269 lines
6.8 KiB
Python
269 lines
6.8 KiB
Python
# SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
import bpy
|
|
import math
|
|
import collections
|
|
|
|
from itertools import tee, chain, islice, repeat, permutations
|
|
from mathutils import Vector, Matrix, Color
|
|
from rna_prop_ui import rna_idprop_value_to_python
|
|
|
|
|
|
#=============================================
|
|
# Math
|
|
#=============================================
|
|
|
|
|
|
axis_vectors = {
|
|
'x': (1,0,0),
|
|
'y': (0,1,0),
|
|
'z': (0,0,1),
|
|
'-x': (-1,0,0),
|
|
'-y': (0,-1,0),
|
|
'-z': (0,0,-1),
|
|
}
|
|
|
|
|
|
# Matrices that reshuffle axis order and/or invert them
|
|
shuffle_matrix = {
|
|
sx+x+sy+y+sz+z: Matrix((
|
|
axis_vectors[sx+x], axis_vectors[sy+y], axis_vectors[sz+z]
|
|
)).transposed().freeze()
|
|
for x, y, z in permutations(['x', 'y', 'z'])
|
|
for sx in ('', '-')
|
|
for sy in ('', '-')
|
|
for sz in ('', '-')
|
|
}
|
|
|
|
|
|
def angle_on_plane(plane, vec1, vec2):
|
|
""" Return the angle between two vectors projected onto a plane.
|
|
"""
|
|
plane.normalize()
|
|
vec1 = vec1 - (plane * (vec1.dot(plane)))
|
|
vec2 = vec2 - (plane * (vec2.dot(plane)))
|
|
vec1.normalize()
|
|
vec2.normalize()
|
|
|
|
# Determine the angle
|
|
angle = math.acos(max(-1.0, min(1.0, vec1.dot(vec2))))
|
|
|
|
if angle < 0.00001: # close enough to zero that sign doesn't matter
|
|
return angle
|
|
|
|
# Determine the sign of the angle
|
|
vec3 = vec2.cross(vec1)
|
|
vec3.normalize()
|
|
sign = vec3.dot(plane)
|
|
if sign >= 0:
|
|
sign = 1
|
|
else:
|
|
sign = -1
|
|
|
|
return angle * sign
|
|
|
|
|
|
# Convert between a matrix and axis+roll representations.
|
|
# Re-export the C implementation internally used by bones.
|
|
matrix_from_axis_roll = bpy.types.Bone.MatrixFromAxisRoll
|
|
axis_roll_from_matrix = bpy.types.Bone.AxisRollFromMatrix
|
|
|
|
|
|
def matrix_from_axis_pair(y_axis, other_axis, axis_name):
|
|
assert axis_name in 'xz'
|
|
|
|
y_axis = Vector(y_axis).normalized()
|
|
|
|
if axis_name == 'x':
|
|
z_axis = Vector(other_axis).cross(y_axis).normalized()
|
|
x_axis = y_axis.cross(z_axis)
|
|
else:
|
|
x_axis = y_axis.cross(other_axis).normalized()
|
|
z_axis = x_axis.cross(y_axis)
|
|
|
|
return Matrix((x_axis, y_axis, z_axis)).transposed()
|
|
|
|
|
|
#=============================================
|
|
# Color correction functions
|
|
#=============================================
|
|
|
|
|
|
def linsrgb_to_srgb (linsrgb):
|
|
"""Convert physically linear RGB values into sRGB ones. The transform is
|
|
uniform in the components, so *linsrgb* can be of any shape.
|
|
|
|
*linsrgb* values should range between 0 and 1, inclusively.
|
|
|
|
"""
|
|
# From Wikipedia, but easy analogue to the above.
|
|
gamma = 1.055 * linsrgb**(1./2.4) - 0.055
|
|
scale = linsrgb * 12.92
|
|
# return np.where (linsrgb > 0.0031308, gamma, scale)
|
|
if linsrgb > 0.0031308:
|
|
return gamma
|
|
return scale
|
|
|
|
|
|
def gamma_correct(color):
|
|
|
|
corrected_color = Color()
|
|
for i, component in enumerate(color):
|
|
corrected_color[i] = linsrgb_to_srgb(color[i])
|
|
return corrected_color
|
|
|
|
|
|
#=============================================
|
|
# Iterators
|
|
#=============================================
|
|
|
|
|
|
def padnone(iterable, pad=None):
|
|
return chain(iterable, repeat(pad))
|
|
|
|
|
|
def pairwise_nozip(iterable):
|
|
"s -> (s0,s1), (s1,s2), (s2,s3), ..."
|
|
a, b = tee(iterable)
|
|
next(b, None)
|
|
return a, b
|
|
|
|
|
|
def pairwise(iterable):
|
|
"s -> (s0,s1), (s1,s2), (s2,s3), ..."
|
|
a, b = tee(iterable)
|
|
next(b, None)
|
|
return zip(a, b)
|
|
|
|
|
|
def map_list(func, *inputs):
|
|
"[func(a0,b0...), func(a1,b1...), ...]"
|
|
return list(map(func, *inputs))
|
|
|
|
|
|
def skip(n, iterable):
|
|
"Returns an iterator skipping first n elements of an iterable."
|
|
iterator = iter(iterable)
|
|
if n == 1:
|
|
next(iterator, None)
|
|
else:
|
|
next(islice(iterator, n, n), None)
|
|
return iterator
|
|
|
|
|
|
def map_apply(func, *inputs):
|
|
"Apply the function to inputs like map for side effects, discarding results."
|
|
collections.deque(map(func, *inputs), maxlen=0)
|
|
|
|
|
|
#=============================================
|
|
# Lazy references
|
|
#=============================================
|
|
|
|
|
|
def force_lazy(value):
|
|
"""If the argument is callable, invokes it without arguments. Otherwise returns the argument as is."""
|
|
if callable(value):
|
|
return value()
|
|
else:
|
|
return value
|
|
|
|
|
|
class LazyRef:
|
|
"""Hashable lazy reference. When called, evaluates (foo, 'a', 'b'...) as foo('a','b')
|
|
if foo is callable. Otherwise the remaining arguments are used as attribute names or
|
|
keys, like foo.a.b or foo.a[b] etc."""
|
|
|
|
def __init__(self, first, *args):
|
|
self.first = first
|
|
self.args = tuple(args)
|
|
self.first_hashable = first.__hash__ is not None
|
|
|
|
def __repr__(self):
|
|
return 'LazyRef{}'.format(tuple(self.first, *self.args))
|
|
|
|
def __eq__(self, other):
|
|
return (
|
|
isinstance(other, LazyRef) and
|
|
(self.first == other.first if self.first_hashable else self.first is other.first) and
|
|
self.args == other.args
|
|
)
|
|
|
|
def __hash__(self):
|
|
return (hash(self.first) if self.first_hashable else hash(id(self.first))) ^ hash(self.args)
|
|
|
|
def __call__(self):
|
|
first = self.first
|
|
if callable(first):
|
|
return first(*self.args)
|
|
|
|
for item in self.args:
|
|
if isinstance(first, (dict, list)):
|
|
first = first[item]
|
|
else:
|
|
first = getattr(first, item)
|
|
|
|
return first
|
|
|
|
|
|
#=============================================
|
|
# Misc
|
|
#=============================================
|
|
|
|
|
|
def copy_attributes(a, b):
|
|
keys = dir(a)
|
|
for key in keys:
|
|
if not key.startswith("_") \
|
|
and not key.startswith("error_") \
|
|
and key != "group" \
|
|
and key != "is_valid" \
|
|
and key != "rna_type" \
|
|
and key != "bl_rna":
|
|
try:
|
|
setattr(b, key, getattr(a, key))
|
|
except AttributeError:
|
|
pass
|
|
|
|
|
|
def property_to_python(value):
|
|
value = rna_idprop_value_to_python(value)
|
|
|
|
if isinstance(value, dict):
|
|
return { k: property_to_python(v) for k, v in value.items() }
|
|
elif isinstance(value, list):
|
|
return map_list(property_to_python, value)
|
|
else:
|
|
return value
|
|
|
|
|
|
def clone_parameters(target):
|
|
return property_to_python(dict(target))
|
|
|
|
|
|
def assign_parameters(target, val_dict=None, **params):
|
|
if val_dict is not None:
|
|
for key in list(target.keys()):
|
|
del target[key]
|
|
|
|
data = { **val_dict, **params }
|
|
else:
|
|
data = params
|
|
|
|
for key, value in data.items():
|
|
try:
|
|
target[key] = value
|
|
except Exception as e:
|
|
raise Exception("Couldn't set {} to {}: {}".format(key,value,e))
|
|
|
|
|
|
def select_object(context, object, deselect_all=False):
|
|
view_layer = context.view_layer
|
|
|
|
if deselect_all:
|
|
for objt in view_layer.objects:
|
|
objt.select_set(False) # deselect all objects
|
|
|
|
object.select_set(True)
|
|
view_layer.objects.active = object
|