV syntax and return that string """
sMatrix = (
"matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n"
% (
matrix[0][0],
matrix[1][0],
matrix[2][0],
matrix[0][1],
matrix[1][1],
matrix[2][1],
matrix[0][2],
matrix[1][2],
matrix[2][2],
matrix[0][3],
matrix[1][3],
matrix[2][3],
)
)
return sMatrix
def writeObjectMaterial(material, ob):
"""Translate some object level material from Blender UI (VS data level)
to POV interior{} syntax and write it to exported file """
# DH - modified some variables to be function local, avoiding RNA write
# this should be checked to see if it is functionally correct
# Commented out: always write IOR to be able to use it for SSS, Fresnel reflections...
# if material and material.transparency_method == 'RAYTRACE':
if material:
# But there can be only one!
if (
material.pov_subsurface_scattering.use
): # SSS IOR get highest priority
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.pov_subsurface_scattering.ior)
# Then the raytrace IOR taken from raytrace transparency properties and used for
# reflections if IOR Mirror option is checked.
elif material.pov.mirror_use_IOR:
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.pov_raytrace_transparency.ior)
elif material.pov.transparency_method == 'Z_TRANSPARENCY':
tabWrite("interior {\n")
tabWrite("ior 1.0\n")
else:
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.pov_raytrace_transparency.ior)
pov_fake_caustics = False
pov_photons_refraction = False
pov_photons_reflection = False
if material.pov.photons_reflection:
pov_photons_reflection = True
if not material.pov.refraction_caustics:
pov_fake_caustics = False
pov_photons_refraction = False
elif material.pov.refraction_type == "1":
pov_fake_caustics = True
pov_photons_refraction = False
elif material.pov.refraction_type == "2":
pov_fake_caustics = False
pov_photons_refraction = True
# If only Raytrace transparency is set, its IOR will be used for refraction, but user
# can set up 'un-physical' fresnel reflections in raytrace mirror parameters.
# Last, if none of the above is specified, user can set up 'un-physical' fresnel
# reflections in raytrace mirror parameters. And pov IOR defaults to 1.
if material.pov.caustics_enable:
if pov_fake_caustics:
tabWrite(
"caustics %.3g\n" % material.pov.fake_caustics_power
)
if pov_photons_refraction:
# Default of 1 means no dispersion
tabWrite(
"dispersion %.6f\n" % material.pov.photons_dispersion
)
tabWrite(
"dispersion_samples %.d\n"
% material.pov.photons_dispersion_samples
)
# TODO
# Other interior args
if (
material.pov.use_transparency
and material.pov.transparency_method == 'RAYTRACE'
):
# fade_distance
# In Blender this value has always been reversed compared to what tooltip says.
# 100.001 rather than 100 so that it does not get to 0
# which deactivates the feature in POV
tabWrite(
"fade_distance %.3g\n"
% (100.001 - material.pov_raytrace_transparency.depth_max)
)
# fade_power
tabWrite(
"fade_power %.3g\n"
% material.pov_raytrace_transparency.falloff
)
# fade_color
tabWrite(
"fade_color <%.3g, %.3g, %.3g>\n"
% material.pov.interior_fade_color[:]
)
# (variable) dispersion_samples (constant count for now)
tabWrite("}\n")
if (
material.pov.photons_reflection
or material.pov.refraction_type == "2"
):
tabWrite("photons{")
tabWrite("target %.3g\n" % ob.pov.spacing_multiplier)
if not ob.pov.collect_photons:
tabWrite("collect off\n")
if pov_photons_refraction:
tabWrite("refraction on\n")
if pov_photons_reflection:
tabWrite("reflection on\n")
tabWrite("}\n")
materialNames = {}
DEF_MAT_NAME = "" # or "Default"?
def exportCamera():
"""Translate camera from Blender UI to POV syntax and write to exported file."""
camera = scene.camera
# DH disabled for now, this isn't the correct context
active_object = (
None
) # bpy.context.active_object # does not always work MR
matrix = global_matrix @ camera.matrix_world
focal_point = camera.data.dof.focus_distance
# compute resolution
Qsize = render.resolution_x / render.resolution_y
tabWrite(
"#declare camLocation = <%.6f, %.6f, %.6f>;\n"
% matrix.translation[:]
)
tabWrite(
"#declare camLookAt = <%.6f, %.6f, %.6f>;\n"
% tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
)
tabWrite("camera {\n")
if (
scene.pov.baking_enable
and active_object
and active_object.type == 'MESH'
):
tabWrite(
"mesh_camera{ 1 3\n"
) # distribution 3 is what we want here
tabWrite("mesh{%s}\n" % active_object.name)
tabWrite("}\n")
tabWrite("location <0,0,.01>")
tabWrite("direction <0,0,-1>")
else:
if camera.data.type == 'ORTHO':
SensorHeightRatio = render.resolution_x * camera.data.ortho_scale / render.resolution_y
tabWrite("orthographic\n")
# Blender angle is radian so should be converted to degrees:
# % (camera.data.angle * (180.0 / pi) )
# but actually argument is not compulsory after angle in pov ortho mode
tabWrite("angle\n")
tabWrite("right <%6f, 0, 0>\n" % -camera.data.ortho_scale)
tabWrite("location <0, 0, 0>\n")
tabWrite("look_at <0, 0, -1>\n")
tabWrite("up <0, %6f, 0>\n" % (camera.data.ortho_scale / Qsize))
elif camera.data.type == 'PANO':
tabWrite("panoramic\n")
tabWrite("location <0, 0, 0>\n")
tabWrite("look_at <0, 0, -1>\n")
tabWrite("right <%s, 0, 0>\n" % -Qsize)
tabWrite("up <0, 1, 0>\n")
tabWrite(
"angle %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi)
)
elif camera.data.type == 'PERSP':
# Standard camera otherwise would be default in pov
tabWrite("location <0, 0, 0>\n")
tabWrite("look_at <0, 0, -1>\n")
tabWrite("right <%s, 0, 0>\n" % -Qsize)
tabWrite("up <0, 1, 0>\n")
tabWrite(
"angle %f\n" % ( 2 * atan(camera.data.sensor_width / 2 / camera.data.lens) * 180.0 / pi )
)
tabWrite(
"rotate <%.6f, %.6f, %.6f>\n"
% tuple([degrees(e) for e in matrix.to_3x3().to_euler()])
)
tabWrite("translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
if camera.data.dof.use_dof and (
focal_point != 0 or camera.data.dof.focus_object
):
tabWrite(
"aperture %.3g\n"
% (1 / camera.data.dof.aperture_fstop * 1000)
)
tabWrite(
"blur_samples %d %d\n"
% (
camera.data.pov.dof_samples_min,
camera.data.pov.dof_samples_max,
)
)
tabWrite("variance 1/%d\n" % camera.data.pov.dof_variance)
tabWrite("confidence %.3g\n" % camera.data.pov.dof_confidence)
if camera.data.dof.focus_object:
focalOb = scene.objects[camera.data.dof.focus_object.name]
matrixBlur = global_matrix @ focalOb.matrix_world
tabWrite(
"focal_point <%.4f,%.4f,%.4f>\n"
% matrixBlur.translation[:]
)
else:
tabWrite("focal_point <0, 0, %f>\n" % focal_point)
if camera.data.pov.normal_enable:
tabWrite(
"normal {%s %.4f turbulence %.4f scale %.4f}\n"
% (
camera.data.pov.normal_patterns,
camera.data.pov.cam_normal,
camera.data.pov.turbulence,
camera.data.pov.scale,
)
)
tabWrite("}\n")
def exportLamps(lamps):
"""Translate lights from Blender UI to POV syntax and write to exported file."""
# Incremented after each lamp export to declare its target
# currently used for Fresnel diffuse shader as their slope vector:
global lampCount
lampCount = 0
# Get all lamps
for ob in lamps:
lamp = ob.data
matrix = global_matrix @ ob.matrix_world
# Color is no longer modified by energy
color = tuple([c for c in lamp.color])
tabWrite("light_source {\n")
tabWrite("< 0,0,0 >\n")
tabWrite("color srgb<%.3g, %.3g, %.3g>\n" % color)
if lamp.type == 'POINT':
pass
elif lamp.type == 'SPOT':
tabWrite("spotlight\n")
# Falloff is the main radius from the centre line
tabWrite(
"falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0)
) # 1 TO 179 FOR BOTH
tabWrite(
"radius %.6f\n"
% (
(degrees(lamp.spot_size) / 2.0)
* (1.0 - lamp.spot_blend)
)
)
# Blender does not have a tightness equivalent, 0 is most like blender default.
tabWrite("tightness 0\n") # 0:10f
tabWrite("point_at <0, 0, -1>\n")
if lamp.pov.use_halo:
tabWrite("looks_like{\n")
tabWrite("sphere{<0,0,0>,%.6f\n" % lamp.distance)
tabWrite("hollow\n")
tabWrite("material{\n")
tabWrite("texture{\n")
tabWrite(
"pigment{rgbf<1,1,1,%.4f>}\n"
% (lamp.pov.halo_intensity * 5.0)
)
tabWrite("}\n")
tabWrite("interior{\n")
tabWrite("media{\n")
tabWrite("emission 1\n")
tabWrite("scattering {1, 0.5}\n")
tabWrite("density{\n")
tabWrite("spherical\n")
tabWrite("color_map{\n")
tabWrite("[0.0 rgb <0,0,0>]\n")
tabWrite("[0.5 rgb <1,1,1>]\n")
tabWrite("[1.0 rgb <1,1,1>]\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
elif lamp.type == 'SUN':
tabWrite("parallel\n")
tabWrite("point_at <0, 0, -1>\n") # *must* be after 'parallel'
elif lamp.type == 'AREA':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
# Area lights have no falloff type, so always use blenders lamp quad equivalent
# for those?
tabWrite("fade_power %d\n" % 2)
size_x = lamp.size
samples_x = lamp.pov.shadow_ray_samples_x
if lamp.shape == 'SQUARE':
size_y = size_x
samples_y = samples_x
else:
size_y = lamp.size_y
samples_y = lamp.pov.shadow_ray_samples_y
tabWrite(
"area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n"
% (size_x, size_y, samples_x, samples_y)
)
tabWrite("area_illumination\n")
if lamp.pov.shadow_ray_sample_method == 'CONSTANT_JITTERED':
if lamp.pov.use_jitter:
tabWrite("jitter\n")
else:
tabWrite("adaptive 1\n")
tabWrite("jitter\n")
# No shadow checked either at global or light level:
if not scene.pov.use_shadows or (
lamp.pov.shadow_method == 'NOSHADOW'
):
tabWrite("shadowless\n")
# Sun shouldn't be attenuated. Area lights have no falloff attribute so they
# are put to type 2 attenuation a little higher above.
if lamp.type not in {'SUN', 'AREA'}:
if lamp.falloff_type == 'INVERSE_SQUARE':
tabWrite(
"fade_distance %.6f\n" % (sqrt(lamp.distance / 2.0))
)
tabWrite(
"fade_power %d\n" % 2
) # Use blenders lamp quad equivalent
elif lamp.falloff_type == 'INVERSE_LINEAR':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
tabWrite("fade_power %d\n" % 1) # Use blenders lamp linear
elif lamp.falloff_type == 'CONSTANT':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
tabWrite("fade_power %d\n" % 3)
# Use blenders lamp constant equivalent no attenuation.
# Using Custom curve for fade power 3 for now.
elif lamp.falloff_type == 'CUSTOM_CURVE':
tabWrite("fade_power %d\n" % 4)
writeMatrix(matrix)
tabWrite("}\n")
lampCount += 1
# v(A,B) rotates vector A about origin by vector B.
file.write(
"#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n"
% (
lampCount,
-(ob.location.x),
-(ob.location.y),
-(ob.location.z),
ob.rotation_euler.x,
ob.rotation_euler.y,
ob.rotation_euler.z,
)
)
####################################################################################################
def exportRainbows(rainbows):
"""write all POV rainbows primitives to exported file """
for ob in rainbows:
povdataname = ob.data.name # enough?
angle = degrees(ob.data.spot_size / 2.5) # radians in blender (2
width = ob.data.spot_blend * 10
distance = ob.data.shadow_buffer_clip_start
# eps=0.0000001
# angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
# width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
# formerly:
# cz-bz # let's say width of the rainbow is height of the cone (interfacing choice
# v(A,B) rotates vector A about origin by vector B.
# and avoid a 0 length vector by adding 1
# file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
# (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
# ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
direction = (
ob.location.x,
ob.location.y,
ob.location.z,
) # not taking matrix into account
rmatrix = global_matrix @ ob.matrix_world
# ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
# XXX Is result of the below offset by 90 degrees?
up = ob.matrix_world.to_3x3()[1].xyz # * global_matrix
# XXX TO CHANGE:
# formerly:
# tabWrite("#declare %s = rainbow {\n"%povdataname)
# clumsy for now but remove the rainbow from instancing
# system because not an object. use lamps later instead of meshes
# del data_ref[dataname]
tabWrite("rainbow {\n")
tabWrite("angle %.4f\n" % angle)
tabWrite("width %.4f\n" % width)
tabWrite("distance %.4f\n" % distance)
tabWrite("arc_angle %.4f\n" % ob.pov.arc_angle)
tabWrite("falloff_angle %.4f\n" % ob.pov.falloff_angle)
tabWrite("direction <%.4f,%.4f,%.4f>\n" % rmatrix.translation[:])
tabWrite("up <%.4f,%.4f,%.4f>\n" % (up[0], up[1], up[2]))
tabWrite("color_map {\n")
tabWrite("[0.000 color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
tabWrite("[0.130 color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
tabWrite("[0.298 color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
tabWrite("[0.412 color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
tabWrite("[0.526 color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
tabWrite("[0.640 color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
tabWrite("[0.754 color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
tabWrite("[0.900 color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
tabWrite("[1.000 color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
tabWrite("}\n")
povMatName = "Default_texture"
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
# matrix = global_matrix @ ob.matrix_world
# writeMatrix(matrix)
tabWrite("}\n")
# continue #Don't render proxy mesh, skip to next object
################################XXX LOFT, ETC.
def exportCurves(scene, ob):
"""write all curves based POV primitives to exported file """
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
matrix = global_matrix @ ob.matrix_world
bezier_sweep = False
if ob.pov.curveshape == 'sphere_sweep':
# inlined spheresweep macro, which itself calls Shapes.inc:
file.write(' #include "shapes.inc"\n')
file.write(
' #macro Shape_Bezierpoints_Sphere_Sweep(_merge_shape, _resolution, _points_array, _radius_array)\n'
)
file.write(' //input adjusting and inspection\n')
file.write(' #if(_resolution <= 1)\n')
file.write(' #local res = 1;\n')
file.write(' #else\n')
file.write(' #local res = int(_resolution);\n')
file.write(' #end\n')
file.write(
' #if(dimensions(_points_array) != 1 | dimensions(_radius_array) != 1)\n'
)
file.write(' #error ""\n')
file.write(
' #elseif(div(dimension_size(_points_array,1),4) - dimension_size(_points_array,1)/4 != 0)\n'
)
file.write(' #error ""\n')
file.write(
' #elseif(dimension_size(_points_array,1) != dimension_size(_radius_array,1))\n'
)
file.write(' #error ""\n')
file.write(' #else\n')
file.write(
' #local n_of_seg = div(dimension_size(_points_array,1), 4);\n'
)
file.write(' #local ctrl_pts_array = array[n_of_seg]\n')
file.write(' #local ctrl_rs_array = array[n_of_seg]\n')
file.write(' #for(i, 0, n_of_seg-1)\n')
file.write(
' #local ctrl_pts_array[i] = array[4] {_points_array[4*i], _points_array[4*i+1], _points_array[4*i+2], _points_array[4*i+3]}\n'
)
file.write(
' #local ctrl_rs_array[i] = array[4] {abs(_radius_array[4*i]), abs(_radius_array[4*i+1]), abs(_radius_array[4*i+2]), abs(_radius_array[4*i+3])}\n'
)
file.write(' #end\n')
file.write(' #end\n')
file.write(' //drawing\n')
file.write(' #local mockup1 =\n')
file.write(' #if(_merge_shape) merge{ #else union{ #end\n')
file.write(' #for(i, 0, n_of_seg-1)\n')
file.write(' #local has_head = true;\n')
file.write(' #if(i = 0)\n')
file.write(
' #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[n_of_seg-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[n_of_seg-1][3] <= 0)\n'
)
file.write(' #local has_head = false;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(
' #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[i-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[i-1][3] <= 0)\n'
)
file.write(' #local has_head = false;\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #if(has_head = true)\n')
file.write(' sphere{\n')
file.write(
' ctrl_pts_array[i][0], ctrl_rs_array[i][0]\n'
)
file.write(' }\n')
file.write(' #end\n')
file.write(' #local para_t = (1/2)/res;\n')
file.write(
' #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n'
)
file.write(
' #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n'
)
file.write(
' #if(vlength(this_point-ctrl_pts_array[i][0]) > abs(this_radius-ctrl_rs_array[i][0]))\n'
)
file.write(' object{\n')
file.write(
' Connect_Spheres(ctrl_pts_array[i][0], ctrl_rs_array[i][0], this_point, this_radius)\n'
)
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #for(j, 1, res-1)\n')
file.write(' #local last_point = this_point;\n')
file.write(
' #local last_radius = this_radius;\n'
)
file.write(' #local para_t = (1/2+j)/res;\n')
file.write(
' #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n'
)
file.write(
' #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n'
)
file.write(
' #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n'
)
file.write(' object{\n')
file.write(
' Connect_Spheres(last_point, last_radius, this_point, this_radius)\n'
)
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' #local last_point = this_point;\n')
file.write(' #local last_radius = this_radius;\n')
file.write(
' #local this_point = ctrl_pts_array[i][3];\n'
)
file.write(
' #local this_radius = ctrl_rs_array[i][3];\n'
)
file.write(
' #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n'
)
file.write(' object{\n')
file.write(
' Connect_Spheres(last_point, last_radius, this_point, this_radius)\n'
)
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' mockup1\n')
file.write(' #end\n')
for spl in ob.data.splines:
if spl.type == "BEZIER":
bezier_sweep = True
if ob.pov.curveshape in {'loft', 'birail'}:
n = 0
for spline in ob.data.splines:
n += 1
tabWrite('#declare %s%s=spline {\n' % (dataname, n))
tabWrite('cubic_spline\n')
lp = len(spline.points)
delta = 1 / (lp)
d = -delta
point = spline.points[lp - 1]
x, y, z, w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n' % (d, x, y, z))
d += delta
for point in spline.points:
x, y, z, w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n' % (d, x, y, z))
d += delta
for i in range(2):
point = spline.points[i]
x, y, z, w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n' % (d, x, y, z))
d += delta
tabWrite('}\n')
if ob.pov.curveshape in {'loft'}:
n = len(ob.data.splines)
tabWrite('#declare %s = array[%s]{\n' % (dataname, (n + 3)))
tabWrite('spline{%s%s},\n' % (dataname, n))
for i in range(n):
tabWrite('spline{%s%s},\n' % (dataname, (i + 1)))
tabWrite('spline{%s1},\n' % (dataname))
tabWrite('spline{%s2}\n' % (dataname))
tabWrite('}\n')
# Use some of the Meshmaker.inc macro, here inlined
file.write('#macro CheckFileName(FileName)\n')
file.write(' #local Len=strlen(FileName);\n')
file.write(' #if(Len>0)\n')
file.write(' #if(file_exists(FileName))\n')
file.write(' #if(Len>=4)\n')
file.write(
' #local Ext=strlwr(substr(FileName,Len-3,4))\n'
)
file.write(
' #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n'
)
file.write(' #local Return=99;\n')
file.write(' #else\n')
file.write(' #local Return=0;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=0;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #if(Len>=4)\n')
file.write(
' #local Ext=strlwr(substr(FileName,Len-3,4))\n'
)
file.write(
' #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n'
)
file.write(' #if (strcmp(Ext,".obj")=0)\n')
file.write(' #local Return=2;\n')
file.write(' #end\n')
file.write(' #if (strcmp(Ext,".pcm")=0)\n')
file.write(' #local Return=3;\n')
file.write(' #end\n')
file.write(' #if (strcmp(Ext,".arr")=0)\n')
file.write(' #local Return=4;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' (Return)\n')
file.write('#end\n')
file.write('#macro BuildSpline(Arr, SplType)\n')
file.write(' #local Ds=dimension_size(Arr,1);\n')
file.write(' #local Asc=asc(strupr(SplType));\n')
file.write(' #if(Asc!=67 & Asc!=76 & Asc!=81) \n')
file.write(' #local Asc=76;\n')
file.write(
' #debug "\nWrong spline type defined (C/c/L/l/N/n/Q/q), using default linear_spline\\n"\n'
)
file.write(' #end\n')
file.write(' spline {\n')
file.write(' #switch (Asc)\n')
file.write(' #case (67) //C cubic_spline\n')
file.write(' cubic_spline\n')
file.write(' #break\n')
file.write(' #case (76) //L linear_spline\n')
file.write(' linear_spline\n')
file.write(' #break\n')
file.write(' #case (78) //N linear_spline\n')
file.write(' natural_spline\n')
file.write(' #break\n')
file.write(' #case (81) //Q Quadratic_spline\n')
file.write(' quadratic_spline\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local Add=1/((Ds-2)-1);\n')
file.write(' #local J=0-Add;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<Ds)\n')
file.write(' J\n')
file.write(' Arr[I]\n')
file.write(' #local I=I+1;\n')
file.write(' #local J=J+Add;\n')
file.write(' #end\n')
file.write(' }\n')
file.write('#end\n')
file.write(
'#macro BuildWriteMesh2(VecArr, NormArr, UVArr, U, V, FileName)\n'
)
# suppressed some file checking from original macro because no more separate files
file.write(' #local Write=0;\n')
file.write(
' #debug concat("\\n\\n Building mesh2: \\n - vertex_vectors\\n")\n'
)
file.write(' #local NumVertices=dimension_size(VecArr,1);\n')
file.write(' #switch (Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " vertex_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "# Vertices: ",str(NumVertices,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' str(2*NumVertices,0,0),",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "#declare VertexVectors= array[",str(NumVertices,0,0),"] {\\n "\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' mesh2 {\n')
file.write(' vertex_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' VecArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile, VecArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "v ", VecArr[I].x," ", VecArr[I].y," ", VecArr[I].z,"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' VecArr[I].x,",", VecArr[I].y,",", VecArr[I].z,",\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile, VecArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' // do nothing\n')
file.write(' #break\n')
file.write(' #case(4) \n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #debug concat(" - normal_vectors\\n") \n')
file.write(' #local NumVertices=dimension_size(NormArr,1);\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " normal_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "# Normals: ",str(NumVertices,0,0),"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' // do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "#declare NormalVectors= array[",str(NumVertices,0,0),"] {\\n "\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' normal_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' NormArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile NormArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "vn ", NormArr[I].x," ", NormArr[I].y," ", NormArr[I].z,"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' NormArr[I].x,",", NormArr[I].y,",", NormArr[I].z,",\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile NormArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #if(Write=1 | Write=4) \n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #debug concat(" - uv_vectors\\n") \n')
file.write(' #local NumVertices=dimension_size(UVArr,1);\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile, \n')
file.write(' " uv_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "# UV-vectors: ",str(NumVertices,0,0),"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(
' // do nothing, *.pcm does not support uv-vectors\n'
)
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "#declare UVVectors= array[",str(NumVertices,0,0),"] {\\n "\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' uv_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' UVArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile UVArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "vt ", UVArr[I].u," ", UVArr[I].v,"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile UVArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1; \n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end \n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('\n')
file.write(' #debug concat(" - face_indices\\n") \n')
file.write(' #declare NumFaces=U*V*2;\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " face_indices {\\n"\n')
file.write(' " ", str(NumFaces,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "# faces: ",str(NumFaces,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "0,",str(NumFaces,0,0),",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "#declare FaceIndices= array[",str(NumFaces,0,0),"] {\\n "\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' face_indices {\n')
file.write(' NumFaces\n')
file.write(' #local I=0;\n')
file.write(' #local H=0;\n')
file.write(' #local NumVertices=dimension_size(VecArr,1);\n')
file.write(' #while (I<V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<U)\n')
file.write(' #local Ind=(I*U)+I+J;\n')
file.write(
' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n'
)
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' "f ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+1+1,"/",Ind+1+1,"/",Ind+1+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n",\n'
)
file.write(
' "f ",Ind+U+1+1,"/",Ind+U+1+1,"/",Ind+U+1+1," ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' Ind,",",Ind+NumVertices,",",Ind+1,",",Ind+1+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n'
)
file.write(
' Ind+U+1,",",Ind+U+1+NumVertices,",",Ind,",",Ind+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(
' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n'
)
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local J=J+1;\n')
file.write(' #local H=H+1;\n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(H,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile, "\\n }\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile, "\\n}\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('#end\n')
file.write(
'#macro MSM(SplineArray, SplRes, Interp_type, InterpRes, FileName)\n'
)
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(
' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n'
)
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(SplRes+1)*(InterpRes+1);\n')
file.write(' #local NumFaces=SplRes*InterpRes*2;\n')
file.write(
' #debug concat("\\n Calculating ",str(NumVertices,0,0)," vertices for ", str(NumFaces,0,0)," triangles\\n\\n")\n'
)
file.write(' #local VecArr=array[NumVertices]\n')
file.write(' #local NormArr=array[NumVertices]\n')
file.write(' #local UVArr=array[NumVertices]\n')
file.write(' #local N=dimension_size(SplineArray,1);\n')
file.write(' #local TempSplArr0=array[N];\n')
file.write(' #local TempSplArr1=array[N];\n')
file.write(' #local TempSplArr2=array[N];\n')
file.write(' #local PosStep=1/SplRes;\n')
file.write(' #local InterpStep=1/InterpRes;\n')
file.write(' #local Count=0;\n')
file.write(' #local Pos=0;\n')
file.write(' #while(Pos<=1)\n')
file.write(' #local I=0;\n')
file.write(' #if (Pos=0)\n')
file.write(' #while (I<N)\n')
file.write(
' #local Spl=spline{SplineArray[I]}\n'
)
file.write(
' #local TempSplArr0[I]=<0,0,0>+Spl(Pos);\n'
)
file.write(
' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n'
)
file.write(
' #local TempSplArr2[I]=<0,0,0>+Spl(Pos-PosStep);\n'
)
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(
' #local S0=BuildSpline(TempSplArr0, Interp_type)\n'
)
file.write(
' #local S1=BuildSpline(TempSplArr1, Interp_type)\n'
)
file.write(
' #local S2=BuildSpline(TempSplArr2, Interp_type)\n'
)
file.write(' #else\n')
file.write(' #while (I<N)\n')
file.write(
' #local Spl=spline{SplineArray[I]}\n'
)
file.write(
' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n'
)
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(
' #local S1=BuildSpline(TempSplArr1, Interp_type)\n'
)
file.write(' #end\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local P0=<0,0,0>+S0(J);\n')
file.write(' #local P1=<0,0,0>+S1(J);\n')
file.write(' #local P2=<0,0,0>+S2(J);\n')
file.write(' #local P3=<0,0,0>+S0(J+InterpStep);\n')
file.write(' #local P4=<0,0,0>+S0(J-InterpStep);\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(
' #local Norm=vnormalize((N1+N2+N3+N4));\n'
)
file.write(' #local VecArr[Count]=P0;\n')
file.write(' #local NormArr[Count]=Norm;\n')
file.write(' #local UVArr[Count]=<J,Pos>;\n')
file.write(' #local J=J+InterpStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #local S2=spline{S0}\n')
file.write(' #local S0=spline{S1}\n')
file.write(
' #debug concat("\\r Done ", str(Count,0,0)," vertices : ", str(100*Count/NumVertices,0,2)," %")\n'
)
file.write(' #local Pos=Pos+PosStep;\n')
file.write(' #end\n')
file.write(
' BuildWriteMesh2(VecArr, NormArr, UVArr, InterpRes, SplRes, "")\n'
)
file.write(' #end\n')
file.write('#end\n\n')
file.write(
'#macro Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)\n'
)
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(
' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n'
)
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(Iter_U+1)*(Iter_V+1);\n')
file.write(' #local NumFaces=Iter_U*Iter_V*2;\n')
file.write(
' #debug concat("\\n Calculating ", str(NumVertices,0,0), " vertices for ",str(NumFaces,0,0), " triangles\\n\\n")\n'
)
file.write(' #declare VecArr=array[NumVertices] \n')
file.write(' #declare NormArr=array[NumVertices] \n')
file.write(' #local UVArr=array[NumVertices] \n')
file.write(' #local Spl1_0=Spl1(0);\n')
file.write(' #local Spl2_0=Spl2(0);\n')
file.write(' #local Spl3_0=Spl3(0);\n')
file.write(' #local Spl4_0=Spl4(0);\n')
file.write(' #local UStep=1/Iter_U;\n')
file.write(' #local VStep=1/Iter_V;\n')
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=1)\n')
file.write(' #local Im=1-I;\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local Jm=1-J;\n')
file.write(
' #local C0=Im*Jm*(Spl1_0)+Im*J*(Spl2_0)+I*J*(Spl3_0)+I*Jm*(Spl4_0);\n'
)
file.write(
' #local P0=LInterpolate(I, Spl1(J), Spl3(Jm)) + \n'
)
file.write(
' LInterpolate(Jm, Spl2(I), Spl4(Im))-C0;\n'
)
file.write(' #declare VecArr[Count]=P0;\n')
file.write(' #local UVArr[Count]=<J,I>;\n')
file.write(' #local J=J+UStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #debug concat(\n')
file.write(
' "\r Done ", str(Count,0,0)," vertices : ",\n'
)
file.write(' str(100*Count/NumVertices,0,2)," %"\n')
file.write(' )\n')
file.write(' #local I=I+VStep;\n')
file.write(' #end\n')
file.write(
' #debug "\r Normals "\n'
)
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=Iter_V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=Iter_U)\n')
file.write(' #local Ind=(I*Iter_U)+I+J;\n')
file.write(' #local P0=VecArr[Ind];\n')
file.write(' #if(J=0)\n')
file.write(' #local P1=P0+(P0-VecArr[Ind+1]);\n')
file.write(' #else\n')
file.write(' #local P1=VecArr[Ind-1];\n')
file.write(' #end\n')
file.write(' #if (J=Iter_U)\n')
file.write(' #local P2=P0+(P0-VecArr[Ind-1]);\n')
file.write(' #else\n')
file.write(' #local P2=VecArr[Ind+1];\n')
file.write(' #end\n')
file.write(' #if (I=0)\n')
file.write(
' #local P3=P0+(P0-VecArr[Ind+Iter_U+1]);\n'
)
file.write(' #else\n')
file.write(' #local P3=VecArr[Ind-Iter_U-1];\n')
file.write(' #end\n')
file.write(' #if (I=Iter_V)\n')
file.write(
' #local P4=P0+(P0-VecArr[Ind-Iter_U-1]);\n'
)
file.write(' #else\n')
file.write(' #local P4=VecArr[Ind+Iter_U+1];\n')
file.write(' #end\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(' #local Norm=vnormalize((N1+N2+N3+N4));\n')
file.write(' #declare NormArr[Count]=Norm;\n')
file.write(' #local J=J+1;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(
' #debug concat("\r Done ", str(Count,0,0)," normals : ",str(100*Count/NumVertices,0,2), " %")\n'
)
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(
' BuildWriteMesh2(VecArr, NormArr, UVArr, Iter_U, Iter_V, FileName)\n'
)
file.write(' #end\n')
file.write('#end\n\n')
# Empty curves
if len(ob.data.splines) == 0:
tabWrite("\n//dummy sphere to represent empty curve location\n")
tabWrite("#declare %s =\n" % dataname)
tabWrite(
"sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n"
% (ob.location.x, ob.location.y, ob.location.z)
) # ob.name > povdataname)
# And non empty curves
else:
if bezier_sweep == False:
tabWrite("#declare %s =\n" % dataname)
if ob.pov.curveshape == 'sphere_sweep' and bezier_sweep == False:
tabWrite("union {\n")
for spl in ob.data.splines:
if spl.type != "BEZIER":
spl_type = "linear"
if spl.type == "NURBS":
spl_type = "cubic"
points = spl.points
numPoints = len(points)
if spl.use_cyclic_u:
numPoints += 3
tabWrite(
"sphere_sweep { %s_spline %s,\n"
% (spl_type, numPoints)
)
if spl.use_cyclic_u:
pt1 = points[len(points) - 1]
wpt1 = pt1.co
tabWrite(
"<%.4g,%.4g,%.4g>,%.4g\n"
% (
wpt1[0],
wpt1[1],
wpt1[2],
pt1.radius * ob.data.bevel_depth,
)
)
for pt in points:
wpt = pt.co
tabWrite(
"<%.4g,%.4g,%.4g>,%.4g\n"
% (
wpt[0],
wpt[1],
wpt[2],
pt.radius * ob.data.bevel_depth,
)
)
if spl.use_cyclic_u:
for i in range(0, 2):
endPt = points[i]
wpt = endPt.co
tabWrite(
"<%.4g,%.4g,%.4g>,%.4g\n"
% (
wpt[0],
wpt[1],
wpt[2],
endPt.radius * ob.data.bevel_depth,
)
)
tabWrite("}\n")
# below not used yet?
if ob.pov.curveshape == 'sor':
for spl in ob.data.splines:
if spl.type in {'POLY', 'NURBS'}:
points = spl.points
numPoints = len(points)
tabWrite("sor { %s,\n" % numPoints)
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" % (wpt[0], wpt[1]))
else:
tabWrite("box { 0,0\n")
if ob.pov.curveshape in {'lathe', 'prism'}:
spl = ob.data.splines[0]
if spl.type == "BEZIER":
points = spl.bezier_points
lenCur = len(points) - 1
lenPts = lenCur * 4
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,' % (height, height)
lenCur += 1
lenPts += 4
tabWrite(
"%s { bezier_spline %s %s,\n"
% (ob.pov.curveshape, ifprism, lenPts)
)
for i in range(0, lenCur):
p1 = points[i].co
pR = points[i].handle_right
end = i + 1
if i == lenCur - 1 and ob.pov.curveshape in {'prism'}:
end = 0
pL = points[end].handle_left
p2 = points[end].co
line = "<%.4g,%.4g>" % (p1[0], p1[1])
line += "<%.4g,%.4g>" % (pR[0], pR[1])
line += "<%.4g,%.4g>" % (pL[0], pL[1])
line += "<%.4g,%.4g>" % (p2[0], p2[1])
tabWrite("%s\n" % line)
else:
points = spl.points
lenCur = len(points)
lenPts = lenCur
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,' % (height, height)
lenPts += 3
spl_type = 'quadratic'
if spl.type == 'POLY':
spl_type = 'linear'
tabWrite(
"%s { %s_spline %s %s,\n"
% (ob.pov.curveshape, spl_type, ifprism, lenPts)
)
if ob.pov.curveshape in {'prism'}:
pt = points[len(points) - 1]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" % (wpt[0], wpt[1]))
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" % (wpt[0], wpt[1]))
if ob.pov.curveshape in {'prism'}:
for i in range(2):
pt = points[i]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" % (wpt[0], wpt[1]))
if bezier_sweep:
for p in range(len(ob.data.splines)):
br = []
depth = ob.data.bevel_depth
spl = ob.data.splines[p]
points = spl.bezier_points
lenCur = len(points) - 1
numPoints = lenCur * 4
if spl.use_cyclic_u:
lenCur += 1
numPoints += 4
tabWrite(
"#declare %s_points_%s = array[%s]{\n"
% (dataname, p, numPoints)
)
for i in range(lenCur):
p1 = points[i].co
pR = points[i].handle_right
end = i + 1
if spl.use_cyclic_u and i == (lenCur - 1):
end = 0
pL = points[end].handle_left
p2 = points[end].co
r3 = points[end].radius * depth
r0 = points[i].radius * depth
r1 = 2 / 3 * r0 + 1 / 3 * r3
r2 = 1 / 3 * r0 + 2 / 3 * r3
br.append((r0, r1, r2, r3))
line = "<%.4g,%.4g,%.4f>" % (p1[0], p1[1], p1[2])
line += "<%.4g,%.4g,%.4f>" % (pR[0], pR[1], pR[2])
line += "<%.4g,%.4g,%.4f>" % (pL[0], pL[1], pL[2])
line += "<%.4g,%.4g,%.4f>" % (p2[0], p2[1], p2[2])
tabWrite("%s\n" % line)
tabWrite("}\n")
tabWrite(
"#declare %s_radii_%s = array[%s]{\n"
% (dataname, p, len(br) * 4)
)
for Tuple in br:
tabWrite(
'%.4f,%.4f,%.4f,%.4f\n'
% (Tuple[0], Tuple[1], Tuple[2], Tuple[3])
)
tabWrite("}\n")
if len(ob.data.splines) == 1:
tabWrite('#declare %s = object{\n' % dataname)
tabWrite(
' Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s) \n'
% (ob.data.resolution_u, dataname, p, dataname, p)
)
else:
tabWrite('#declare %s = union{\n' % dataname)
for p in range(len(ob.data.splines)):
tabWrite(
' object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s)} \n'
% (ob.data.resolution_u, dataname, p, dataname, p)
)
# tabWrite('#include "bezier_spheresweep.inc"\n') #now inlined
# tabWrite('#declare %s = object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_bezier_points, %.4f) \n'%(dataname,ob.data.resolution_u,dataname,ob.data.bevel_depth))
if ob.pov.curveshape in {'loft'}:
tabWrite(
'object {MSM(%s,%s,"c",%s,"")\n'
% (dataname, ob.pov.res_u, ob.pov.res_v)
)
if ob.pov.curveshape in {'birail'}:
splines = '%s1,%s2,%s3,%s4' % (
dataname,
dataname,
dataname,
dataname,
)
tabWrite(
'object {Coons(%s, %s, %s, "")\n'
% (splines, ob.pov.res_u, ob.pov.res_v)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
if ob.pov.curveshape in {'prism'}:
tabWrite("rotate <90,0,0>\n")
tabWrite("scale y*-1\n")
tabWrite("}\n")
#################################################################
def exportMeta(metas):
"""write all POV blob primitives and Blender Metas to exported file """
# TODO - blenders 'motherball' naming is not supported.
if comments and len(metas) >= 1:
file.write("//--Blob objects--\n\n")
# Get groups of metaballs by blender name prefix.
meta_group = {}
meta_elems = {}
for ob in metas:
prefix = ob.name.split(".")[0]
if not prefix in meta_group:
meta_group[prefix] = ob # .data.threshold
elems = [
(elem, ob)
for elem in ob.data.elements
if elem.type
in {'BALL', 'ELLIPSOID', 'CAPSULE', 'CUBE', 'PLANE'}
]
if prefix in meta_elems:
meta_elems[prefix].extend(elems)
else:
meta_elems[prefix] = elems
# empty metaball
if len(elems) == 0:
tabWrite("\n//dummy sphere to represent empty meta location\n")
tabWrite(
"sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n"
% (ob.location.x, ob.location.y, ob.location.z)
) # ob.name > povdataname)
# other metaballs
else:
for mg, ob in meta_group.items():
if len(meta_elems[mg]) != 0:
tabWrite(
"blob{threshold %.4g // %s \n"
% (ob.data.threshold, mg)
)
for elems in meta_elems[mg]:
elem = elems[0]
loc = elem.co
stiffness = elem.stiffness
if elem.use_negative:
stiffness = -stiffness
if elem.type == 'BALL':
tabWrite(
"sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g "
% (
loc.x,
loc.y,
loc.z,
elem.radius,
stiffness,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
elif elem.type == 'ELLIPSOID':
tabWrite(
"sphere{ <%.6g, %.6g, %.6g>,%.4g,%.4g "
% (
loc.x / elem.size_x,
loc.y / elem.size_y,
loc.z / elem.size_z,
elem.radius,
stiffness,
)
)
tabWrite(
"scale <%.6g, %.6g, %.6g>"
% (elem.size_x, elem.size_y, elem.size_z)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
elif elem.type == 'CAPSULE':
tabWrite(
"cylinder{ <%.6g, %.6g, %.6g>,<%.6g, %.6g, %.6g>,%.4g,%.4g "
% (
(loc.x - elem.size_x),
(loc.y),
(loc.z),
(loc.x + elem.size_x),
(loc.y),
(loc.z),
elem.radius,
stiffness,
)
)
# tabWrite("scale <%.6g, %.6g, %.6g>" % (elem.size_x, elem.size_y, elem.size_z))
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
elif elem.type == 'CUBE':
tabWrite(
"cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1/4,1,1> scale <%.6g, %.6g, %.6g>\n"
% (
elem.radius * 2.0,
stiffness / 4.0,
loc.x,
loc.y,
loc.z,
elem.size_x,
elem.size_y,
elem.size_z,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
tabWrite(
"cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n"
% (
elem.radius * 2.0,
stiffness / 4.0,
loc.x,
loc.y,
loc.z,
elem.size_x,
elem.size_y,
elem.size_z,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
tabWrite(
"cylinder { -z*8, +z*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1,1/4> scale <%.6g, %.6g, %.6g>\n"
% (
elem.radius * 2.0,
stiffness / 4.0,
loc.x,
loc.y,
loc.z,
elem.size_x,
elem.size_y,
elem.size_z,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
elif elem.type == 'PLANE':
tabWrite(
"cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1/4,1,1> scale <%.6g, %.6g, %.6g>\n"
% (
elem.radius * 2.0,
stiffness / 4.0,
loc.x,
loc.y,
loc.z,
elem.size_x,
elem.size_y,
elem.size_z,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
tabWrite(
"cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n"
% (
elem.radius * 2.0,
stiffness / 4.0,
loc.x,
loc.y,
loc.z,
elem.size_x,
elem.size_y,
elem.size_z,
)
)
writeMatrix(
global_matrix @ elems[1].matrix_world
)
tabWrite("}\n")
try:
material = elems[1].data.materials[
0
] # lame! - blender cant do enything else.
except:
material = None
if material:
diffuse_color = material.diffuse_color
trans = 1.0 - material.pov.alpha
if (
material.use_transparency
and material.transparency_method == 'RAYTRACE'
):
povFilter = (
material.pov_raytrace_transparency.filter
* (1.0 - material.alpha)
)
trans = (1.0 - material.pov.alpha) - povFilter
else:
povFilter = 0.0
material_finish = materialNames[material.name]
tabWrite(
"pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n"
% (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
povFilter,
trans,
)
)
tabWrite(
"finish{%s} " % safety(material_finish, Level=2)
)
else:
tabWrite(
"pigment{srgb 1} finish{%s} "
% (safety(DEF_MAT_NAME, Level=2))
)
writeObjectMaterial(material, ob)
# writeObjectMaterial(material, elems[1])
tabWrite(
"radiosity{importance %3g}\n"
% ob.pov.importance_value
)
tabWrite("}\n\n") # End of Metaball block
'''
meta = ob.data
# important because no elements will break parsing.
elements = [elem for elem in meta.elements if elem.type in {'BALL', 'ELLIPSOID'}]
if elements:
tabWrite("blob {\n")
tabWrite("threshold %.4g\n" % meta.threshold)
importance = ob.pov.importance_value
try:
material = meta.materials[0] # lame! - blender cant do enything else.
except:
material = None
for elem in elements:
loc = elem.co
stiffness = elem.stiffness
if elem.use_negative:
stiffness = - stiffness
if elem.type == 'BALL':
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
(loc.x, loc.y, loc.z, elem.radius, stiffness))
# After this wecould do something simple like...
# "pigment {Blue} }"
# except we'll write the color
elif elem.type == 'ELLIPSOID':
# location is modified by scale
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
(loc.x / elem.size_x,
loc.y / elem.size_y,
loc.z / elem.size_z,
elem.radius, stiffness))
tabWrite("scale <%.6g, %.6g, %.6g> \n" %
(elem.size_x, elem.size_y, elem.size_z))
if material:
diffuse_color = material.diffuse_color
trans = 1.0 - material.pov.alpha
if material.use_transparency and material.transparency_method == 'RAYTRACE':
povFilter = material.pov_raytrace_transparency.filter * (1.0 - material.alpha)
trans = (1.0 - material.pov.alpha) - povFilter
else:
povFilter = 0.0
material_finish = materialNames[material.name]
tabWrite("pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" %
(diffuse_color[0], diffuse_color[1], diffuse_color[2],
povFilter, trans))
tabWrite("finish {%s}\n" % safety(material_finish, Level=2))
else:
tabWrite("pigment {srgb 1} \n")
# Write the finish last.
tabWrite("finish {%s}\n" % (safety(DEF_MAT_NAME, Level=2)))
writeObjectMaterial(material, elems[1])
writeMatrix(global_matrix @ ob.matrix_world)
# Importance for radiosity sampling added here
tabWrite("radiosity { \n")
# importance > ob.pov.importance_value
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of Metaball block
if comments and len(metas) >= 1:
file.write("\n")
'''
# objectNames = {}
DEF_OBJ_NAME = "Default"
def exportMeshes(scene, sel, csg):
"""write all meshes as POV mesh2{} syntax to exported file """
#some numpy functions to speed up mesh export
# TODO: also write a numpy function to read matrices at object level?
# feed below with mesh object.data, but only after doing data.calc_loop_triangles()
def read_verts_co(self, mesh):
#'float64' would be a slower 64-bit floating-point number numpy datatype
# using 'float32' vert coordinates for now until any issue is reported
mverts_co = np.zeros((len(mesh.vertices)*3), dtype=np.float32)
mesh.vertices.foreach_get("co", mverts_co)
return np.reshape(mverts_co, (len(mesh.vertices), 3))
def read_verts_idx(self, mesh):
mverts_idx = np.zeros((len(mesh.vertices)), dtype=np.int64)
mesh.vertices.foreach_get("index", mverts_idx)
return np.reshape(mverts_idx, (len(mesh.vertices), 1))
def read_verts_norms(self, mesh):
#'float64' would be a slower 64-bit floating-point number numpy datatype
# using less accurate 'float16' normals for now until any issue is reported
mverts_no = np.zeros((len(mesh.vertices)*3), dtype=np.float16)
mesh.vertices.foreach_get("normal", mverts_no)
return np.reshape(mverts_no, (len(mesh.vertices), 3))
def read_faces_idx(self, mesh):
mfaces_idx = np.zeros((len(mesh.loop_triangles)), dtype=np.int64)
mesh.loop_triangles.foreach_get("index", mfaces_idx)
return np.reshape(mfaces_idx, (len(mesh.loop_triangles), 1))
def read_faces_verts_indices(self, mesh):
mfaces_verts_idx = np.zeros((len(mesh.loop_triangles)*3), dtype=np.int64)
mesh.loop_triangles.foreach_get("vertices", mfaces_verts_idx)
return np.reshape(mfaces_verts_idx, (len(mesh.loop_triangles), 3))
#Why is below different from verex indices?
def read_faces_verts_loops(self, mesh):
mfaces_verts_loops = np.zeros((len(mesh.loop_triangles)*3), dtype=np.int64)
mesh.loop_triangles.foreach_get("loops", mfaces_verts_loops)
return np.reshape(mfaces_verts_loops, (len(mesh.loop_triangles), 3))
def read_faces_norms(self, mesh):
#'float64' would be a slower 64-bit floating-point number numpy datatype
# using less accurate 'float16' normals for now until any issue is reported
mfaces_no = np.zeros((len(mesh.loop_triangles)*3), dtype=np.float16)
mesh.loop_triangles.foreach_get("normal", mfaces_no)
return np.reshape(mfaces_no, (len(mesh.loop_triangles), 3))
def read_faces_smooth(self, mesh):
mfaces_smth = np.zeros((len(mesh.loop_triangles)*1), dtype=np.bool)
mesh.loop_triangles.foreach_get("use_smooth", mfaces_smth)
return np.reshape(mfaces_smth, (len(mesh.loop_triangles), 1))
def read_faces_material_indices(self, mesh):
mfaces_mats_idx = np.zeros((len(mesh.loop_triangles)), dtype=np.int16)
mesh.loop_triangles.foreach_get("material_index", mfaces_mats_idx)
return np.reshape(mfaces_mats_idx, (len(mesh.loop_triangles), 1))
# obmatslist = []
# def hasUniqueMaterial():
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# if ms.material in obmatslist:
# return False
# else:
# obmatslist.append(ms.material)
# return True
# def hasObjectMaterial(ob):
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# # If there is at least one material slot linked to the object
# # and not the data (mesh), always create a new, "private" data instance.
# return True
# return False
# For objects using local material(s) only!
# This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
# As only objects using:
# * The same data.
# * EXACTLY the same materials, in EXACTLY the same sockets.
# ... can share a same instance in POV export.
obmats2data = {}
def checkObjectMaterials(ob, name, dataname):
if hasattr(ob, 'material_slots'):
has_local_mats = False
key = [dataname]
for ms in ob.material_slots:
if ms.material is not None:
key.append(ms.material.name)
if ms.link == 'OBJECT' and not has_local_mats:
has_local_mats = True
else:
# Even if the slot is empty, it is important to grab it...
key.append("")
if has_local_mats:
# If this object uses local material(s), lets find if another object
# using the same data and exactly the same list of materials
# (in the same slots) has already been processed...
# Note that here also, we use object name as new, unique dataname for Pov.
key = tuple(key) # Lists are not hashable...
if key not in obmats2data:
obmats2data[key] = name
return obmats2data[key]
return None
data_ref = {}
def store(scene, ob, name, dataname, matrix):
# The Object needs to be written at least once but if its data is
# already in data_ref this has already been done.
# This func returns the "povray" name of the data, or None
# if no writing is needed.
if ob.is_modified(scene, 'RENDER'):
# Data modified.
# Create unique entry in data_ref by using object name
# (always unique in Blender) as data name.
data_ref[name] = [(name, MatrixAsPovString(matrix))]
return name
# Here, we replace dataname by the value returned by checkObjectMaterials, only if
# it is not evaluated to False (i.e. only if the object uses some local material(s)).
dataname = checkObjectMaterials(ob, name, dataname) or dataname
if dataname in data_ref:
# Data already known, just add the object instance.
data_ref[dataname].append((name, MatrixAsPovString(matrix)))
# No need to write data
return None
else:
# Data not yet processed, create a new entry in data_ref.
data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
return dataname
def exportSmoke(smoke_obj_name):
# if LuxManager.CurrentScene.name == 'preview':
# return 1, 1, 1, 1.0
# else:
flowtype = -1
smoke_obj = bpy.data.objects[smoke_obj_name]
domain = None
# Search smoke domain target for smoke modifiers
for mod in smoke_obj.modifiers:
if mod.name == 'Smoke':
if mod.smoke_type == 'FLOW':
if mod.flow_settings.smoke_flow_type == 'BOTH':
flowtype = 2
else:
if mod.flow_settings.smoke_flow_type == 'SMOKE':
flowtype = 0
else:
if mod.flow_settings.smoke_flow_type == 'FIRE':
flowtype = 1
if mod.smoke_type == 'DOMAIN':
domain = smoke_obj
smoke_modifier = mod
eps = 0.000001
if domain is not None:
# if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
# Blender version 2.71 supports direct access to smoke data structure
set = mod.domain_settings
channeldata = []
for v in set.density_grid:
channeldata.append(v.real)
print(v.real)
## Usage en voxel texture:
# channeldata = []
# if channel == 'density':
# for v in set.density_grid:
# channeldata.append(v.real)
# if channel == 'fire':
# for v in set.flame_grid:
# channeldata.append(v.real)
resolution = set.resolution_max
big_res = []
big_res.append(set.domain_resolution[0])
big_res.append(set.domain_resolution[1])
big_res.append(set.domain_resolution[2])
if set.use_high_resolution:
big_res[0] = big_res[0] * (set.amplify + 1)
big_res[1] = big_res[1] * (set.amplify + 1)
big_res[2] = big_res[2] * (set.amplify + 1)
# else:
# p = []
##gather smoke domain settings
# BBox = domain.bound_box
# p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
# p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
# set = mod.domain_settings
# resolution = set.resolution_max
# smokecache = set.point_cache
# ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
# res_x = ret[0]
# res_y = ret[1]
# res_z = ret[2]
# density = ret[3]
# fire = ret[4]
# if res_x * res_y * res_z > 0:
##new cache format
# big_res = []
# big_res.append(res_x)
# big_res.append(res_y)
# big_res.append(res_z)
# else:
# max = domain.dimensions[0]
# if (max - domain.dimensions[1]) < -eps:
# max = domain.dimensions[1]
# if (max - domain.dimensions[2]) < -eps:
# max = domain.dimensions[2]
# big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
# int(round(resolution * domain.dimensions[1] / max, 0)),
# int(round(resolution * domain.dimensions[2] / max, 0))]
# if set.use_high_resolution:
# big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
# big_res[2] * (set.amplify + 1)]
# if channel == 'density':
# channeldata = density
# if channel == 'fire':
# channeldata = fire
# sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
# if not os.path.exists( sc_fr ):
# os.makedirs(sc_fr)
#
# smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
# smoke_path = '/'.join([sc_fr, smoke_filename])
#
# with open(smoke_path, 'wb') as smoke_file:
# # Binary densitygrid file format
# #
# # File header
# smoke_file.write(b'SMOKE') #magic number
# smoke_file.write(struct.pack('<I', big_res[0]))
# smoke_file.write(struct.pack('<I', big_res[1]))
# smoke_file.write(struct.pack('<I', big_res[2]))
# Density data
# smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
#
# LuxLog('Binary SMOKE file written: %s' % (smoke_path))
# return big_res[0], big_res[1], big_res[2], channeldata
mydf3 = df3.df3(big_res[0], big_res[1], big_res[2])
sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
for x in range(sim_sizeX):
for y in range(sim_sizeY):
for z in range(sim_sizeZ):
mydf3.set(
x,
y,
z,
channeldata[
((z * sim_sizeY + y) * sim_sizeX + x)
],
)
mydf3.exportDF3(smokePath)
print('Binary smoke.df3 file written in preview directory')
if comments:
file.write("\n//--Smoke--\n\n")
# Note: We start with a default unit cube.
# This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
# coordinates from the start, and avoid scale/translate operations at the end...
file.write("box{<0,0,0>, <1,1,1>\n")
file.write(" pigment{ rgbt 1 }\n")
file.write(" hollow\n")
file.write(" interior{ //---------------------\n")
file.write(" media{ method 3\n")
file.write(
" emission <1,1,1>*1\n"
) # 0>1 for dark smoke to white vapour
file.write(" scattering{ 1, // Type\n")
file.write(" <1,1,1>*0.1\n")
file.write(" } // end scattering\n")
file.write(
" density{density_file df3 \"%s\"\n"
% (smokePath)
)
file.write(" color_map {\n")
file.write(" [0.00 rgb 0]\n")
file.write(" [0.05 rgb 0]\n")
file.write(" [0.20 rgb 0.2]\n")
file.write(" [0.30 rgb 0.6]\n")
file.write(" [0.40 rgb 1]\n")
file.write(" [1.00 rgb 1]\n")
file.write(" } // end color_map\n")
file.write(" } // end of density\n")
file.write(
" samples %i // higher = more precise\n"
% resolution
)
file.write(
" } // end of media --------------------------\n"
)
file.write(" } // end of interior\n")
# START OF TRANSFORMATIONS
# Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
# loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
bbox = smoke_obj.bound_box
dim = [
abs(bbox[6][0] - bbox[0][0]),
abs(bbox[6][1] - bbox[0][1]),
abs(bbox[6][2] - bbox[0][2]),
]
# We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
# We offset our cube such that (0,0,0) coordinate matches Blender's object center.
file.write(
"translate<%.6g,%.6g,%.6g>\n"
% (bbox[0][0], bbox[0][1], bbox[0][2])
)
# We apply object's transformations to get final loc/rot/size in world space!
# Note: we could combine the two previous transformations with this matrix directly...
writeMatrix(global_matrix @ smoke_obj.matrix_world)
# END OF TRANSFORMATIONS
file.write("}\n")
# file.write(" interpolate 1\n")
# file.write(" frequency 0\n")
# file.write(" }\n")
# file.write("}\n")
ob_num = 0
for ob in sel:
# subtract original from the count of their instances as were not counted before 2.8
if not (ob.is_instancer and ob.original != ob):
ob_num += 1
# XXX I moved all those checks here, as there is no need to compute names
# for object we won't export here!
if ob.type in {
'LIGHT',
'CAMERA', #'EMPTY', #empties can bear dupligroups
'META',
'ARMATURE',
'LATTICE',
}:
continue
smokeFlag = False
for mod in ob.modifiers:
if mod and hasattr(mod, 'smoke_type'):
smokeFlag = True
if mod.smoke_type == 'DOMAIN':
exportSmoke(ob.name)
break # don't render domain mesh or flow emitter mesh, skip to next object.
if not smokeFlag:
# Export Hair
renderEmitter = True
if hasattr(ob, 'particle_systems'):
renderEmitter = False
if ob.show_instancer_for_render:
renderEmitter = True
for pSys in ob.particle_systems:
for mod in [
m
for m in ob.modifiers
if (m is not None)
and (m.type == 'PARTICLE_SYSTEM')
]:
if (
(pSys.settings.render_type == 'PATH')
and mod.show_render
and (pSys.name == mod.particle_system.name)
):
tstart = time.time()
texturedHair = 0
if (
ob.material_slots[
pSys.settings.material - 1
].material
and ob.active_material is not None
):
pmaterial = ob.material_slots[
pSys.settings.material - 1
].material
#XXX Todo: replace by pov_(Particles?)_texture_slot
for th in pmaterial.texture_slots:
if th and th.use:
if (
(
th.texture.type
== 'IMAGE'
and th.texture.image
)
or th.texture.type
!= 'IMAGE'
):
if th.use_map_color_diffuse:
texturedHair = 1
if pmaterial.strand.use_blender_units:
strandStart = (
pmaterial.strand.root_size
)
strandEnd = (
pmaterial.strand.tip_size
)
strandShape = pmaterial.strand.shape
else: # Blender unit conversion
strandStart = (
pmaterial.strand.root_size
/ 200.0
)
strandEnd = (
pmaterial.strand.tip_size
/ 200.0
)
strandShape = pmaterial.strand.shape
else:
pmaterial = (
"default"
) # No material assigned in blender, use default one
strandStart = 0.01
strandEnd = 0.01
strandShape = 0.0
# Set the number of particles to render count rather than 3d view display
# pSys.set_resolution(scene, ob, 'RENDER') # DEPRECATED
# When you render, the entire dependency graph will be
# evaluated at render resolution, including the particles.
# In the viewport it will be at viewport resolution.
# So there is no need fo render engines to use this function anymore,
# it's automatic now.
steps = pSys.settings.display_step
steps = (
3 ** steps
) # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
totalNumberOfHairs = (
pSys.settings.count
+ pSys.settings.rendered_child_count
)
# hairCounter = 0
file.write(
'#declare HairArray = array[%i] {\n'
% totalNumberOfHairs
)
for pindex in range(0, totalNumberOfHairs):
# if particle.is_exist and particle.is_visible:
# hairCounter += 1
# controlPointCounter = 0
# Each hair is represented as a separate sphere_sweep in POV-Ray.
file.write('sphere_sweep{')
if pSys.settings.use_hair_bspline:
file.write('b_spline ')
file.write(
'%i,\n' % (steps + 2)
) # +2 because the first point needs tripling to be more than a handle in POV
else:
file.write('linear_spline ')
file.write('%i,\n' % (steps))
# changing world coordinates to object local coordinates by multiplying with inverted matrix
initCo = ob.matrix_world.inverted() @ (
pSys.co_hair(
ob, particle_no=pindex, step=0
)
)
if (
ob.material_slots[
pSys.settings.material - 1
].material
and ob.active_material is not None
):
pmaterial = ob.material_slots[
pSys.settings.material - 1
].material
for th in pmaterial.texture_slots:
if (
th
and th.use
and th.use_map_color_diffuse
):
# treat POV textures as bitmaps
if (
th.texture.type
== 'IMAGE'
and th.texture.image
and th.texture_coords
== 'UV'
and ob.data.uv_textures
is not None
): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures is not None):
image = th.texture.image
image_width = image.size[
0
]
image_height = image.size[
1
]
image_pixels = image.pixels[
:
]
uv_co = pSys.uv_on_emitter(
mod,
pSys.particles[
pindex
],
pindex,
0,
)
x_co = round(
uv_co[0]
* (image_width - 1)
)
y_co = round(
uv_co[1]
* (image_height - 1)
)
pixelnumber = (
image_width * y_co
) + x_co
r = image_pixels[
pixelnumber * 4
]
g = image_pixels[
pixelnumber * 4 + 1
]
b = image_pixels[
pixelnumber * 4 + 2
]
a = image_pixels[
pixelnumber * 4 + 3
]
initColor = (r, g, b, a)
else:
# only overwrite variable for each competing texture for now
initColor = th.texture.evaluate(
(
initCo[0],
initCo[1],
initCo[2],
)
)
for step in range(0, steps):
co = ob.matrix_world.inverted() @ (
pSys.co_hair(
ob,
particle_no=pindex,
step=step,
)
)
# for controlPoint in particle.hair_keys:
if pSys.settings.clump_factor != 0:
hDiameter = (
pSys.settings.clump_factor
/ 200.0
* random.uniform(0.5, 1)
)
elif step == 0:
hDiameter = strandStart
else:
hDiameter += (
strandEnd - strandStart
) / (
pSys.settings.display_step
+ 1
) # XXX +1 or not?
if (
step == 0
and pSys.settings.use_hair_bspline
):
# Write three times the first point to compensate pov Bezier handling
file.write(
'<%.6g,%.6g,%.6g>,%.7g,\n'
% (
co[0],
co[1],
co[2],
abs(hDiameter),
)
)
file.write(
'<%.6g,%.6g,%.6g>,%.7g,\n'
% (
co[0],
co[1],
co[2],
abs(hDiameter),
)
)
# file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
# file.write(',\n')
# controlPointCounter += 1
# totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
# Each control point is written out, along with the radius of the
# hair at that point.
file.write(
'<%.6g,%.6g,%.6g>,%.7g'
% (
co[0],
co[1],
co[2],
abs(hDiameter),
)
)
# All coordinates except the last need a following comma.
if step != steps - 1:
file.write(',\n')
else:
if texturedHair:
# Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
file.write(
'\npigment{ color srgbf < %.3g, %.3g, %.3g, %.3g> }\n'
% (
initColor[0],
initColor[1],
initColor[2],
1.0 - initColor[3],
)
)
# End the sphere_sweep declaration for this hair
file.write('}\n')
# All but the final sphere_sweep (each array element) needs a terminating comma.
if pindex != totalNumberOfHairs:
file.write(',\n')
else:
file.write('\n')
# End the array declaration.
file.write('}\n')
file.write('\n')
if not texturedHair:
# Pick up the hair material diffuse color and create a default POV-Ray hair texture.
file.write('#ifndef (HairTexture)\n')
file.write(
' #declare HairTexture = texture {\n'
)
file.write(
' pigment {srgbt <%s,%s,%s,%s>}\n'
% (
pmaterial.diffuse_color[0],
pmaterial.diffuse_color[1],
pmaterial.diffuse_color[2],
(
pmaterial.strand.width_fade
+ 0.05
),
)
)
file.write(' }\n')
file.write('#end\n')
file.write('\n')
# Dynamically create a union of the hairstrands (or a subset of them).
# By default use every hairstrand, commented line is for hand tweaking test renders.
file.write(
'//Increasing HairStep divides the amount of hair for test renders.\n'
)
file.write(
'#ifndef(HairStep) #declare HairStep = 1; #end\n'
)
file.write('union{\n')
file.write(' #local I = 0;\n')
file.write(
' #while (I < %i)\n'
% totalNumberOfHairs
)
file.write(' object {HairArray[I]')
if not texturedHair:
file.write(' texture{HairTexture}\n')
else:
file.write('\n')
# Translucency of the hair:
file.write(' hollow\n')
file.write(' double_illuminate\n')
file.write(' interior {\n')
file.write(' ior 1.45\n')
file.write(' media {\n')
file.write(
' scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n'
)
file.write(
' absorption 10/<0.83, 0.75, 0.15>\n'
)
file.write(' samples 1\n')
file.write(' method 2\n')
file.write(
' density {cylindrical\n'
)
file.write(
' color_map {\n'
)
file.write(
' [0.0 rgb <0.83, 0.45, 0.35>]\n'
)
file.write(
' [0.5 rgb <0.8, 0.8, 0.4>]\n'
)
file.write(
' [1.0 rgb <1,1,1>]\n'
)
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' #local I = I + HairStep;\n')
file.write(' #end\n')
writeMatrix(global_matrix @ ob.matrix_world)
file.write('}')
print(
'Totals hairstrands written: %i'
% totalNumberOfHairs
)
print(
'Number of tufts (particle systems)',
len(ob.particle_systems),
)
# Set back the displayed number of particles to preview count
# pSys.set_resolution(scene, ob, 'PREVIEW') #DEPRECATED
# When you render, the entire dependency graph will be
# evaluated at render resolution, including the particles.
# In the viewport it will be at viewport resolution.
# So there is no need fo render engines to use this function anymore,
# it's automatic now.
if renderEmitter == False:
continue # don't render mesh, skip to next object.
#############################################
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
if ob.data:
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
elif ob.is_instancer:
if ob.instance_type == 'COLLECTION':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.instance_collection.name
else:
# hoping only dupligroups have several source datablocks
# ob_dupli_list_create(scene) #deprecated in 2.8
depsgraph = bpy.context.evaluated_depsgraph_get()
for eachduplicate in depsgraph.object_instances:
if (
eachduplicate.is_instance
): # Real dupli instance filtered because original included in list since 2.8
dataname_orig = (
"DATA" + eachduplicate.object.name
)
# ob.dupli_list_clear() #just don't store any reference to instance since 2.8
elif ob.type == 'EMPTY':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.name
else:
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(
bpy.path.clean_name(dataname_orig)
)
## for slot in ob.material_slots:
## if slot.material is not None and slot.link == 'OBJECT':
## obmaterial = slot.material
#############################################
if info_callback:
info_callback(
"Object %2.d of %2.d (%s)"
% (ob_num, len(sel), ob.name)
)
# if ob.type != 'MESH':
# continue
# me = ob.data
matrix = global_matrix @ ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance of " + name)
continue
print("Writing Down First Occurrence of " + name)
############################################Povray Primitives
# special exportCurves() function takes care of writing
# lathe, sphere_sweep, birail, and loft except with modifiers
# converted to mesh
if not ob.is_modified(scene, 'RENDER'):
if ob.type == 'CURVE' and (
ob.pov.curveshape
in {'lathe', 'sphere_sweep', 'loft'}
):
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'ISOSURFACE':
tabWrite("#declare %s = isosurface{ \n" % povdataname)
tabWrite("function{ \n")
textName = ob.pov.iso_function_text
if textName:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if (
node.bl_idname == "IsoPropsNode"
and node.label == ob.name
):
for inp in node.inputs:
if inp:
tabWrite(
"#declare %s = %.6g;\n"
% (inp.name, inp.default_value)
)
text = bpy.data.texts[textName]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tabWrite("%s\n" % line.body)
else:
tabWrite("abs(x) - 2 + y")
tabWrite("}\n")
tabWrite("threshold %.6g\n" % ob.pov.threshold)
tabWrite("max_gradient %.6g\n" % ob.pov.max_gradient)
tabWrite("accuracy %.6g\n" % ob.pov.accuracy)
tabWrite("contained_by { ")
if ob.pov.contained_by == "sphere":
tabWrite(
"sphere {0,%.6g}}\n" % ob.pov.container_scale
)
else:
tabWrite(
"box {-%.6g,%.6g}}\n"
% (
ob.pov.container_scale,
ob.pov.container_scale,
)
)
if ob.pov.all_intersections:
tabWrite("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tabWrite("max_trace %.6g\n" % ob.pov.max_trace)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
tabWrite("scale %.6g\n" % (1 / ob.pov.container_scale))
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERELLIPSOID':
tabWrite(
"#declare %s = superellipsoid{ <%.4f,%.4f>\n"
% (povdataname, ob.pov.se_n2, ob.pov.se_n1)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rMajor = ob.pov.st_major_radius
rMinor = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy = ob.pov.st_accuracy
gradient = ob.pov.st_max_gradient
############Inline Supertorus macro
file.write(
"#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n"
)
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(
" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n"
)
file.write(" threshold 0\n")
file.write(
" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n"
)
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
############
tabWrite(
"#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"
% (
povdataname,
rMajor,
rMinor,
ring,
cross,
accuracy,
gradient,
)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tabWrite(
"#declare %s = plane{ <0,0,1>,1\n" % povdataname
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'BOX':
tabWrite("#declare %s = box { -1,1\n" % povdataname)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tabWrite(
"#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"
% (povdataname, bz, br, cz, cr)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
r = ob.pov.cylinder_radius
x2 = ob.pov.cylinder_location_cap[0]
y2 = ob.pov.cylinder_location_cap[1]
z2 = ob.pov.cylinder_location_cap[2]
tabWrite(
"#declare %s = cylinder { <0,0,0>,<%6f,%6f,%6f>,%6f\n"
% (povdataname, x2, y2, z2, r)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
# cylinders written at origin, translated below
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"' % filename
gamma = ' gamma %.4f' % ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f' % ob.pov.hf_water
# hierarchy = ob.pov.hf_hierarchy
tabWrite(
'#declare %s = height_field { %s\n'
% (povdataname, data)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
tabWrite("rotate x*90\n")
tabWrite("translate <-0.5,0.5,0>\n")
tabWrite("scale <0,-1,0>\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SPHERE':
tabWrite(
"#declare %s = sphere { 0,%6f\n"
% (povdataname, ob.pov.sphere_radius)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
# tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tabWrite(
"#declare %s = torus { %.4f,%.4f\n"
% (
povdataname,
ob.pov.torus_major_radius,
ob.pov.torus_minor_radius,
)
)
povMatName = "Default_texture"
if ob.active_material:
# povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene, ob, file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tabWrite("#declare %s = parametric {\n" % povdataname)
tabWrite("function { %s }\n" % ob.pov.x_eq)
tabWrite("function { %s }\n" % ob.pov.y_eq)
tabWrite("function { %s }\n" % ob.pov.z_eq)
tabWrite(
"<%.4f,%.4f>, <%.4f,%.4f>\n"
% (
ob.pov.u_min,
ob.pov.v_min,
ob.pov.u_max,
ob.pov.v_max,
)
)
# Previous to 3.8 default max_gradient 1.0 was too slow
tabWrite("max_gradient 0.001\n")
if ob.pov.contained_by == "sphere":
tabWrite("contained_by { sphere{0, 2} }\n")
else:
tabWrite("contained_by { box{-2, 2} }\n")
tabWrite("max_gradient %.6f\n" % ob.pov.max_gradient)
tabWrite("accuracy %.6f\n" % ob.pov.accuracy)
tabWrite("precompute 10 x,y,z\n")
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
# TODO write below macro Once:
# if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write(
"Link:(http://news.povray.org/povray.binaries.scene-files/)\n"
)
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(
" vnormalize(vcross(vcross(Axis, V), Axis))\n"
)
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write(
"#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n"
)
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write(
"#local clip_v = vnormalize(clip_direct + <0,0,0>);\n"
)
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(
' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n'
)
file.write("#end\n\n")
file.write(
"#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n"
)
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write(
"#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n"
)
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error " "\n")
file.write("#end\n\n")
file.write(
"#local front_v = VPerp_Adjust(_side_face, z);\n"
)
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(
" #local face_ang = acos(vdot(-y, front_v));\n"
)
file.write("#else\n")
file.write(
" #local face_ang = -acos(vdot(-y, front_v));\n"
)
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write(
"#local polyg_outer_r = _polygon_circumscribed_radius;\n"
)
file.write(
"#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n"
)
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write(
"#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n"
)
file.write(
' #error "error: each side length must be positive"\n'
)
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write(
"xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n"
)
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write(
"xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n"
)
file.write(
"xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n"
)
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write(
"xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n"
)
file.write(
"xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n"
)
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(
" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n"
)
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(
" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n"
)
file.write(" }\n")
file.write(" object{\n")
file.write(
" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n"
)
file.write(
" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n"
)
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
# Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tabWrite(
"#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"
% (povdataname, ngon, ngonR, circleR)
)
tabWrite("}\n")
continue # Don't render proxy mesh, skip to next object
############################################else try to export mesh
elif (
ob.is_instancer == False
): # except duplis which should be instances groups for now but all duplis later
if ob.type == 'EMPTY':
tabWrite(
"\n//dummy sphere to represent Empty location\n"
)
tabWrite(
"#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n"
% povdataname
)
# TODO(sergey): PovRay is a render engine, so should be using dependency graph
# which was given to it via render engine API.
depsgraph = bpy.context.evaluated_depsgraph_get()
ob_eval = ob.evaluated_get(depsgraph)
try:
me = ob_eval.to_mesh()
# XXX Here? identify the specific exception for mesh object with no data
# XXX So that we can write something for the dataname !
except:
# also happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
if me:
me.calc_loop_triangles()
me_materials = me.materials
me_faces = me.loop_triangles[:]
## numpytest
#me_looptris = me.loops
## otypes = ['int32'] is a 32-bit signed integer number numpy datatype
#get_v_index = np.vectorize(lambda l: l.vertex_index, otypes = ['int32'], cache = True)
#faces_verts_idx = get_v_index(me_looptris)
# if len(me_faces)==0:
# tabWrite("\n//dummy sphere to represent empty mesh location\n")
# tabWrite("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
if not me or not me_faces:
tabWrite(
"\n//dummy sphere to represent empty mesh location\n"
)
tabWrite(
"#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n"
% povdataname
)
continue
uv_layers = me.uv_layers
if len(uv_layers) > 0:
if me.uv_layers.active and uv_layers.active.data:
uv_layer = uv_layers.active.data
else:
uv_layer = None
try:
# vcol_layer = me.vertex_colors.active.data
vcol_layer = me.vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tabWrite("#declare %s =\n" % povdataname)
tabWrite("mesh2 {\n")
tabWrite("vertex_vectors {\n")
tabWrite("%d" % len(me.vertices)) # vert count
tabStr = tab * tabLevel
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr + "<%.6f, %.6f, %.6f>" % v.co[:]
) # vert count
else:
file.write(", ")
file.write(
"<%.6f, %.6f, %.6f>" % v.co[:]
) # vert count
# tabWrite("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tabWrite("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tabWrite("normal_vectors {\n")
tabWrite("%d" % len(uniqueNormals)) # vert count
idx = 0
tabStr = tab * tabLevel
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr + "<%.6f, %.6f, %.6f>" % no
) # vert count
else:
file.write(", ")
file.write(
"<%.6f, %.6f, %.6f>" % no
) # vert count
index[0] = idx
idx += 1
file.write("\n")
tabWrite("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
# n = 0
for f in me_faces: # me.faces in 2.7
uvs = [uv_layer[l].uv[:] for l in f.loops]
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tabWrite("uv_vectors {\n")
# print unique_uvs
tabWrite("%d" % len(uniqueUVs)) # vert count
idx = 0
tabStr = tab * tabLevel
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f>" % uv)
else:
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
else:
# Just add 1 dummy vector, no real UV's
tabWrite('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tabWrite("}\n")
if me.vertex_colors:
# Write down vertex colors as a texture for each vertex
tabWrite("texture_list {\n")
tabWrite(
"%d\n" % (len(me_faces) * 3)
) # assumes we have only triangles
VcolIdx = 0
if comments:
file.write(
"\n //Vertex colors: one simple pigment texture per vertex\n"
)
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except:
material = None
if (
material
): # and material.use_vertex_color_paint: #Always use vertex color when there is some for now
cols = [
vcol_layer[l].color[:] for l in f.loops
]
for col in cols:
key = (
col[0],
col[1],
col[2],
material_index,
) # Material index!
VcolIdx += 1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tabWrite(
"texture {pigment{ color srgb <%6f,%6f,%6f> }}\n"
% (col[0], col[1], col[2])
)
else:
tabWrite(
"texture {pigment{ color srgb <%6f,%6f,%6f> }}"
% (col[0], col[1], col[2])
)
tabStr = tab * tabLevel
else:
if material:
# Multiply diffuse with SSS Color
if (
material.pov_subsurface_scattering.use
):
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[
:
],
material.diffuse_color[:],
)
]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
material_index,
)
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[
:
]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
material_index,
)
vertCols[key] = [-1]
tabWrite("\n}\n")
# Face indices
tabWrite("\nface_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if vcol_layer:
cols = [
vcol_layer[l].color[:] for l in f.loops
]
if (
not me_materials
or me_materials[material_index] is None
): # No materials
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(
tabStr
+ "<%d,%d,%d>"
% (fv[0], fv[1], fv[2])
)
else:
file.write(", ")
file.write(
"<%d,%d,%d>" % (fv[0], fv[1], fv[2])
) # vert count
else:
material = me_materials[material_index]
if (
me.vertex_colors
): # and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[0]
col2 = cols[1]
col3 = cols[2]
ci1 = vertCols[
col1[0],
col1[1],
col1[2],
material_index,
][0]
ci2 = vertCols[
col2[0],
col2[1],
col2[2],
material_index,
][0]
ci3 = vertCols[
col3[0],
col3[1],
col3[2],
material_index,
][0]
else:
# Color per material - flat material color
if (
material.pov_subsurface_scattering.use
):
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[
:
],
material.diffuse_color[:],
)
]
else:
diffuse_color = material.diffuse_color[
:
]
ci1 = ci2 = ci3 = vertCols[
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
f.material_index,
][0]
# ci are zero based index so we'll subtract 1 from them
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>, %d,%d,%d"
% (
fv[0],
fv[1],
fv[2],
ci1 - 1,
ci2 - 1,
ci3 - 1,
)
) # vert count
else:
file.write(", ")
file.write(
"<%d,%d,%d>, %d,%d,%d"
% (
fv[0],
fv[1],
fv[2],
ci1 - 1,
ci2 - 1,
ci3 - 1,
)
) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>"
% (
uniqueNormals[
verts_normals[fv[0]]
][0],
uniqueNormals[
verts_normals[fv[1]]
][0],
uniqueNormals[
verts_normals[fv[2]]
][0],
)
) # vert count
else:
file.write(", ")
file.write(
"<%d,%d,%d>"
% (
uniqueNormals[
verts_normals[fv[0]]
][0],
uniqueNormals[
verts_normals[fv[1]]
][0],
uniqueNormals[
verts_normals[fv[2]]
][0],
)
) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>" % (idx, idx, idx)
) # vert count
else:
file.write(", ")
file.write(
"<%d,%d,%d>" % (idx, idx, idx)
) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for f in me_faces:
uvs = [uv_layer[l].uv[:] for l in f.loops]
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>"
% (
uniqueUVs[uvs[0]][0],
uniqueUVs[uvs[1]][0],
uniqueUVs[uvs[2]][0],
)
)
else:
file.write(", ")
file.write(
"<%d,%d,%d>"
% (
uniqueUVs[uvs[0]][0],
uniqueUVs[uvs[1]][0],
uniqueUVs[uvs[2]][0],
)
)
file.write("\n")
tabWrite("}\n")
# XXX BOOLEAN
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod:
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
file.write(
"\tinside_vector <%.6g, %.6g, %.6g>\n"
% (
ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2],
)
)
onceCSG = 1
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# POV object modifiers such as
# hollow / sturm / double_illuminate etc.
write_object_modifiers(scene, ob, file)
# Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
else:
facesMaterials = [] # WARNING!!!!!!!!!!!!!!!!!!!!!!
if me_materials:
for f in me_faces:
if f.material_index not in facesMaterials:
facesMaterials.append(f.material_index)
# No vertex colors, so write material colors as vertex colors
for i, material in enumerate(me_materials):
if (
material
and material.pov.material_use_nodes == False
): # WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Multiply diffuse with SSS Color
if material.pov_subsurface_scattering.use:
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[
:
],
material.diffuse_color[:],
)
]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
i,
) # i == f.mat
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[
:
]
key = (
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
i,
) # i == f.mat
vertCols[key] = [-1]
idx = 0
LocalMaterialNames = []
for col, index in vertCols.items():
# if me_materials:
mater = me_materials[col[3]]
if me_materials is None: # XXX working?
material_finish = (
DEF_MAT_NAME
) # not working properly,
trans = 0.0
else:
shading.writeTextureInfluence(
using_uberpov,
mater,
materialNames,
LocalMaterialNames,
path_image,
lampCount,
imageFormat,
imgMap,
imgMapTransforms,
tabWrite,
comments,
string_strip_hyphen,
safety,
col,
os,
preview_dir,
unpacked_images,
)
###################################################################
index[0] = idx
idx += 1
# Vert Colors
tabWrite("texture_list {\n")
# In case there's is no material slot, give at least one texture
# (an empty one so it uses pov default)
if len(vertCols) == 0:
file.write(tabStr + "1")
else:
file.write(
tabStr + "%s" % (len(vertCols))
) # vert count
# below "material" alias, added check ob.active_material
# to avoid variable referenced before assignment error
try:
material = ob.active_material
except IndexError:
# when no material slot exists,
material = None
# WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (
material
and ob.active_material is not None
and material.pov.material_use_nodes == False
):
if material.pov.replacement_text != "":
file.write("\n")
file.write(
" texture{%s}\n"
% material.pov.replacement_text
)
else:
# Loop through declared materials list
for cMN in LocalMaterialNames:
if material != "Default":
file.write(
"\n texture{MAT_%s}\n" % cMN
)
# use string_strip_hyphen(materialNames[material]))
# or Something like that to clean up the above?
elif material and material.pov.material_use_nodes:
for index in facesMaterials:
faceMaterial = string_strip_hyphen(
bpy.path.clean_name(
me_materials[index].name
)
)
file.write(
"\n texture{%s}\n" % faceMaterial
)
# END!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else:
file.write(" texture{}\n")
tabWrite("}\n")
# Face indices
tabWrite("face_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if vcol_layer:
cols = [
vcol_layer[l].color[:] for l in f.loops
]
if (
not me_materials
or me_materials[material_index] is None
): # No materials
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(
tabStr
+ "<%d,%d,%d>"
% (fv[0], fv[1], fv[2])
)
else:
file.write(", ")
file.write(
"<%d,%d,%d>" % (fv[0], fv[1], fv[2])
) # vert count
else:
material = me_materials[material_index]
ci1 = ci2 = ci3 = f.material_index
if (
me.vertex_colors
): # and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[0]
col2 = cols[1]
col3 = cols[2]
ci1 = vertCols[
col1[0],
col1[1],
col1[2],
material_index,
][0]
ci2 = vertCols[
col2[0],
col2[1],
col2[2],
material_index,
][0]
ci3 = vertCols[
col3[0],
col3[1],
col3[2],
material_index,
][0]
elif material.pov.material_use_nodes:
ci1 = ci2 = ci3 = 0
else:
# Color per material - flat material color
if (
material.pov_subsurface_scattering.use
):
diffuse_color = [
i * j
for i, j in zip(
material.pov_subsurface_scattering.color[
:
],
material.diffuse_color[:],
)
]
else:
diffuse_color = material.diffuse_color[
:
]
ci1 = ci2 = ci3 = vertCols[
diffuse_color[0],
diffuse_color[1],
diffuse_color[2],
f.material_index,
][0]
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>, %d,%d,%d"
% (
fv[0],
fv[1],
fv[2],
ci1,
ci2,
ci3,
)
) # vert count
else:
file.write(", ")
file.write(
"<%d,%d,%d>, %d,%d,%d"
% (
fv[0],
fv[1],
fv[2],
ci1,
ci2,
ci3,
)
) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>"
% (
uniqueNormals[
verts_normals[fv[0]]
][0],
uniqueNormals[
verts_normals[fv[1]]
][0],
uniqueNormals[
verts_normals[fv[2]]
][0],
)
) # vert count
else:
file.write(", ")
file.write(
"<%d,%d,%d>"
% (
uniqueNormals[
verts_normals[fv[0]]
][0],
uniqueNormals[
verts_normals[fv[1]]
][0],
uniqueNormals[
verts_normals[fv[2]]
][0],
)
) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>" % (idx, idx, idx)
) # vertcount
else:
file.write(", ")
file.write(
"<%d,%d,%d>" % (idx, idx, idx)
) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for f in me_faces:
uvs = [uv_layer[l].uv[:] for l in f.loops]
if linebreaksinlists:
file.write(",\n")
file.write(
tabStr
+ "<%d,%d,%d>"
% (
uniqueUVs[uvs[0]][0],
uniqueUVs[uvs[1]][0],
uniqueUVs[uvs[2]][0],
)
)
else:
file.write(", ")
file.write(
"<%d,%d,%d>"
% (
uniqueUVs[uvs[0]][0],
uniqueUVs[uvs[1]][0],
uniqueUVs[uvs[2]][0],
)
)
file.write("\n")
tabWrite("}\n")
# XXX BOOLEAN
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod:
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
file.write(
"\tinside_vector <%.6g, %.6g, %.6g>\n"
% (
ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2],
)
)
onceCSG = 1
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# POV object modifiers such as
# hollow / sturm / double_illuminate etc.
write_object_modifiers(scene, ob, file)
# Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
ob_eval.to_mesh_clear()
if csg:
duplidata_ref = []
_dupnames_seen = (
dict()
) # avoid duplicate output during introspection
for ob in sel:
# matrix = global_matrix @ ob.matrix_world
if ob.is_instancer:
tabWrite("\n//--DupliObjects in %s--\n\n" % ob.name)
# ob.dupli_list_create(scene) #deprecated in 2.8
depsgraph = bpy.context.evaluated_depsgraph_get()
dup = ""
if ob.is_modified(scene, 'RENDER'):
# modified object always unique so using object name rather than data name
dup = "#declare OB%s = union{\n" % (
string_strip_hyphen(bpy.path.clean_name(ob.name))
)
else:
dup = "#declare DATA%s = union{\n" % (
string_strip_hyphen(bpy.path.clean_name(ob.name))
)
for eachduplicate in depsgraph.object_instances:
if (
eachduplicate.is_instance
): # Real dupli instance filtered because original included in list since 2.8
_dupname = eachduplicate.object.name
_dupobj = bpy.data.objects[_dupname]
# BEGIN introspection for troubleshooting purposes
if not "name" in dir(_dupobj.data):
if _dupname not in _dupnames_seen:
print(
"WARNING: bpy.data.objects[%s].data (of type %s) has no 'name' attribute"
% (_dupname, type(_dupobj.data))
)
for _thing in dir(_dupobj):
print(
"|| %s.%s = %s"
% (
_dupname,
_thing,
getattr(_dupobj, _thing),
)
)
_dupnames_seen[_dupname] = 1
print(
"''=> Unparseable objects so far: %s"
% (_dupnames_seen)
)
else:
_dupnames_seen[_dupname] += 1
continue # don't try to parse data objects with no name attribute
# END introspection for troubleshooting purposes
duplidataname = "OB" + string_strip_hyphen(
bpy.path.clean_name(_dupobj.data.name)
)
dupmatrix = (
eachduplicate.matrix_world.copy()
) # has to be copied to not store instance since 2.8
dup += "\tobject {\n\t\tDATA%s\n\t\t%s\t}\n" % (
string_strip_hyphen(
bpy.path.clean_name(_dupobj.data.name)
),
MatrixAsPovString(
ob.matrix_world.inverted() @ dupmatrix
),
)
# add object to a list so that it is not rendered for some instance_types
if (
ob.instance_type not in {'COLLECTION'}
and duplidataname not in duplidata_ref
):
duplidata_ref.append(
duplidataname
) # older key [string_strip_hyphen(bpy.path.clean_name("OB"+ob.name))]
dup += "}\n"
# ob.dupli_list_clear()# just do not store any reference to instance since 2.8
tabWrite(dup)
else:
continue
print(
"WARNING: Unparseable objects in current .blend file:\n''=> %s"
% (_dupnames_seen)
)
print("duplidata_ref = %s" % (duplidata_ref))
for data_name, inst in data_ref.items():
for ob_name, matrix_str in inst:
if (
ob_name not in duplidata_ref
): # .items() for a dictionary
tabWrite(
"\n//----Blender Object Name:%s----\n" % ob_name
)
if ob.pov.object_as == '':
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
else:
no_boolean = True
for mod in ob.modifiers:
if mod.type == 'BOOLEAN':
operation = None
no_boolean = False
if mod.operation == 'INTERSECT':
operation = 'intersection'
else:
operation = mod.operation.lower()
mod_ob_name = string_strip_hyphen(
bpy.path.clean_name(mod.object.name)
)
mod_matrix = (
global_matrix @ mod.object.matrix_world
)
mod_ob_matrix = MatrixAsPovString(
mod_matrix
)
tabWrite("%s { \n" % operation)
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
tabWrite("object { \n")
tabWrite("%s\n" % ('DATA' + mod_ob_name))
tabWrite("%s\n" % mod_ob_matrix)
tabWrite("}\n")
tabWrite("}\n")
break
if no_boolean:
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
def exportWorld(world):
"""write world as POV backgrounbd and sky_sphere to exported file """
render = scene.pov
camera = scene.camera
matrix = global_matrix @ camera.matrix_world
if not world:
return
#############Maurice####################################
# These lines added to get sky gradient (visible with PNG output)
if world:
# For simple flat background:
if not world.pov.use_sky_blend:
# Non fully transparent background could premultiply alpha and avoid anti-aliasing
# display issue:
if render.alpha_mode == 'TRANSPARENT':
tabWrite(
"background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n"
% (world.pov.horizon_color[:])
)
# Currently using no alpha with Sky option:
elif render.alpha_mode == 'SKY':
tabWrite(
"background {rgbt<%.3g, %.3g, %.3g, 0>}\n"
% (world.pov.horizon_color[:])
)
# StraightAlpha:
# XXX Does not exists anymore
# else:
# tabWrite("background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.pov.horizon_color[:]))
worldTexCount = 0
# For Background image textures
for (
t
) in (
world.pov_texture_slots
): # risk to write several sky_spheres but maybe ok.
if t:
tex = bpy.data.textures[t.texture]
if tex.type is not None:
worldTexCount += 1
# XXX No enable checkbox for world textures yet (report it?)
# if t and tex.type == 'IMAGE' and t.use:
if tex.type == 'IMAGE':
image_filename = path_image(tex.image)
if tex.image.filepath != image_filename:
tex.image.filepath = image_filename
if image_filename != "" and t.use_map_blend:
texturesBlend = image_filename
# colvalue = t.default_value
t_blend = t
# Commented below was an idea to make the Background image oriented as camera
# taken here:
# http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
# Replace 4/3 by the ratio of each image found by some custom or existing
# function
# mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
# "(atan((camLocation - camLookAt).x/(camLocation - " \
# "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
# "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
# "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
# "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
# (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
# t_blend.offset.z / 10, t_blend.scale.x ,
# t_blend.scale.y , t_blend.scale.z))
# using camera rotation valuesdirectly from blender seems much easier
if t_blend.texture_coords == 'ANGMAP':
mappingBlend = ""
else:
# POV-Ray "scale" is not a number of repetitions factor, but its
# inverse, a standard scale factor.
# 0.5 Offset is needed relatively to scale because center of the
# UV scale is 0.5,0.5 in blender and 0,0 in POV
# Further Scale by 2 and translate by -1 are
# required for the sky_sphere not to repeat
mappingBlend = (
"scale 2 scale <%.4g,%.4g,%.4g> translate -1 "
"translate <%.4g,%.4g,%.4g> rotate<0,0,0> "
% (
(1.0 / t_blend.scale.x),
(1.0 / t_blend.scale.y),
(1.0 / t_blend.scale.z),
0.5
- (0.5 / t_blend.scale.x)
- t_blend.offset.x,
0.5
- (0.5 / t_blend.scale.y)
- t_blend.offset.y,
t_blend.offset.z,
)
)
# The initial position and rotation of the pov camera is probably creating
# the rotation offset should look into it someday but at least background
# won't rotate with the camera now.
# Putting the map on a plane would not introduce the skysphere distortion and
# allow for better image scale matching but also some waay to chose depth and
# size of the plane relative to camera.
tabWrite("sky_sphere {\n")
tabWrite("pigment {\n")
tabWrite(
"image_map{%s \"%s\" %s}\n"
% (
imageFormat(texturesBlend),
texturesBlend,
imgMapBG(t_blend),
)
)
tabWrite("}\n")
tabWrite("%s\n" % (mappingBlend))
# The following layered pigment opacifies to black over the texture for
# transmit below 1 or otherwise adds to itself
tabWrite(
"pigment {rgb 0 transmit %s}\n" % (tex.intensity)
)
tabWrite("}\n")
# tabWrite("scale 2\n")
# tabWrite("translate -1\n")
# For only Background gradient
if worldTexCount == 0:
if world.pov.use_sky_blend:
tabWrite("sky_sphere {\n")
tabWrite("pigment {\n")
# maybe Should follow the advice of POV doc about replacing gradient
# for skysphere..5.5
tabWrite("gradient y\n")
tabWrite("color_map {\n")
# XXX Does not exists anymore
# if render.alpha_mode == 'STRAIGHT':
# tabWrite("[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.horizon_color[:]))
# tabWrite("[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.pov.zenith_color[:]))
if render.alpha_mode == 'TRANSPARENT':
tabWrite(
"[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n"
% (world.pov.horizon_color[:])
)
# aa premult not solved with transmit 1
tabWrite(
"[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n"
% (world.pov.zenith_color[:])
)
else:
tabWrite(
"[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n"
% (world.pov.horizon_color[:])
)
tabWrite(
"[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n"
% (world.pov.zenith_color[:])
)
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
# Sky_sphere alpha (transmit) is not translating into image alpha the same
# way as 'background'
# if world.pov.light_settings.use_indirect_light:
# scene.pov.radio_enable=1
# Maybe change the above to a function copyInternalRenderer settings when
# user pushes a button, then:
# scene.pov.radio_enable = world.pov.light_settings.use_indirect_light
# and other such translations but maybe this would not be allowed either?
###############################################################
mist = world.mist_settings
if mist.use_mist:
tabWrite("fog {\n")
if mist.falloff == 'LINEAR':
tabWrite(
"distance %.6f\n" % ((mist.start + mist.depth) * 0.368)
)
elif mist.falloff == 'QUADRATIC': # n**2 or squrt(n)?
tabWrite(
"distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368)
)
elif mist.falloff == 'INVERSE_QUADRATIC': # n**2 or squrt(n)?
tabWrite(
"distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368)
)
tabWrite(
"color rgbt<%.3g, %.3g, %.3g, %.3g>\n"
% (*world.pov.horizon_color, 1.0 - mist.intensity)
)
# tabWrite("fog_offset %.6f\n" % mist.start) #create a pov property to prepend
# tabWrite("fog_alt %.6f\n" % mist.height) #XXX right?
# tabWrite("turbulence 0.2\n")
# tabWrite("turb_depth 0.3\n")
tabWrite("fog_type 1\n") # type2 for height
tabWrite("}\n")
if scene.pov.media_enable:
tabWrite("media {\n")
tabWrite(
"scattering { %d, rgb %.12f*<%.4g, %.4g, %.4g>\n"
% (
int(scene.pov.media_scattering_type),
(scene.pov.media_diffusion_scale),
*(scene.pov.media_diffusion_color[:]),
)
)
if scene.pov.media_scattering_type == '5':
tabWrite("eccentricity %.3g\n" % scene.pov.media_eccentricity)
tabWrite("}\n")
tabWrite(
"absorption %.12f*<%.4g, %.4g, %.4g>\n"
% (
scene.pov.media_absorption_scale,
*(scene.pov.media_absorption_color[:]),
)
)
tabWrite("\n")
tabWrite("samples %.d\n" % scene.pov.media_samples)
tabWrite("}\n")
def exportGlobalSettings(scene):
"""write all POV global settings to exported file """
tabWrite("global_settings {\n")
tabWrite("assumed_gamma 1.0\n")
tabWrite("max_trace_level %d\n" % scene.pov.max_trace_level)
# Deprecated (autodetected in pov3.8):
# if scene.pov.charset != 'ascii':
# file.write(" charset %s\n" % scene.pov.charset)
if scene.pov.global_settings_advanced:
if scene.pov.radio_enable == False:
file.write(" adc_bailout %.6f\n" % scene.pov.adc_bailout)
file.write(
" ambient_light <%.6f,%.6f,%.6f>\n"
% scene.pov.ambient_light[:]
)
file.write(
" irid_wavelength <%.6f,%.6f,%.6f>\n"
% scene.pov.irid_wavelength[:]
)
file.write(
" max_intersections %s\n" % scene.pov.max_intersections
)
file.write(" number_of_waves %s\n" % scene.pov.number_of_waves)
file.write(" noise_generator %s\n" % scene.pov.noise_generator)
if scene.pov.radio_enable:
tabWrite("radiosity {\n")
tabWrite("adc_bailout %.4g\n" % scene.pov.radio_adc_bailout)
tabWrite("brightness %.4g\n" % scene.pov.radio_brightness)
tabWrite("count %d\n" % scene.pov.radio_count)
tabWrite("error_bound %.4g\n" % scene.pov.radio_error_bound)
tabWrite("gray_threshold %.4g\n" % scene.pov.radio_gray_threshold)
tabWrite(
"low_error_factor %.4g\n" % scene.pov.radio_low_error_factor
)
tabWrite("maximum_reuse %.4g\n" % scene.pov.radio_maximum_reuse)
tabWrite("minimum_reuse %.4g\n" % scene.pov.radio_minimum_reuse)
tabWrite("nearest_count %d\n" % scene.pov.radio_nearest_count)
tabWrite("pretrace_start %.3g\n" % scene.pov.radio_pretrace_start)
tabWrite("pretrace_end %.3g\n" % scene.pov.radio_pretrace_end)
tabWrite("recursion_limit %d\n" % scene.pov.radio_recursion_limit)
tabWrite("always_sample %d\n" % scene.pov.radio_always_sample)
tabWrite("normal %d\n" % scene.pov.radio_normal)
tabWrite("media %d\n" % scene.pov.radio_media)
tabWrite("subsurface %d\n" % scene.pov.radio_subsurface)
tabWrite("}\n")
onceSss = 1
onceAmbient = 1
oncePhotons = 1
for material in bpy.data.materials:
if material.pov_subsurface_scattering.use and onceSss:
# In pov, the scale has reversed influence compared to blender. these number
# should correct that
tabWrite(
"mm_per_unit %.6f\n"
% (material.pov_subsurface_scattering.scale * 1000.0)
)
# 1000 rather than scale * (-100.0) + 15.0))
# In POV-Ray, the scale factor for all subsurface shaders needs to be the same
# formerly sslt_samples were multiplied by 100 instead of 10
sslt_samples = (
11 - material.pov_subsurface_scattering.error_threshold
) * 10
tabWrite(
"subsurface { samples %d, %d }\n"
% (sslt_samples, sslt_samples / 10)
)
onceSss = 0
if world and onceAmbient:
tabWrite(
"ambient_light rgb<%.3g, %.3g, %.3g>\n"
% world.pov.ambient_color[:]
)
onceAmbient = 0
if scene.pov.photon_enable:
if oncePhotons and (
material.pov.refraction_type == "2"
or material.pov.photons_reflection == True
):
tabWrite("photons {\n")
tabWrite("spacing %.6f\n" % scene.pov.photon_spacing)
tabWrite(
"max_trace_level %d\n"
% scene.pov.photon_max_trace_level
)
tabWrite(
"adc_bailout %.3g\n" % scene.pov.photon_adc_bailout
)
tabWrite(
"gather %d, %d\n"
% (
scene.pov.photon_gather_min,
scene.pov.photon_gather_max,
)
)
if scene.pov.photon_map_file_save_load in {'save'}:
filePhName = 'Photon_map_file.ph'
if scene.pov.photon_map_file != '':
filePhName = scene.pov.photon_map_file + '.ph'
filePhDir = tempfile.gettempdir()
path = bpy.path.abspath(scene.pov.photon_map_dir)
if os.path.exists(path):
filePhDir = path
fullFileName = os.path.join(filePhDir, filePhName)
tabWrite('save_file "%s"\n' % fullFileName)
scene.pov.photon_map_file = fullFileName
if scene.pov.photon_map_file_save_load in {'load'}:
fullFileName = bpy.path.abspath(
scene.pov.photon_map_file
)
if os.path.exists(fullFileName):
tabWrite('load_file "%s"\n' % fullFileName)
tabWrite("}\n")
oncePhotons = 0
tabWrite("}\n")
def exportCustomCode():
"""write all POV user defined custom code to exported file """
# Write CurrentAnimation Frame for use in Custom POV Code
file.write(
"#declare CURFRAMENUM = %d;\n" % bpy.context.scene.frame_current
)
# Change path and uncomment to add an animated include file by hand:
file.write(
"//#include \"/home/user/directory/animation_include_file.inc\"\n"
)
for txt in bpy.data.texts:
if txt.pov.custom_code == 'both':
# Why are the newlines needed?
file.write("\n")
file.write(txt.as_string())
file.write("\n")
# sel = renderable_objects(scene) #removed for booleans
if comments:
file.write(
"//----------------------------------------------\n"
"//--Exported with POV-Ray exporter for Blender--\n"
"//----------------------------------------------\n\n"
)
file.write("#version 3.7;\n") #Switch below as soon as 3.8 beta gets easy linked
#file.write("#version 3.8;\n")
file.write(
"#declare Default_texture = texture{pigment {rgb 0.8} "
"finish {brilliance 3.8} }\n\n"
)
if comments:
file.write("\n//--Global settings--\n\n")
exportGlobalSettings(scene)
if comments:
file.write("\n//--Custom Code--\n\n")
exportCustomCode()
if comments:
file.write("\n//--Patterns Definitions--\n\n")
LocalPatternNames = []
for texture in bpy.data.textures: # ok?
if texture.users > 0:
currentPatName = string_strip_hyphen(
bpy.path.clean_name(texture.name)
)
# string_strip_hyphen(patternNames[texture.name]) #maybe instead of the above
LocalPatternNames.append(currentPatName)
# use above list to prevent writing texture instances several times and assign in mats?
if (
texture.type not in {'NONE', 'IMAGE'}
and texture.pov.tex_pattern_type == 'emulator'
) or (
texture.type in {'NONE', 'IMAGE'}
and texture.pov.tex_pattern_type != 'emulator'
):
file.write("\n#declare PAT_%s = \n" % currentPatName)
file.write(shading.exportPattern(texture, string_strip_hyphen))
file.write("\n")
if comments:
file.write("\n//--Background--\n\n")
exportWorld(scene.world)
if comments:
file.write("\n//--Cameras--\n\n")
exportCamera()
if comments:
file.write("\n//--Lamps--\n\n")
for ob in bpy.data.objects:
if ob.type == 'MESH':
for mod in ob.modifiers:
if mod.type == 'BOOLEAN':
if mod.object not in csg_list:
csg_list.append(mod.object)
if csg_list != []:
csg = False
sel = no_renderable_objects(scene)
exportMeshes(scene, sel, csg)
csg = True
sel = renderable_objects(scene)
exportLamps(
[L for L in sel if (L.type == 'LIGHT' and L.pov.object_as != 'RAINBOW')]
)
if comments:
file.write("\n//--Rainbows--\n\n")
exportRainbows(
[L for L in sel if (L.type == 'LIGHT' and L.pov.object_as == 'RAINBOW')]
)
if comments:
file.write("\n//--Special Curves--\n\n")
for c in sel:
if c.is_modified(scene, 'RENDER'):
continue # don't export as pov curves objects with modifiers, but as mesh
elif c.type == 'CURVE' and (
c.pov.curveshape in {'lathe', 'sphere_sweep', 'loft', 'birail'}
):
exportCurves(scene, c)
if comments:
file.write("\n//--Material Definitions--\n\n")
# write a default pigment for objects with no material (comment out to show black)
file.write("#default{ pigment{ color srgb 0.8 }}\n")
# Convert all materials to strings we can access directly per vertex.
# exportMaterials()
shading.writeMaterial(
using_uberpov,
DEF_MAT_NAME,
scene,
tabWrite,
safety,
comments,
uniqueName,
materialNames,
None,
) # default material
for material in bpy.data.materials:
if material.users > 0:
if material.pov.material_use_nodes:
ntree = material.node_tree
povMatName = string_strip_hyphen(
bpy.path.clean_name(material.name)
)
if len(ntree.nodes) == 0:
file.write(
'#declare %s = texture {%s}\n' % (povMatName, color)
)
else:
shading.write_nodes(scene, povMatName, ntree, file)
for node in ntree.nodes:
if node:
if node.bl_idname == "PovrayOutputNode":
if node.inputs["Texture"].is_linked:
for link in ntree.links:
if (
link.to_node.bl_idname
== "PovrayOutputNode"
):
povMatName = (
string_strip_hyphen(
bpy.path.clean_name(
link.from_node.name
)
)
+ "_%s" % povMatName
)
else:
file.write(
'#declare %s = texture {%s}\n'
% (povMatName, color)
)
else:
shading.writeMaterial(
using_uberpov,
DEF_MAT_NAME,
scene,
tabWrite,
safety,
comments,
uniqueName,
materialNames,
material,
)
# attributes are all the variables needed by the other python file...
if comments:
file.write("\n")
exportMeta([m for m in sel if m.type == 'META'])
if comments:
file.write("//--Mesh objects--\n")
#tbefore = time.time()
exportMeshes(scene, sel, csg)
#totime = time.time() - tbefore
#print("exportMeshes took" + str(totime))
# What follow used to happen here:
# exportCamera()
# exportWorld(scene.world)
# exportGlobalSettings(scene)
# MR:..and the order was important for implementing pov 3.7 baking
# (mesh camera) comment for the record
# CR: Baking should be a special case than. If "baking", than we could change the order.
# print("pov file closed %s" % file.closed)
file.close()
# print("pov file closed %s" % file.closed)
def write_pov_ini(
scene, filename_ini, filename_log, filename_pov, filename_image
):
"""Write ini file."""
feature_set = bpy.context.preferences.addons[
__package__
].preferences.branch_feature_set_povray
using_uberpov = feature_set == 'uberpov'
# scene = bpy.data.scenes[0]
scene = bpy.context.scene
render = scene.render
x = int(render.resolution_x * render.resolution_percentage * 0.01)
y = int(render.resolution_y * render.resolution_percentage * 0.01)
file = open(filename_ini, "w")
file.write("Version=3.8\n")
# write povray text stream to temporary file of same name with _log suffix
# file.write("All_File='%s'\n" % filename_log)
# DEBUG.OUT log if none specified:
file.write("All_File=1\n")
file.write("Input_File_Name='%s'\n" % filename_pov)
file.write("Output_File_Name='%s'\n" % filename_image)
file.write("Width=%d\n" % x)
file.write("Height=%d\n" % y)
# Border render.
if render.use_border:
file.write("Start_Column=%4g\n" % render.border_min_x)
file.write("End_Column=%4g\n" % (render.border_max_x))
file.write("Start_Row=%4g\n" % (1.0 - render.border_max_y))
file.write("End_Row=%4g\n" % (1.0 - render.border_min_y))
file.write(
"Bounding_Method=2\n"
) # The new automatic BSP is faster in most scenes
# Activated (turn this back off when better live exchange is done between the two programs
# (see next comment)
file.write("Display=1\n")
file.write("Pause_When_Done=0\n")
# PNG, with POV-Ray 3.7, can show background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
file.write("Output_File_Type=N\n")
# file.write("Output_File_Type=T\n") # TGA, best progressive loading
file.write("Output_Alpha=1\n")
if scene.pov.antialias_enable:
# method 2 (recursive) with higher max subdiv forced because no mipmapping in POV-Ray
# needs higher sampling.
# aa_mapping = {"5": 2, "8": 3, "11": 4, "16": 5}
if using_uberpov:
method = {"0": 1, "1": 2, "2": 3}
else:
method = {"0": 1, "1": 2, "2": 2}
file.write("Antialias=on\n")
file.write("Antialias_Depth=%d\n" % scene.pov.antialias_depth)
file.write("Antialias_Threshold=%.3g\n" % scene.pov.antialias_threshold)
if using_uberpov and scene.pov.antialias_method == '2':
file.write(
"Sampling_Method=%s\n" % method[scene.pov.antialias_method]
)
file.write(
"Antialias_Confidence=%.3g\n" % scene.pov.antialias_confidence
)
else:
file.write(
"Sampling_Method=%s\n" % method[scene.pov.antialias_method]
)
file.write("Antialias_Gamma=%.3g\n" % scene.pov.antialias_gamma)
if scene.pov.jitter_enable:
file.write("Jitter=on\n")
file.write("Jitter_Amount=%3g\n" % scene.pov.jitter_amount)
else:
file.write("Jitter=off\n") # prevent animation flicker
else:
file.write("Antialias=off\n")
# print("ini file closed %s" % file.closed)
file.close()
# print("ini file closed %s" % file.closed)
class PovrayRender(bpy.types.RenderEngine):
"""Define the external renderer"""
bl_idname = 'POVRAY_RENDER'
bl_label = "Persitence Of Vision"
bl_use_shading_nodes_custom = False
DELAY = 0.5
@staticmethod
def _locate_binary():
"""Identify POV engine"""
addon_prefs = bpy.context.preferences.addons[__package__].preferences
# Use the system preference if its set.
pov_binary = addon_prefs.filepath_povray
if pov_binary:
if os.path.exists(pov_binary):
return pov_binary
else:
print(
"User Preferences path to povray %r NOT FOUND, checking $PATH"
% pov_binary
)
# Windows Only
# assume if there is a 64bit binary that the user has a 64bit capable OS
if sys.platform[:3] == "win":
import winreg
win_reg_key = winreg.OpenKey(
winreg.HKEY_CURRENT_USER, "Software\\POV-Ray\\v3.7\\Windows"
)
win_home = winreg.QueryValueEx(win_reg_key, "Home")[0]
# First try 64bits UberPOV
pov_binary = os.path.join(win_home, "bin", "uberpov64.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 64bits POV
pov_binary = os.path.join(win_home, "bin", "pvengine64.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 32bits UberPOV
pov_binary = os.path.join(win_home, "bin", "uberpov32.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 32bits POV
pov_binary = os.path.join(win_home, "bin", "pvengine.exe")
if os.path.exists(pov_binary):
return pov_binary
# search the path all os's
pov_binary_default = "povray"
os_path_ls = os.getenv("PATH").split(':') + [""]
for dir_name in os_path_ls:
pov_binary = os.path.join(dir_name, pov_binary_default)
if os.path.exists(pov_binary):
return pov_binary
return ""
def _export(self, depsgraph, povPath, renderImagePath):
"""gather all necessary output files paths user defined and auto generated and export there"""
import tempfile
scene = bpy.context.scene
if scene.pov.tempfiles_enable:
self._temp_file_in = tempfile.NamedTemporaryFile(
suffix=".pov", delete=False
).name
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = tempfile.NamedTemporaryFile(
suffix=".png", delete=False
).name
# self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".tga", delete=False).name
self._temp_file_ini = tempfile.NamedTemporaryFile(
suffix=".ini", delete=False
).name
self._temp_file_log = os.path.join(
tempfile.gettempdir(), "alltext.out"
)
else:
self._temp_file_in = povPath + ".pov"
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = renderImagePath + ".png"
# self._temp_file_out = renderImagePath + ".tga"
self._temp_file_ini = povPath + ".ini"
logPath = bpy.path.abspath(scene.pov.scene_path).replace('\\', '/')
self._temp_file_log = os.path.join(logPath, "alltext.out")
'''
self._temp_file_in = "/test.pov"
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = "/test.png"
#self._temp_file_out = "/test.tga"
self._temp_file_ini = "/test.ini"
'''
if scene.pov.text_block == "":
def info_callback(txt):
self.update_stats("", "POV-Ray 3.7: " + txt)
# os.makedirs(user_dir, exist_ok=True) # handled with previews
os.makedirs(preview_dir, exist_ok=True)
write_pov(self._temp_file_in, scene, info_callback)
else:
pass
def _render(self, depsgraph):
"""Export necessary files and render image."""
scene = bpy.context.scene
try:
os.remove(self._temp_file_out) # so as not to load the old file
except OSError:
pass
pov_binary = PovrayRender._locate_binary()
if not pov_binary:
print(
"POV-Ray 3.7: could not execute povray, possibly POV-Ray isn't installed"
)
return False
write_pov_ini(
scene,
self._temp_file_ini,
self._temp_file_log,
self._temp_file_in,
self._temp_file_out,
)
print("***-STARTING-***")
extra_args = []
if scene.pov.command_line_switches != "":
for newArg in scene.pov.command_line_switches.split(" "):
extra_args.append(newArg)
self._is_windows = False
if sys.platform[:3] == "win":
self._is_windows = True
if "/EXIT" not in extra_args and not scene.pov.pov_editor:
extra_args.append("/EXIT")
else:
# added -d option to prevent render window popup which leads to segfault on linux
extra_args.append("-d")
# Start Rendering!
try:
self._process = subprocess.Popen(
[pov_binary, self._temp_file_ini] + extra_args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
except OSError:
# TODO, report api
print("POV-Ray 3.7: could not execute '%s'" % pov_binary)
import traceback
traceback.print_exc()
print("***-DONE-***")
return False
else:
print("Engine ready!...")
print("Command line arguments passed: " + str(extra_args))
return True
# Now that we have a valid process
def _cleanup(self):
"""Delete temp files and unpacked ones"""
for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
for i in range(5):
try:
os.unlink(f)
break
except OSError:
# Wait a bit before retrying file might be still in use by Blender,
# and Windows does not know how to delete a file in use!
time.sleep(self.DELAY)
for i in unpacked_images:
for c in range(5):
try:
os.unlink(i)
break
except OSError:
# Wait a bit before retrying file might be still in use by Blender,
# and Windows does not know how to delete a file in use!
time.sleep(self.DELAY)
def render(self, depsgraph):
"""Export necessary files from text editor and render image."""
import tempfile
scene = bpy.context.scene
r = scene.render
x = int(r.resolution_x * r.resolution_percentage * 0.01)
y = int(r.resolution_y * r.resolution_percentage * 0.01)
print("***INITIALIZING***")
# This makes some tests on the render, returning True if all goes good, and False if
# it was finished one way or the other.
# It also pauses the script (time.sleep())
def _test_wait():
time.sleep(self.DELAY)
# User interrupts the rendering
if self.test_break():
try:
self._process.terminate()
print("***POV INTERRUPTED***")
except OSError:
pass
return False
poll_result = self._process.poll()
# POV process is finisehd, one way or the other
if poll_result is not None:
if poll_result < 0:
print("***POV PROCESS FAILED : %s ***" % poll_result)
self.update_stats("", "POV-Ray 3.7: Failed")
return False
return True
if bpy.context.scene.pov.text_block != "":
if scene.pov.tempfiles_enable:
self._temp_file_in = tempfile.NamedTemporaryFile(
suffix=".pov", delete=False
).name
self._temp_file_out = tempfile.NamedTemporaryFile(
suffix=".png", delete=False
).name
# self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".tga", delete=False).name
self._temp_file_ini = tempfile.NamedTemporaryFile(
suffix=".ini", delete=False
).name
self._temp_file_log = os.path.join(
tempfile.gettempdir(), "alltext.out"
)
else:
povPath = scene.pov.text_block
renderImagePath = os.path.splitext(povPath)[0]
self._temp_file_out = os.path.join(preview_dir, renderImagePath)
self._temp_file_in = os.path.join(preview_dir, povPath)
self._temp_file_ini = os.path.join(
preview_dir,
(os.path.splitext(self._temp_file_in)[0] + ".INI"),
)
self._temp_file_log = os.path.join(preview_dir, "alltext.out")
'''
try:
os.remove(self._temp_file_in) # so as not to load the old file
except OSError:
pass
'''
print(scene.pov.text_block)
text = bpy.data.texts[scene.pov.text_block]
file = open("%s" % self._temp_file_in, "w")
# Why are the newlines needed?
file.write("\n")
file.write(text.as_string())
file.write("\n")
file.close()
# has to be called to update the frame on exporting animations
scene.frame_set(scene.frame_current)
pov_binary = PovrayRender._locate_binary()
if not pov_binary:
print(
"POV-Ray 3.7: could not execute povray, possibly POV-Ray isn't installed"
)
return False
# start ini UI options export
self.update_stats(
"", "POV-Ray 3.7: Exporting ini options from Blender"
)
write_pov_ini(
scene,
self._temp_file_ini,
self._temp_file_log,
self._temp_file_in,
self._temp_file_out,
)
print("***-STARTING-***")
extra_args = []
if scene.pov.command_line_switches != "":
for newArg in scene.pov.command_line_switches.split(" "):
extra_args.append(newArg)
if sys.platform[:3] == "win":
if "/EXIT" not in extra_args and not scene.pov.pov_editor:
extra_args.append("/EXIT")
else:
# added -d option to prevent render window popup which leads to segfault on linux
extra_args.append("-d")
# Start Rendering!
try:
if (
sys.platform[:3] != "win" and scene.pov.sdl_window_enable
): # segfault on linux == False !!!
env = {'POV_DISPLAY_SCALED': 'off'}
env.update(os.environ)
self._process = subprocess.Popen(
[pov_binary, self._temp_file_ini],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
env=env,
)
else:
self._process = subprocess.Popen(
[pov_binary, self._temp_file_ini] + extra_args,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
except OSError:
# TODO, report api
print("POV-Ray 3.7: could not execute '%s'" % pov_binary)
import traceback
traceback.print_exc()
print("***-DONE-***")
return False
else:
print("Engine ready!...")
print("Command line arguments passed: " + str(extra_args))
# return True
self.update_stats("", "POV-Ray 3.7: Parsing File")
# Indented in main function now so repeated here but still not working
# to bring back render result to its buffer
if os.path.exists(self._temp_file_out):
xmin = int(r.border_min_x * x)
ymin = int(r.border_min_y * y)
xmax = int(r.border_max_x * x)
ymax = int(r.border_max_y * y)
result = self.begin_result(0, 0, x, y)
lay = result.layers[0]
time.sleep(self.DELAY)
try:
lay.load_from_file(self._temp_file_out)
except RuntimeError:
print("***POV ERROR WHILE READING OUTPUT FILE***")
self.end_result(result)
# print(self._temp_file_log) #bring the pov log to blender console with proper path?
with open(
self._temp_file_log
) as f: # The with keyword automatically closes the file when you are done
print(f.read())
self.update_stats("", "")
if scene.pov.tempfiles_enable or scene.pov.deletefiles_enable:
self._cleanup()
else:
##WIP output format
## if r.image_settings.file_format == 'OPENEXR':
## fformat = 'EXR'
## render.image_settings.color_mode = 'RGBA'
## else:
## fformat = 'TGA'
## r.image_settings.file_format = 'TARGA'
## r.image_settings.color_mode = 'RGBA'
blendSceneName = bpy.data.filepath.split(os.path.sep)[-1].split(
"."
)[0]
povSceneName = ""
povPath = ""
renderImagePath = ""
# has to be called to update the frame on exporting animations
scene.frame_set(scene.frame_current)
if not scene.pov.tempfiles_enable:
# check paths
povPath = bpy.path.abspath(scene.pov.scene_path).replace(
'\\', '/'
)
if povPath == "":
if bpy.data.is_saved:
povPath = bpy.path.abspath("//")
else:
povPath = tempfile.gettempdir()
elif povPath.endswith("/"):
if povPath == "/":
povPath = bpy.path.abspath("//")
else:
povPath = bpy.path.abspath(scene.pov.scene_path)
if not os.path.exists(povPath):
try:
os.makedirs(povPath)
except:
import traceback
traceback.print_exc()
print(
"POV-Ray 3.7: Cannot create scenes directory: %r"
% povPath
)
self.update_stats(
"",
"POV-Ray 3.7: Cannot create scenes directory %r"
% povPath,
)
time.sleep(2.0)
# return
'''
# Bug in POV-Ray RC3
renderImagePath = bpy.path.abspath(scene.pov.renderimage_path).replace('\\','/')
if renderImagePath == "":
if bpy.data.is_saved:
renderImagePath = bpy.path.abspath("//")
else:
renderImagePath = tempfile.gettempdir()
#print("Path: " + renderImagePath)
elif path.endswith("/"):
if renderImagePath == "/":
renderImagePath = bpy.path.abspath("//")
else:
renderImagePath = bpy.path.abspath(scene.pov.renderimage_path)
if not os.path.exists(path):
print("POV-Ray 3.7: Cannot find render image directory")
self.update_stats("", "POV-Ray 3.7: Cannot find render image directory")
time.sleep(2.0)
return
'''
# check name
if scene.pov.scene_name == "":
if blendSceneName != "":
povSceneName = blendSceneName
else:
povSceneName = "untitled"
else:
povSceneName = scene.pov.scene_name
if os.path.isfile(povSceneName):
povSceneName = os.path.basename(povSceneName)
povSceneName = povSceneName.split('/')[-1].split('\\')[-1]
if not povSceneName:
print("POV-Ray 3.7: Invalid scene name")
self.update_stats("", "POV-Ray 3.7: Invalid scene name")
time.sleep(2.0)
# return
povSceneName = os.path.splitext(povSceneName)[0]
print("Scene name: " + povSceneName)
print("Export path: " + povPath)
povPath = os.path.join(povPath, povSceneName)
povPath = os.path.realpath(povPath)
# for now this has to be the same like the pov output. Bug in POV-Ray RC3.
# renderImagePath = renderImagePath + "\\" + povSceneName
renderImagePath = povPath # Bugfix for POV-Ray RC3 bug
# renderImagePath = os.path.realpath(renderImagePath) # Bugfix for POV-Ray RC3 bug
# print("Export path: %s" % povPath)
# print("Render Image path: %s" % renderImagePath)
# start export
self.update_stats("", "POV-Ray 3.7: Exporting data from Blender")
self._export(depsgraph, povPath, renderImagePath)
self.update_stats("", "POV-Ray 3.7: Parsing File")
if not self._render(depsgraph):
self.update_stats("", "POV-Ray 3.7: Not found")
# return
# r = scene.render
# compute resolution
# x = int(r.resolution_x * r.resolution_percentage * 0.01)
# y = int(r.resolution_y * r.resolution_percentage * 0.01)
# Wait for the file to be created
# XXX This is no more valid, as 3.7 always creates output file once render is finished!
parsing = re.compile(br"= \[Parsing\.\.\.\] =")
rendering = re.compile(br"= \[Rendering\.\.\.\] =")
percent = re.compile(r"\(([0-9]{1,3})%\)")
# print("***POV WAITING FOR FILE***")
data = b""
last_line = ""
while _test_wait():
# POV in Windows did not output its stdout/stderr, it displayed them in its GUI
# But now writes file
if self._is_windows:
self.update_stats("", "POV-Ray 3.7: Rendering File")
else:
t_data = self._process.stdout.read(10000)
if not t_data:
continue
data += t_data
# XXX This is working for UNIX, not sure whether it might need adjustments for
# other OSs
# First replace is for windows
t_data = (
str(t_data)
.replace('\\r\\n', '\\n')
.replace('\\r', '\r')
)
lines = t_data.split('\\n')
last_line += lines[0]
lines[0] = last_line
print('\n'.join(lines), end="")
last_line = lines[-1]
if rendering.search(data):
_pov_rendering = True
match = percent.findall(str(data))
if match:
self.update_stats(
"",
"POV-Ray 3.7: Rendering File (%s%%)"
% match[-1],
)
else:
self.update_stats("", "POV-Ray 3.7: Rendering File")
elif parsing.search(data):
self.update_stats("", "POV-Ray 3.7: Parsing File")
if os.path.exists(self._temp_file_out):
# print("***POV FILE OK***")
# self.update_stats("", "POV-Ray 3.7: Rendering")
# prev_size = -1
xmin = int(r.border_min_x * x)
ymin = int(r.border_min_y * y)
xmax = int(r.border_max_x * x)
ymax = int(r.border_max_y * y)
# print("***POV UPDATING IMAGE***")
result = self.begin_result(0, 0, x, y)
# XXX, tests for border render.
# result = self.begin_result(xmin, ymin, xmax - xmin, ymax - ymin)
# result = self.begin_result(0, 0, xmax - xmin, ymax - ymin)
lay = result.layers[0]
# This assumes the file has been fully written We wait a bit, just in case!
time.sleep(self.DELAY)
try:
lay.load_from_file(self._temp_file_out)
# XXX, tests for border render.
# lay.load_from_file(self._temp_file_out, xmin, ymin)
except RuntimeError:
print("***POV ERROR WHILE READING OUTPUT FILE***")
# Not needed right now, might only be useful if we find a way to use temp raw output of
# pov 3.7 (in which case it might go under _test_wait()).
'''
def update_image():
# possible the image wont load early on.
try:
lay.load_from_file(self._temp_file_out)
# XXX, tests for border render.
#lay.load_from_file(self._temp_file_out, xmin, ymin)
#lay.load_from_file(self._temp_file_out, xmin, ymin)
except RuntimeError:
pass
# Update while POV-Ray renders
while True:
# print("***POV RENDER LOOP***")
# test if POV-Ray exists
if self._process.poll() is not None:
print("***POV PROCESS FINISHED***")
update_image()
break
# user exit
if self.test_break():
try:
self._process.terminate()
print("***POV PROCESS INTERRUPTED***")
except OSError:
pass
break
# Would be nice to redirect the output
# stdout_value, stderr_value = self._process.communicate() # locks
# check if the file updated
new_size = os.path.getsize(self._temp_file_out)
if new_size != prev_size:
update_image()
prev_size = new_size
time.sleep(self.DELAY)
'''
self.end_result(result)
else:
print("***POV FILE NOT FOUND***")
print("***POV FILE FINISHED***")
# print(filename_log) #bring the pov log to blender console with proper path?
with open(
self._temp_file_log,
encoding='utf-8'
) as f: # The with keyword automatically closes the file when you are done
msg = f.read()
#if isinstance(msg, str):
#stdmsg = msg
#decoded = False
#else:
#if type(msg) == bytes:
#stdmsg = msg.split('\n')
#stdmsg = msg.encode('utf-8', "replace")
#stdmsg = msg.encode("utf-8", "replace")
#stdmsg = msg.decode(encoding)
#decoded = True
#msg.encode('utf-8').decode('utf-8')
print(msg)
# Also print to the interactive console used in POV centric workspace
# To do: get a grip on new line encoding
# and make this a function to be used elsewhere
for win in bpy.context.window_manager.windows:
if win.screen != None:
scr = win.screen
for area in scr.areas:
if area.type == 'CONSOLE':
#context override
#ctx = {'window': win, 'screen': scr, 'area':area}#bpy.context.copy()
ctx = {}
ctx['area'] = area
ctx['region'] = area.regions[-1]
ctx['space_data'] = area.spaces.active
ctx['screen'] = scr#C.screen
ctx['window'] = win
#bpy.ops.console.banner(ctx, text = "Hello world")
bpy.ops.console.clear_line(ctx)
stdmsg = msg.split('\n') #XXX todo , test and see
for i in stdmsg:
bpy.ops.console.insert(ctx, text = i)
self.update_stats("", "")
if scene.pov.tempfiles_enable or scene.pov.deletefiles_enable:
self._cleanup()
sound_on = bpy.context.preferences.addons[
__package__
].preferences.use_sounds
if sys.platform[:3] == "win" and sound_on:
# Could not find tts Windows command so playing beeps instead :-)
# "Korobeiniki"(Коробе́йники)
# aka "A-Type" Tetris theme
import winsound
winsound.Beep(494,250) #B
winsound.Beep(370,125) #F
winsound.Beep(392,125) #G
winsound.Beep(440,250) #A
winsound.Beep(392,125) #G
winsound.Beep(370,125) #F#
winsound.Beep(330,275) #E
winsound.Beep(330,125) #E
winsound.Beep(392,125) #G
winsound.Beep(494,275) #B
winsound.Beep(440,125) #A
winsound.Beep(392,125) #G
winsound.Beep(370,275) #F
winsound.Beep(370,125) #F
winsound.Beep(392,125) #G
winsound.Beep(440,250) #A
winsound.Beep(494,250) #B
winsound.Beep(392,250) #G
winsound.Beep(330,350) #E
time.sleep(0.5)
winsound.Beep(440,250) #A
winsound.Beep(440,150) #A
winsound.Beep(523,125) #D8
winsound.Beep(659,250) #E8
winsound.Beep(587,125) #D8
winsound.Beep(523,125) #C8
winsound.Beep(494,250) #B
winsound.Beep(494,125) #B
winsound.Beep(392,125) #G
winsound.Beep(494,250) #B
winsound.Beep(440,150) #A
winsound.Beep(392,125) #G
winsound.Beep(370,250) #F#
winsound.Beep(370,125) #F#
winsound.Beep(392,125) #G
winsound.Beep(440,250) #A
winsound.Beep(494,250) #B
winsound.Beep(392,250) #G
winsound.Beep(330,300) #E
#Does Linux support say command?
elif sys.platform[:3] != "win" :
finished_render_message = "\'Render completed\'"
# We don't want the say command to block Python,
# so we add an ampersand after the message
os.system("say %s &" % (finished_render_message))
##################################################################################
#################################Operators########################################
##################################################################################
class RenderPovTexturePreview(Operator):
"""Export only files necessary to texture preview and render image"""
bl_idname = "tex.preview_update"
bl_label = "Update preview"
def execute(self, context):
tex = (
bpy.context.object.active_material.active_texture
) # context.texture
texPrevName = (
string_strip_hyphen(bpy.path.clean_name(tex.name)) + "_prev"
)
## Make sure Preview directory exists and is empty
if not os.path.isdir(preview_dir):
os.mkdir(preview_dir)
iniPrevFile = os.path.join(preview_dir, "Preview.ini")
inputPrevFile = os.path.join(preview_dir, "Preview.pov")
outputPrevFile = os.path.join(preview_dir, texPrevName)
##################### ini ##########################################
fileIni = open("%s" % iniPrevFile, "w")
fileIni.write('Version=3.8\n')
fileIni.write('Input_File_Name="%s"\n' % inputPrevFile)
fileIni.write('Output_File_Name="%s.png"\n' % outputPrevFile)
fileIni.write('Library_Path="%s"\n' % preview_dir)
fileIni.write('Width=256\n')
fileIni.write('Height=256\n')
fileIni.write('Pause_When_Done=0\n')
fileIni.write('Output_File_Type=N\n')
fileIni.write('Output_Alpha=1\n')
fileIni.write('Antialias=on\n')
fileIni.write('Sampling_Method=2\n')
fileIni.write('Antialias_Depth=3\n')
fileIni.write('-d\n')
fileIni.close()
##################### pov ##########################################
filePov = open("%s" % inputPrevFile, "w")
PATname = "PAT_" + string_strip_hyphen(bpy.path.clean_name(tex.name))
filePov.write("#declare %s = \n" % PATname)
filePov.write(shading.exportPattern(tex, string_strip_hyphen))
filePov.write("#declare Plane =\n")
filePov.write("mesh {\n")
filePov.write(
" triangle {<-2.021,-1.744,2.021>,<-2.021,-1.744,-2.021>,<2.021,-1.744,2.021>}\n"
)
filePov.write(
" triangle {<-2.021,-1.744,-2.021>,<2.021,-1.744,-2.021>,<2.021,-1.744,2.021>}\n"
)
filePov.write(" texture{%s}\n" % PATname)
filePov.write("}\n")
filePov.write("object {Plane}\n")
filePov.write("light_source {\n")
filePov.write(" <0,4.38,-1.92e-07>\n")
filePov.write(" color rgb<4, 4, 4>\n")
filePov.write(" parallel\n")
filePov.write(" point_at <0, 0, -1>\n")
filePov.write("}\n")
filePov.write("camera {\n")
filePov.write(" location <0, 0, 0>\n")
filePov.write(" look_at <0, 0, -1>\n")
filePov.write(" right <-1.0, 0, 0>\n")
filePov.write(" up <0, 1, 0>\n")
filePov.write(" angle 96.805211\n")
filePov.write(" rotate <-90.000003, -0.000000, 0.000000>\n")
filePov.write(" translate <0.000000, 0.000000, 0.000000>\n")
filePov.write("}\n")
filePov.close()
##################### end write ##########################################
pov_binary = PovrayRender._locate_binary()
if sys.platform[:3] == "win":
p1 = subprocess.Popen(
["%s" % pov_binary, "/EXIT", "%s" % iniPrevFile],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
else:
p1 = subprocess.Popen(
["%s" % pov_binary, "-d", "%s" % iniPrevFile],
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
)
p1.wait()
tex.use_nodes = True
tree = tex.node_tree
links = tree.links
for n in tree.nodes:
tree.nodes.remove(n)
im = tree.nodes.new("TextureNodeImage")
pathPrev = "%s.png" % outputPrevFile
im.image = bpy.data.images.load(pathPrev)
name = pathPrev
name = name.split("/")
name = name[len(name) - 1]
im.name = name
im.location = 200, 200
previewer = tree.nodes.new('TextureNodeOutput')
previewer.label = "Preview"
previewer.location = 400, 400
links.new(im.outputs[0], previewer.inputs[0])
# tex.type="IMAGE" # makes clip extend possible
# tex.extension="CLIP"
return {'FINISHED'}
class RunPovTextRender(Operator):
"""Export files depending on text editor options and render image."""
bl_idname = "text.run"
bl_label = "Run"
bl_context = "text"
bl_description = "Run a render with this text only"
def execute(self, context):
scene = context.scene
scene.pov.text_block = context.space_data.text.name
bpy.ops.render.render()
# empty text name property engain
scene.pov.text_block = ""
return {'FINISHED'}
classes = (PovrayRender, RenderPovTexturePreview, RunPovTextRender)
def register():
# from bpy.utils import register_class
for cls in classes:
register_class(cls)
def unregister():
from bpy.utils import unregister_class
for cls in reversed(classes):
unregister_class(cls)