blender-addons/curve_simplify.py

719 lines
22 KiB
Python

# SPDX-License-Identifier: GPL-2.0-or-later
bl_info = {
"name": "Simplify Curves+",
"author": "testscreenings, Michael Soluyanov",
"version": (1, 1, 2),
"blender": (2, 80, 0),
"location": "3D View, Dopesheet & Graph Editors",
"description": "Simplify Curves: 3dview, Dopesheet, Graph. Distance Merge: 3d view curve edit",
"warning": "",
"doc_url": "{BLENDER_MANUAL_URL}/addons/add_curve/simplify_curves.html",
"category": "Add Curve",
}
"""
This script simplifies Curve objects and animation F-Curves
This script will also Merge by Distance 3d view curves in edit mode
"""
import bpy
from bpy.props import (
BoolProperty,
EnumProperty,
FloatProperty,
IntProperty,
)
import mathutils
from math import (
sin,
pow,
)
from bpy.types import Operator
def error_handlers(self, op_name, errors, reports="ERROR"):
if self and reports:
self.report({'INFO'},
reports + ": some operations could not be performed "
"(See Console for more info)")
print("\n[Simplify Curves]\nOperator: {}\nErrors: {}\n".format(op_name, errors))
# Check for curve
# ### simplipoly algorithm ###
# get SplineVertIndices to keep
def simplypoly(splineVerts, options):
# main vars
newVerts = [] # list of vertindices to keep
points = splineVerts # list of 3dVectors
pointCurva = [] # table with curvatures
curvatures = [] # averaged curvatures per vert
for p in points:
pointCurva.append([])
order = options[3] # order of sliding beziercurves
k_thresh = options[2] # curvature threshold
dis_error = options[6] # additional distance error
# get curvatures per vert
for i, point in enumerate(points[: -(order - 1)]):
BVerts = points[i: i + order]
for b, BVert in enumerate(BVerts[1: -1]):
deriv1 = getDerivative(BVerts, 1 / (order - 1), order - 1)
deriv2 = getDerivative(BVerts, 1 / (order - 1), order - 2)
curva = getCurvature(deriv1, deriv2)
pointCurva[i + b + 1].append(curva)
# average the curvatures
for i in range(len(points)):
avgCurva = sum(pointCurva[i]) / (order - 1)
curvatures.append(avgCurva)
# get distancevalues per vert - same as Ramer-Douglas-Peucker
# but for every vert
distances = [0.0] # first vert is always kept
for i, point in enumerate(points[1: -1]):
dist = altitude(points[i], points[i + 2], points[i + 1])
distances.append(dist)
distances.append(0.0) # last vert is always kept
# generate list of vert indices to keep
# tested against averaged curvatures and distances of neighbour verts
newVerts.append(0) # first vert is always kept
for i, curv in enumerate(curvatures):
if (curv >= k_thresh * 0.01 or distances[i] >= dis_error * 0.1):
newVerts.append(i)
newVerts.append(len(curvatures) - 1) # last vert is always kept
return newVerts
# get binomial coefficient
def binom(n, m):
b = [0] * (n + 1)
b[0] = 1
for i in range(1, n + 1):
b[i] = 1
j = i - 1
while j > 0:
b[j] += b[j - 1]
j -= 1
return b[m]
# get nth derivative of order(len(verts)) bezier curve
def getDerivative(verts, t, nth):
order = len(verts) - 1 - nth
QVerts = []
if nth:
for i in range(nth):
if QVerts:
verts = QVerts
derivVerts = []
for i in range(len(verts) - 1):
derivVerts.append(verts[i + 1] - verts[i])
QVerts = derivVerts
else:
QVerts = verts
if len(verts[0]) == 3:
point = Vector((0, 0, 0))
if len(verts[0]) == 2:
point = Vector((0, 0))
for i, vert in enumerate(QVerts):
point += binom(order, i) * pow(t, i) * pow(1 - t, order - i) * vert
deriv = point
return deriv
# get curvature from first, second derivative
def getCurvature(deriv1, deriv2):
if deriv1.length == 0: # in case of points in straight line
curvature = 0
return curvature
curvature = (deriv1.cross(deriv2)).length / pow(deriv1.length, 3)
return curvature
# ### Ramer-Douglas-Peucker algorithm ###
# get altitude of vert
def altitude(point1, point2, pointn):
edge1 = point2 - point1
edge2 = pointn - point1
if edge2.length == 0:
altitude = 0
return altitude
if edge1.length == 0:
altitude = edge2.length
return altitude
alpha = edge1.angle(edge2)
altitude = sin(alpha) * edge2.length
return altitude
# iterate through verts
def iterate(points, newVerts, error):
new = []
for newIndex in range(len(newVerts) - 1):
bigVert = 0
alti_store = 0
for i, point in enumerate(points[newVerts[newIndex] + 1: newVerts[newIndex + 1]]):
alti = altitude(points[newVerts[newIndex]], points[newVerts[newIndex + 1]], point)
if alti > alti_store:
alti_store = alti
if alti_store >= error:
bigVert = i + 1 + newVerts[newIndex]
if bigVert:
new.append(bigVert)
if new == []:
return False
return new
# get SplineVertIndices to keep
def simplify_RDP(splineVerts, options):
# main vars
error = options[4]
# set first and last vert
newVerts = [0, len(splineVerts) - 1]
# iterate through the points
new = 1
while new is not False:
new = iterate(splineVerts, newVerts, error)
if new:
newVerts += new
newVerts.sort()
return newVerts
# ### CURVE GENERATION ###
# set bezierhandles to auto
def setBezierHandles(newCurve):
# Faster:
for spline in newCurve.data.splines:
for p in spline.bezier_points:
p.handle_left_type = 'AUTO'
p.handle_right_type = 'AUTO'
# get array of new coords for new spline from vertindices
def vertsToPoints(newVerts, splineVerts, splineType):
# main vars
newPoints = []
# array for BEZIER spline output
if splineType == 'BEZIER':
for v in newVerts:
newPoints += splineVerts[v].to_tuple()
# array for nonBEZIER output
else:
for v in newVerts:
newPoints += (splineVerts[v].to_tuple())
if splineType == 'NURBS':
newPoints.append(1) # for nurbs w = 1
else: # for poly w = 0
newPoints.append(0)
return newPoints
# ### MAIN OPERATIONS ###
def main(context, obj, options, curve_dimension):
mode = options[0]
output = options[1]
degreeOut = options[5]
keepShort = options[7]
bpy.ops.object.select_all(action='DESELECT')
scene = context.scene
splines = obj.data.splines.values()
# create curvedatablock
curve = bpy.data.curves.new("Simple_" + obj.name, type='CURVE')
curve.dimensions = curve_dimension
# go through splines
for spline_i, spline in enumerate(splines):
# test if spline is a long enough
if len(spline.points) >= 3 or keepShort:
# check what type of spline to create
if output == 'INPUT':
splineType = spline.type
else:
splineType = output
# get vec3 list to simplify
if spline.type == 'BEZIER': # get bezierverts
splineVerts = [splineVert.co.copy()
for splineVert in spline.bezier_points.values()]
else: # verts from all other types of curves
splineVerts = [splineVert.co.to_3d()
for splineVert in spline.points.values()]
# simplify spline according to mode
if mode == 'DISTANCE':
newVerts = simplify_RDP(splineVerts, options)
if mode == 'CURVATURE':
newVerts = simplypoly(splineVerts, options)
# convert indices into vectors3D
newPoints = vertsToPoints(newVerts, splineVerts, splineType)
# create new spline
newSpline = curve.splines.new(type=splineType)
# put newPoints into spline according to type
if splineType == 'BEZIER':
newSpline.bezier_points.add(int(len(newPoints) * 0.33))
newSpline.bezier_points.foreach_set('co', newPoints)
else:
newSpline.points.add(int(len(newPoints) * 0.25 - 1))
newSpline.points.foreach_set('co', newPoints)
# set degree of outputNurbsCurve
if output == 'NURBS':
newSpline.order_u = degreeOut
# splineoptions
newSpline.use_endpoint_u = spline.use_endpoint_u
# create new object and put into scene
newCurve = bpy.data.objects.new("Simple_" + obj.name, curve)
coll = context.view_layer.active_layer_collection.collection
coll.objects.link(newCurve)
newCurve.select_set(True)
context.view_layer.objects.active = newCurve
newCurve.matrix_world = obj.matrix_world
# set bezierhandles to auto
setBezierHandles(newCurve)
return
# get preoperator fcurves
def getFcurveData(obj):
fcurves = []
for fc in obj.animation_data.action.fcurves:
if fc.select:
fcVerts = [vcVert.co.to_3d()
for vcVert in fc.keyframe_points.values()]
fcurves.append(fcVerts)
return fcurves
def selectedfcurves(obj):
fcurves_sel = []
for i, fc in enumerate(obj.animation_data.action.fcurves):
if fc.select:
fcurves_sel.append(fc)
return fcurves_sel
# fCurves Main
def fcurves_simplify(context, obj, options, fcurves):
# main vars
mode = options[0]
# get indices of selected fcurves
fcurve_sel = selectedfcurves(obj)
# go through fcurves
for fcurve_i, fcurve in enumerate(fcurves):
# test if fcurve is long enough
if len(fcurve) >= 3:
# simplify spline according to mode
if mode == 'DISTANCE':
newVerts = simplify_RDP(fcurve, options)
if mode == 'CURVATURE':
newVerts = simplypoly(fcurve, options)
# convert indices into vectors3D
newPoints = []
# this is different from the main() function for normal curves, different api...
for v in newVerts:
newPoints.append(fcurve[v])
# remove all points from curve first
for i in range(len(fcurve) - 1, 0, -1):
fcurve_sel[fcurve_i].keyframe_points.remove(fcurve_sel[fcurve_i].keyframe_points[i])
# put newPoints into fcurve
for v in newPoints:
fcurve_sel[fcurve_i].keyframe_points.insert(frame=v[0], value=v[1])
return
# ### MENU append ###
def menu_func(self, context):
self.layout.operator("graph.simplify")
def menu(self, context):
self.layout.operator("curve.simplify", text="Curve Simplify", icon="CURVE_DATA")
# ### ANIMATION CURVES OPERATOR ###
class GRAPH_OT_simplify(Operator):
bl_idname = "graph.simplify"
bl_label = "Simplify F-Curves"
bl_description = ("Simplify selected Curves\n"
"Does not operate on short Splines (less than 3 points)")
bl_options = {'REGISTER', 'UNDO'}
# Properties
opModes = [
('DISTANCE', 'Distance', 'Distance-based simplification (Poly)'),
('CURVATURE', 'Curvature', 'Curvature-based simplification (RDP)')]
mode: EnumProperty(
name="Mode",
description="Choose algorithm to use",
items=opModes
)
k_thresh: FloatProperty(
name="k",
min=0, soft_min=0,
default=0, precision=5,
description="Threshold"
)
pointsNr: IntProperty(
name="n",
min=5, soft_min=5,
max=16, soft_max=9,
default=5,
description="Degree of curve to get averaged curvatures"
)
error: FloatProperty(
name="Error",
description="Maximum allowed distance error",
min=0.0, soft_min=0.0,
default=0, precision=5,
step = 0.1
)
degreeOut: IntProperty(
name="Degree",
min=3, soft_min=3,
max=7, soft_max=7,
default=5,
description="Degree of new curve"
)
dis_error: FloatProperty(
name="Distance error",
description="Maximum allowed distance error in Blender Units",
min=0, soft_min=0,
default=0.0, precision=5
)
fcurves = []
def draw(self, context):
layout = self.layout
col = layout.column()
col.label(text="Distance Error:")
col.prop(self, "error", expand=True)
@classmethod
def poll(cls, context):
# Check for animdata
obj = context.active_object
fcurves = False
if obj:
animdata = obj.animation_data
if animdata:
act = animdata.action
if act:
fcurves = act.fcurves
return (obj and fcurves)
def execute(self, context):
options = [
self.mode, # 0
self.mode, # 1
self.k_thresh, # 2
self.pointsNr, # 3
self.error, # 4
self.degreeOut, # 6
self.dis_error # 7
]
obj = context.active_object
if not self.fcurves:
self.fcurves = getFcurveData(obj)
fcurves_simplify(context, obj, options, self.fcurves)
return {'FINISHED'}
# ### Curves OPERATOR ###
class CURVE_OT_simplify(Operator):
bl_idname = "curve.simplify"
bl_label = "Simplify Curves"
bl_description = ("Simplify the existing Curve based upon the chosen settings\n"
"Notes: Needs an existing Curve object,\n"
"Outputs a new Curve with the Simple prefix in the name")
bl_options = {'REGISTER', 'UNDO'}
# Properties
opModes = [
('DISTANCE', 'Distance', 'Distance-based simplification (Poly)'),
('CURVATURE', 'Curvature', 'Curvature-based simplification (RDP)')
]
mode: EnumProperty(
name="Mode",
description="Choose algorithm to use",
items=opModes
)
SplineTypes = [
('INPUT', 'Input', 'Same type as input spline'),
('NURBS', 'Nurbs', 'NURBS'),
('BEZIER', 'Bezier', 'BEZIER'),
('POLY', 'Poly', 'POLY')
]
output: EnumProperty(
name="Output splines",
description="Type of splines to output",
items=SplineTypes
)
k_thresh: FloatProperty(
name="k",
min=0, soft_min=0,
default=0, precision=5,
description="Threshold"
)
pointsNr: IntProperty(
name="n",
min=5, soft_min=5,
max=9, soft_max=9,
default=5,
description="Degree of curve to get averaged curvatures"
)
error: FloatProperty(
name="Error",
description="Maximum allowed distance error in Blender Units",
min=0, soft_min=0,
default=0.0, precision=5,
step = 0.1
)
degreeOut: IntProperty(
name="Degree",
min=3, soft_min=3,
max=7, soft_max=7,
default=5,
description="Degree of new curve"
)
dis_error: FloatProperty(
name="Distance error",
description="Maximum allowed distance error in Blender Units",
min=0, soft_min=0,
default=0.0
)
keepShort: BoolProperty(
name="Keep short splines",
description="Keep short splines (less than 3 points)",
default=True
)
def draw(self, context):
layout = self.layout
col = layout.column()
col.label(text="Distance Error:")
col.prop(self, "error", expand=True)
col.prop(self, "output", text="Output", icon="OUTLINER_OB_CURVE")
if self.output == "NURBS":
col.prop(self, "degreeOut", expand=True)
col.separator()
col.prop(self, "keepShort", expand=True)
@classmethod
def poll(cls, context):
obj = context.active_object
return (obj and obj.type == 'CURVE')
def execute(self, context):
options = [
self.mode, # 0
self.output, # 1
self.k_thresh, # 2
self.pointsNr, # 3
self.error, # 4
self.degreeOut, # 5
self.dis_error, # 6
self.keepShort # 7
]
try:
bpy.ops.object.mode_set(mode='OBJECT')
obj = context.active_object
curve_dimension = obj.data.dimensions
main(context, obj, options, curve_dimension)
except Exception as e:
error_handlers(self, "curve.simplify", e, "Simplify Curves")
return {'CANCELLED'}
return {'FINISHED'}
## Initial use Curve Remove Doubles ##
def main_rd(context, distance = 0.01):
selected_Curves = context.selected_objects
if bpy.ops.object.mode_set.poll():
bpy.ops.object.mode_set(mode='EDIT')
bezier_dellist = []
dellist = []
for curve in selected_Curves:
for spline in curve.data.splines:
if spline.type == 'BEZIER':
if len(spline.bezier_points) > 1:
for i in range(0, len(spline.bezier_points)):
if i == 0:
ii = len(spline.bezier_points) - 1
else:
ii = i - 1
dot = spline.bezier_points[i];
dot1 = spline.bezier_points[ii];
while dot1 in bezier_dellist and i != ii:
ii -= 1
if ii < 0:
ii = len(spline.bezier_points)-1
dot1 = spline.bezier_points[ii]
if dot.select_control_point and dot1.select_control_point and (i!=0 or spline.use_cyclic_u):
if (dot.co-dot1.co).length < distance:
# remove points and recreate hangles
dot1.handle_right_type = "FREE"
dot1.handle_right = dot.handle_right
dot1.co = (dot.co + dot1.co) / 2
bezier_dellist.append(dot)
else:
# Handles that are on main point position converts to vector,
# if next handle are also vector
if dot.handle_left_type == 'VECTOR' and (dot1.handle_right - dot1.co).length < distance:
dot1.handle_right_type = "VECTOR"
if dot1.handle_right_type == 'VECTOR' and (dot.handle_left - dot.co).length < distance:
dot.handle_left_type = "VECTOR"
else:
if len(spline.points) > 1:
for i in range(0, len(spline.points)):
if i == 0:
ii = len(spline.points) - 1
else:
ii = i - 1
dot = spline.points[i];
dot1 = spline.points[ii];
while dot1 in dellist and i != ii:
ii -= 1
if ii < 0:
ii = len(spline.points)-1
dot1 = spline.points[ii]
if dot.select and dot1.select and (i!=0 or spline.use_cyclic_u):
if (dot.co-dot1.co).length < distance:
dot1.co = (dot.co + dot1.co) / 2
dellist.append(dot)
bpy.ops.curve.select_all(action = 'DESELECT')
for dot in bezier_dellist:
dot.select_control_point = True
for dot in dellist:
dot.select = True
bezier_count = len(bezier_dellist)
count = len(dellist)
bpy.ops.curve.delete(type = 'VERT')
bpy.ops.curve.select_all(action = 'DESELECT')
return bezier_count + count
class Curve_OT_CurveRemvDbs(bpy.types.Operator):
"""Merge consecutive points that are near to each other"""
bl_idname = 'curve.remove_double'
bl_label = 'Merge By Distance'
bl_options = {'REGISTER', 'UNDO'}
distance: bpy.props.FloatProperty(name = 'Distance', default = 0.01, soft_min = 0.001, step = 0.1)
@classmethod
def poll(cls, context):
obj = context.active_object
return (obj and obj.type == 'CURVE')
def execute(self, context):
removed=main_rd(context, self.distance)
self.report({'INFO'}, "Removed %d bezier points" % removed)
return {'FINISHED'}
def menu_func_rd(self, context):
self.layout.operator(Curve_OT_CurveRemvDbs.bl_idname, text='Merge By Distance')
# Register
classes = [
GRAPH_OT_simplify,
CURVE_OT_simplify,
Curve_OT_CurveRemvDbs,
]
def register():
from bpy.utils import register_class
for cls in classes:
register_class(cls)
#bpy.types.GRAPH_MT_channel.append(menu_func)
#bpy.types.DOPESHEET_MT_channel.append(menu_func)
bpy.types.VIEW3D_MT_curve_add.append(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.prepend(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.prepend(menu_func_rd)
def unregister():
from bpy.utils import unregister_class
for cls in reversed(classes):
unregister_class(cls)
#bpy.types.GRAPH_MT_channel.remove(menu_func)
#bpy.types.DOPESHEET_MT_channel.remove(menu_func)
bpy.types.VIEW3D_MT_curve_add.remove(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.remove(menu)
bpy.types.VIEW3D_MT_edit_curve_context_menu.remove(menu_func_rd)
if __name__ == "__main__":
register()