blender-addons/mesh_tissue/utils.py
Campbell Barton e8da6131fd License headers: use SPDX-FileCopyrightText for all addons
Move copyright text to SPDX-FileCopyrightText or set to the
Blender Foundation so "make check_licenses" now runs without warnings.
2023-06-15 16:54:05 +10:00

1459 lines
52 KiB
Python

# SPDX-FileCopyrightText: 2019-2023 Blender Foundation
#
# SPDX-License-Identifier: GPL-2.0-or-later
import bpy, bmesh
import threading
import numpy as np
import multiprocessing
from multiprocessing import Process, Pool
from mathutils import Vector, Matrix
from math import *
try: from .numba_functions import *
except: pass
from . import config
def use_numba_tess():
tissue_addon = bpy.context.preferences.addons[__package__]
if 'use_numba_tess' in tissue_addon.preferences.keys():
return tissue_addon.preferences['use_numba_tess']
else:
return True
def tissue_time(start_time, name, levels=0):
tissue_addon = bpy.context.preferences.addons[__package__]
end_time = time.time()
if 'print_stats' in tissue_addon.preferences.keys():
ps = tissue_addon.preferences['print_stats']
else:
ps = 1
if levels < ps:
if "Tissue: " in name: head = ""
else: head = " "
if start_time:
print('{}{}{} in {:.4f} sec'.format(head, "| "*levels, name, end_time - start_time))
else:
print('{}{}{}'.format(head, "| "*levels, name))
return end_time
# ------------------------------------------------------------------
# MATH
# ------------------------------------------------------------------
def _np_broadcast(arrays):
shapes = [arr.shape for arr in arrays]
for i in range(len(shapes[0])):
ish = [sh[i] for sh in shapes]
max_len = max(ish)
for j in range(len(arrays)):
leng = ish[j]
if leng == 1: arrays[j] = np.repeat(arrays[j], max_len, axis=i)
for arr in arrays:
arr = arr.flatten()
#vt = v0 + (v1 - v0) * t
return arrays
def lerp(a, b, t):
return a + (b - a) * t
def _lerp2(v1, v2, v3, v4, v):
v12 = v1.lerp(v2,v.x) # + (v2 - v1) * v.x
v34 = v3.lerp(v4,v.x) # + (v4 - v3) * v.x
return v12.lerp(v34, v.y)# + (v34 - v12) * v.y
def lerp2(v1, v2, v3, v4, v):
v12 = v1 + (v2 - v1) * v.x
v34 = v3 + (v4 - v3) * v.x
v = v12 + (v34 - v12) * v.y
return v
def lerp3(v1, v2, v3, v4, v):
loc = lerp2(v1.co, v2.co, v3.co, v4.co, v)
nor = lerp2(v1.normal, v2.normal, v3.normal, v4.normal, v)
nor.normalize()
return loc + nor * v.z
import sys
def np_lerp2(v00, v10, v01, v11, vx, vy, mode=''):
if 'numba' in sys.modules and use_numba_tess():
if mode == 'verts':
co2 = numba_interp_points(v00, v10, v01, v11, vx, vy)
elif mode == 'shapekeys':
co2 = numba_interp_points_sk(v00, v10, v01, v11, vx, vy)
else:
co2 = numba_lerp2(v00, v10, v01, v11, vx, vy)
else:
co0 = v00 + (v10 - v00) * vx
co1 = v01 + (v11 - v01) * vx
co2 = co0 + (co1 - co0) * vy
return co2
def calc_thickness(co2,n2,vz,a,weight):
if 'numba' in sys.modules and use_numba_tess():
if len(co2.shape) == 3:
if type(a) != np.ndarray:
a = np.ones(len(co2)).reshape((-1,1,1))
if type(weight) != np.ndarray:
weight = np.ones(len(co2)).reshape((-1,1,1))
co3 = numba_calc_thickness_area_weight(co2,n2,vz,a,weight)
elif len(co2.shape) == 4:
n_patches = co2.shape[0]
n_sk = co2.shape[1]
n_verts = co2.shape[2]
if type(a) != np.ndarray:
a = np.ones(n_patches).reshape((n_patches,1,1,1))
if type(weight) != np.ndarray:
weight = np.ones(n_patches).reshape((n_patches,1,1,1))
na = a.shape[1]-1
nw = weight.shape[1]-1
co3 = np.empty((n_sk,n_patches,n_verts,3))
for i in range(n_sk):
co3[i] = numba_calc_thickness_area_weight(co2[:,i],n2[:,i],vz[:,i],a[:,min(i,na)],weight[:,min(i,nw)])
co3 = co3.swapaxes(0,1)
else:
use_area = type(a) == np.ndarray
use_weight = type(weight) == np.ndarray
if use_area:
if use_weight:
co3 = co2 + n2 * vz * a * weight
else:
co3 = co2 + n2 * vz * a
else:
if use_weight:
co3 = co2 + n2 * vz * weight
else:
co3 = co2 + n2 * vz
return co3
def combine_and_flatten(arrays):
if 'numba' in sys.modules:
new_list = numba_combine_and_flatten(arrays)
else:
new_list = np.concatenate(arrays, axis=0)
new_list = new_list.flatten().tolist()
return new_list
def np_interp2(grid, vx, vy):
grid_shape = grid.shape[-2:]
levels = len(grid.shape)-2
nu = grid_shape[0]
nv = grid_shape[1]
u = np.arange(nu)/(nu-1)
v = np.arange(nv)/(nv-1)
u_shape = [1]*levels + [nu]
v_shape = [1]*levels + [nv]
co0 = np.interp()
co1 = np.interp()
co2 = np.interp()
return co2
def flatten_vector(vec, x, y):
"""
Find planar vector according to two axis.
:arg vec: Input vector.
:type vec: :class:'mathutils.Vector'
:arg x: First axis.
:type x: :class:'mathutils.Vector'
:arg y: Second axis.
:type y: :class:'mathutils.Vector'
:return: Projected 2D Vector.
:rtype: :class:'mathutils.Vector'
"""
vx = vec.project(x)
vy = vec.project(y)
mult = 1 if vx.dot(x) > 0 else -1
vx = mult*vx.length
mult = 1 if vy.dot(y) > 0 else -1
vy = mult*vy.length
return Vector((vx, vy))
def vector_rotation(vec):
"""
Find vector rotation according to X axis.
:arg vec: Input vector.
:type vec: :class:'mathutils.Vector'
:return: Angle in radians.
:rtype: float
"""
v0 = Vector((1,0))
ang = Vector.angle_signed(vec, v0)
if ang < 0: ang = 2*pi + ang
return ang
# ------------------------------------------------------------------
# SCENE
# ------------------------------------------------------------------
def set_animatable_fix_handler(self, context):
'''
Prevent Blender Crashes with handlers
'''
old_handlers = []
blender_handlers = bpy.app.handlers.render_init
for h in blender_handlers:
if "turn_off_animatable" in str(h):
old_handlers.append(h)
for h in old_handlers: blender_handlers.remove(h)
blender_handlers.append(turn_off_animatable)
return
def turn_off_animatable(scene):
'''
Prevent Blender Crashes with handlers
'''
for o in [o for o in bpy.data.objects if o.type == 'MESH']:
o.tissue_tessellate.bool_run = False
#if not o.reaction_diffusion_settings.bool_cache:
# o.reaction_diffusion_settings.run = False
#except: pass
return
# ------------------------------------------------------------------
# OBJECTS
# ------------------------------------------------------------------
def convert_object_to_mesh(ob, apply_modifiers=True, preserve_status=True):
try: ob.name
except: return None
if ob.type != 'MESH':
if not apply_modifiers:
mod_visibility = [m.show_viewport for m in ob.modifiers]
for m in ob.modifiers: m.show_viewport = False
#ob.modifiers.update()
#dg = bpy.context.evaluated_depsgraph_get()
#ob_eval = ob.evaluated_get(dg)
#me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
me = simple_to_mesh(ob)
new_ob = bpy.data.objects.new(ob.data.name, me)
new_ob.location, new_ob.matrix_world = ob.location, ob.matrix_world
if not apply_modifiers:
for m,vis in zip(ob.modifiers,mod_visibility): m.show_viewport = vis
else:
if apply_modifiers:
new_ob = ob.copy()
new_me = simple_to_mesh(ob)
new_ob.modifiers.clear()
new_ob.data = new_me
else:
new_ob = ob.copy()
new_ob.data = ob.data.copy()
new_ob.modifiers.clear()
bpy.context.collection.objects.link(new_ob)
if preserve_status:
new_ob.select_set(False)
else:
for o in bpy.context.view_layer.objects: o.select_set(False)
new_ob.select_set(True)
bpy.context.view_layer.objects.active = new_ob
return new_ob
def simple_to_mesh(ob, depsgraph=None):
'''
Convert object to mesh applying Modifiers and Shape Keys
'''
#global evaluatedDepsgraph
if depsgraph == None:
if config.evaluatedDepsgraph == None:
dg = bpy.context.evaluated_depsgraph_get()
else: dg = config.evaluatedDepsgraph
else:
dg = depsgraph
ob_eval = ob.evaluated_get(dg)
me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
return me
def _join_objects(context, objects, link_to_scene=True, make_active=True):
C = context
bm = bmesh.new()
materials = {}
faces_materials = []
if config.evaluatedDepsgraph == None:
dg = C.evaluated_depsgraph_get()
else: dg = config.evaluatedDepsgraph
for o in objects:
bm.from_object(o, dg)
# add object's material to the dictionary
for m in o.data.materials:
if m not in materials: materials[m] = len(materials)
for f in o.data.polygons:
index = f.material_index
mat = o.material_slots[index].material
new_index = materials[mat]
faces_materials.append(new_index)
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
# assign new indexes
for index, f in zip(faces_materials, bm.faces): f.material_index = index
# create object
me = bpy.data.meshes.new('joined')
bm.to_mesh(me)
me.update()
ob = bpy.data.objects.new('joined', me)
if link_to_scene: C.collection.objects.link(ob)
# make active
if make_active:
for o in C.view_layer.objects: o.select_set(False)
ob.select_set(True)
C.view_layer.objects.active = ob
# add materials
for m in materials.keys(): ob.data.materials.append(m)
return ob
def join_objects(context, objects):
generated_data = [o.data for o in objects]
context.view_layer.update()
for o in context.view_layer.objects:
o.select_set(o in objects)
bpy.ops.object.join()
new_ob = context.view_layer.objects.active
new_ob.select_set(True)
for me in generated_data:
if me != new_ob.data:
bpy.data.meshes.remove(me)
return new_ob
def join_objects(objects):
override = bpy.context.copy()
new_ob = objects[0]
override['active_object'] = new_ob
override['selected_editable_objects'] = objects
bpy.ops.object.join(override)
return new_ob
def repeat_mesh(me, n):
'''
Return Mesh data adding and applying an array without offset (Slower)
'''
bm = bmesh.new()
for i in range(n): bm.from_mesh(me)
new_me = me.copy()
bm.to_mesh(new_me)
bm.free()
return new_me
def array_mesh(ob, n):
'''
Return Mesh data adding and applying an array without offset
'''
arr = ob.modifiers.new('Repeat','ARRAY')
arr.relative_offset_displace[0] = 0
arr.count = n
# with bpy.context.temp_override(active_object=ob):
# bpy.ops.object.modifier_apply(modifier='Repeat')
# me = ob.data
ob.modifiers.update()
dg = bpy.context.evaluated_depsgraph_get()
me = simple_to_mesh(ob, depsgraph=dg)
ob.modifiers.remove(arr)
return me
def array_mesh_object(ob, n):
'''
Return Mesh data adding and applying an array without offset
'''
arr = ob.modifiers.new('Repeat','ARRAY')
arr.relative_offset_displace[0] = 0
arr.count = n
ob.modifiers.update()
override = bpy.context.copy()
override['active_object'] = ob
override = {'active_object': ob}
bpy.ops.object.modifier_apply(override, modifier=arr.name)
return ob
def get_mesh_before_subs(ob):
not_allowed = ('FLUID_SIMULATION', 'ARRAY', 'BEVEL', 'BOOLEAN', 'BUILD',
'DECIMATE', 'EDGE_SPLIT', 'MASK', 'MIRROR', 'REMESH',
'SCREW', 'SOLIDIFY', 'TRIANGULATE', 'WIREFRAME', 'SKIN',
'EXPLODE', 'PARTICLE_INSTANCE', 'PARTICLE_SYSTEM', 'SMOKE')
subs = 0
hide_mods = []
mods_visibility = []
for m in ob.modifiers:
hide_mods.append(m)
mods_visibility.append(m.show_viewport)
if m.type in ('SUBSURF','MULTIRES'):
hide_mods = [m]
subs = m.levels
elif m.type in not_allowed:
subs = 0
hide_mods = []
mods_visibility = []
for m in hide_mods: m.show_viewport = False
me = simple_to_mesh(ob)
for m, vis in zip(hide_mods,mods_visibility): m.show_viewport = vis
return me, subs
# ------------------------------------------------------------------
# MESH FUNCTIONS
# ------------------------------------------------------------------
def calc_verts_area(me):
n_verts = len(me.vertices)
n_faces = len(me.polygons)
vareas = np.zeros(n_verts)
vcount = np.zeros(n_verts)
parea = [0]*n_faces
pverts = [0]*n_faces*4
me.polygons.foreach_get('area', parea)
me.polygons.foreach_get('vertices', pverts)
parea = np.array(parea)
pverts = np.array(pverts).reshape((n_faces, 4))
for a, verts in zip(parea,pverts):
vareas[verts] += a
vcount[verts] += 1
return vareas / vcount
def calc_verts_area_bmesh(me):
bm = bmesh.new()
bm.from_mesh(me)
bm.verts.ensure_lookup_table()
verts_area = np.zeros(len(me.vertices))
for v in bm.verts:
area = 0
faces = v.link_faces
for f in faces:
area += f.calc_area()
verts_area[v.index] = area if area == 0 else area/len(faces)
bm.free()
return verts_area
import time
def get_patches____(me_low, me_high, sides, subs, bool_selection, bool_material_id, material_id):
nv = len(me_low.vertices) # number of vertices
ne = len(me_low.edges) # number of edges
nf = len(me_low.polygons) # number of polygons
n = 2**subs + 1 # number of vertices along each patch edge
nev = ne * n # number of vertices along the subdivided edges
nevi = nev - 2*ne # internal vertices along subdividede edges
n0 = 2**(subs-1) - 1
# filtered polygonal faces
poly_sides = np.array([len(p.vertices) for p in me_low.polygons])
mask = poly_sides == sides
if bool_material_id:
mask_material = [1]*nf
me_low.polygons.foreach_get('material_index',mask_material)
mask_material = np.array(mask_material) == material_id
mask = np.logical_and(mask,mask_material)
if bool_selection:
mask_selection = [True]*nf
me_low.polygons.foreach_get('select',mask_selection)
mask_selection = np.array(mask_selection)
mask = np.logical_and(mask,mask_selection)
polys = np.array(me_low.polygons)[mask]
mult = n0**2 + n0
ps = poly_sides * mult + 1
ps = np.insert(ps,0,nv + nevi, axis=0)[:-1]
ips = ps.cumsum()[mask] # incremental polygon sides
nf = len(polys)
# when subdivided quad faces follows a different pattern
if sides == 4:
n_patches = nf
else:
n_patches = nf*sides
if sides == 4:
patches = np.zeros((nf,n,n),dtype='int')
verts = [[vv for vv in p.vertices] for p in polys if len(p.vertices) == sides]
verts = np.array(verts).reshape((-1,sides))
# filling corners
patches[:,0,0] = verts[:,0]
patches[:,n-1,0] = verts[:,1]
patches[:,n-1,n-1] = verts[:,2]
patches[:,0,n-1] = verts[:,3]
if subs != 0:
shift_verts = np.roll(verts, -1, axis=1)[:,:,None]
edge_keys = np.concatenate((shift_verts, verts[:,:,None]), axis=2)
edge_keys.sort()
edge_verts = np.array(me_low.edge_keys) # edges keys
edges_index = np.zeros((ne,ne),dtype='int')
edges_index[edge_verts[:,0],edge_verts[:,1]] = np.arange(ne)
evi = np.arange(nevi) + nv
evi = evi.reshape(ne,n-2) # edges inner verts
straight = np.arange(n-2)+1
inverted = np.flip(straight)
inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])
ek1 = np.array(me_high.edge_keys) # edges keys
ids0 = np.arange(ne)*(n-1) # edge keys highres
keys0 = ek1[ids0] # first inner edge
keys1 = ek1[ids0 + n-2] # last inner edge
keys = np.concatenate((keys0,keys1))
pick_verts = np.array((inverted,straight))
patch_index = np.arange(nf)[:,None,None]
# edge 0
e0 = edge_keys[:,0] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
test = np.concatenate((verts[:,0,None], edge_verts[:,0,None]),axis=1)
dir = (test[:,None] == keys).all(2).any(1).astype('int8')
#dir = np.full(verts[:,0].shape, 0, dtype='int8')
ids = pick_verts[dir][:,None,:] # indexes order along the side
patches[patch_index,ids,0] = edge_verts[:,None,:] # assign indexes
#patches[:,msk] = inverted # np.flip(patches[msk])
# edge 1
e0 = edge_keys[:,1] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
test = np.concatenate((verts[:,1,None], edge_verts[:,0,None]),axis=1)
dir = (test[:,None] == keys).all(2).any(1).astype('int8')
ids = pick_verts[dir][:,:,None] # indexes order along the side
patches[patch_index,n-1,ids] = edge_verts[:,:,None] # assign indexes
# edge 2
e0 = edge_keys[:,2] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
test = np.concatenate((verts[:,3,None], edge_verts[:,0,None]),axis=1)
dir = (test[:,None] == keys).all(2).any(1).astype('int8')
ids = pick_verts[dir][:,None,:] # indexes order along the side
patches[patch_index,ids,n-1] = edge_verts[:,None,:] # assign indexes
# edge 3
e0 = edge_keys[:,3] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
test = np.concatenate((verts[:,0,None], edge_verts[:,0,None]),axis=1)
dir = (test[:,None] == keys).all(2).any(1).astype('int8')
ids = pick_verts[dir][:,:,None] # indexes order along the side
patches[patch_index,0,ids] = edge_verts[:,:,None] # assign indexes
# fill inners
patches[:,1:-1,1:-1] = inners[None,:,:] + ips[:,None,None]
#end_time = time.time()
#print('Tissue: Got Patches in {:.4f} sec'.format(end_time-start_time))
return patches, mask
def tessellate_prepare_component(ob1, props):
mode = props['mode']
bounds_x = props['bounds_x']
bounds_y = props['bounds_y']
scale_mode = props['scale_mode']
normals_mode = props['normals_mode']
zscale = props['zscale']
offset = props['offset']
use_origin_offset = props['use_origin_offset']
bool_shapekeys = props['bool_shapekeys']
thres = 0.005
me1 = ob1.data
# Component statistics
n_verts = len(me1.vertices)
# Component bounding box
min_c = Vector((0, 0, 0))
max_c = Vector((0, 0, 0))
first = True
for v in me1.vertices:
vert = v.co
if vert[0] < min_c[0] or first:
min_c[0] = vert[0]
if vert[1] < min_c[1] or first:
min_c[1] = vert[1]
if vert[2] < min_c[2] or first:
min_c[2] = vert[2]
if vert[0] > max_c[0] or first:
max_c[0] = vert[0]
if vert[1] > max_c[1] or first:
max_c[1] = vert[1]
if vert[2] > max_c[2] or first:
max_c[2] = vert[2]
first = False
bb = max_c - min_c
# adaptive XY
verts1 = []
for v in me1.vertices:
if mode == 'BOUNDS':
vert = v.co - min_c # (ob1.matrix_world * v.co) - min_c
if use_origin_offset: vert[2] = v.co[2]
vert[0] = vert[0] / bb[0] if bb[0] != 0 else 0.5
vert[1] = vert[1] / bb[1] if bb[1] != 0 else 0.5
if scale_mode == 'CONSTANT' or normals_mode in ('OBJECT', 'SHAPEKEYS'):
if not use_origin_offset:
vert[2] = vert[2] / bb[2] if bb[2] != 0 else 0
vert[2] = vert[2] - 0.5 + offset * 0.5
else:
if not use_origin_offset:
vert[2] = vert[2] + (-0.5 + offset * 0.5) * bb[2]
vert[2] *= zscale
elif mode == 'LOCAL':
vert = v.co.xyz
vert[2] *= zscale
#vert[2] = (vert[2] - min_c[2] + (-0.5 + offset * 0.5) * bb[2]) * zscale
elif mode == 'GLOBAL':
vert = ob1.matrix_world @ v.co
vert[2] *= zscale
try:
for sk in me1.shape_keys.key_blocks:
sk.data[v.index].co = ob1.matrix_world @ sk.data[v.index].co
except: pass
v.co = vert
# ShapeKeys
if bool_shapekeys and ob1.data.shape_keys:
for sk in ob1.data.shape_keys.key_blocks:
source = sk.data
_sk_uv_quads = [0]*len(verts1)
_sk_uv = [0]*len(verts1)
for i, sk_v in enumerate(source):
if mode == 'BOUNDS':
sk_vert = sk_v.co - min_c
if use_origin_offset: sk_vert[2] = sk_v.co[2]
sk_vert[0] = (sk_vert[0] / bb[0] if bb[0] != 0 else 0.5)
sk_vert[1] = (sk_vert[1] / bb[1] if bb[1] != 0 else 0.5)
if scale_mode == 'CONSTANT' or normals_mode in ('OBJECT', 'SHAPEKEYS'):
if not use_origin_offset:
sk_vert[2] = (sk_vert[2] / bb[2] if bb[2] != 0 else sk_vert[2])
sk_vert[2] = sk_vert[2] - 0.5 + offset * 0.5
else:
if not use_origin_offset:
sk_vert[2] = sk_vert[2] + (- 0.5 + offset * 0.5) * bb[2]
sk_vert[2] *= zscale
elif mode == 'LOCAL':
sk_vert = sk_v.co
sk_vert[2] *= zscale
elif mode == 'GLOBAL':
sk_vert = sk_v.co
sk_vert[2] *= zscale
sk_v.co = sk_vert
if mode != 'BOUNDS' and (bounds_x != 'EXTEND' or bounds_y != 'EXTEND'):
ob1.active_shape_key_index = 0
bm = bmesh.new()
bm.from_mesh(me1)
# Bound X
planes_co = []
planes_no = []
bounds = []
if bounds_x != 'EXTEND':
planes_co += [(0,0,0), (1,0,0)]
planes_no += [(-1,0,0), (1,0,0)]
bounds += [bounds_x, bounds_x]
if bounds_y != 'EXTEND':
planes_co += [(0,0,0), (0,1,0)]
planes_no += [(0,-1,0), (0,1,0)]
bounds += [bounds_y, bounds_y]
for co, norm, bound in zip(planes_co, planes_no, bounds):
count = 0
while True:
moved = 0
original_edges = list(bm.edges)
geom = list(bm.verts) + list(bm.edges) + list(bm.faces)
bisect = bmesh.ops.bisect_plane(bm, geom=geom, dist=0,
plane_co=co, plane_no=norm, use_snap_center=False,
clear_outer=bound=='CLIP', clear_inner=False
)
geom = bisect['geom']
cut_edges = [g for g in bisect['geom_cut'] if type(g)==bmesh.types.BMEdge]
cut_verts = [g for g in bisect['geom_cut'] if type(g)==bmesh.types.BMVert]
if bound!='CLIP':
for e in cut_edges:
seam = True
# Prevent glitches
for e1 in original_edges:
match_00 = (e.verts[0].co-e1.verts[0].co).length < thres
match_11 = (e.verts[1].co-e1.verts[1].co).length < thres
match_01 = (e.verts[0].co-e1.verts[1].co).length < thres
match_10 = (e.verts[1].co-e1.verts[0].co).length < thres
if (match_00 and match_11) or (match_01 and match_10):
seam = False
break
e.seam = seam
if bound == 'CYCLIC':
geom_verts = []
if norm == (-1,0,0):
geom_verts = [v for v in bm.verts if v.co.x < 0]
if norm == (1,0,0):
geom_verts = [v for v in bm.verts if v.co.x > 1]
if norm == (0,-1,0):
geom_verts = [v for v in bm.verts if v.co.y < 0]
if norm == (0,1,0):
geom_verts = [v for v in bm.verts if v.co.y > 1]
if len(geom_verts) > 0:
geom = bmesh.ops.region_extend(bm, geom=geom_verts,
use_contract=False, use_faces=False, use_face_step=True
)
geom = bmesh.ops.split(bm, geom=geom['geom'], use_only_faces=False)
vec = Vector(norm)
move_verts = [g for g in geom['geom'] if type(g)==bmesh.types.BMVert]
bmesh.ops.translate(bm, vec=-vec, verts=move_verts)
for key in bm.verts.layers.shape.keys():
sk = bm.verts.layers.shape.get(key)
for v in move_verts:
v[sk] -= vec
moved += len(move_verts)
count += 1
if moved == 0 or count > 1000: break
bm.to_mesh(me1)
com_area = bb[0]*bb[1]
return ob1, com_area
def get_quads(me, bool_selection):
nf = len(me.polygons)
verts = []
materials = []
mask = []
for poly in me.polygons:
p = list(poly.vertices)
sides = len(p)
if sides == 3:
verts.append([[p[0], p[-1]], [p[1], p[2]]])
materials.append(poly.material_index)
mask.append(poly.select if bool_selection else True)
elif sides == 4:
verts.append([[p[0], p[3]], [p[1], p[2]]])
materials.append(poly.material_index)
mask.append(poly.select if bool_selection else True)
else:
while True:
new_poly = [[p[-2], p.pop(-1)], [p[1], p.pop(0)]]
verts.append(new_poly)
materials.append(poly.material_index)
mask.append(poly.select if bool_selection else True)
if len(p) < 3: break
mask = np.array(mask)
materials = np.array(materials)[mask]
verts = np.array(verts)[mask]
return verts, mask, materials
def get_patches(me_low, me_high, sides, subs, bool_selection): #, bool_material_id, material_id):
nv = len(me_low.vertices) # number of vertices
ne = len(me_low.edges) # number of edges
nf = len(me_low.polygons) # number of polygons
n = 2**subs + 1
nev = ne * n # number of vertices along the subdivided edges
nevi = nev - 2*ne # internal vertices along subdividede edges
n0 = 2**(subs-1) - 1
# filtered polygonal faces
poly_sides = [0]*nf
me_low.polygons.foreach_get('loop_total',poly_sides)
poly_sides = np.array(poly_sides)
mask = poly_sides == sides
if bool_selection:
mask_selection = [True]*nf
me_low.polygons.foreach_get('select',mask_selection)
mask = np.array(mask_selection)
materials = [1]*nf
me_low.polygons.foreach_get('material_index',materials)
materials = np.array(materials)[mask]
polys = np.array(me_low.polygons)[mask]
mult = n0**2 + n0
ps = poly_sides * mult + 1
ps = np.insert(ps,0,nv + nevi, axis=0)[:-1]
ips = ps.cumsum()[mask] # incremental polygon sides
nf = len(polys)
# when subdivided quad faces follows a different pattern
if sides == 4:
n_patches = nf
else:
n_patches = nf*sides
if sides == 4:
patches = np.empty((nf,n,n),dtype='int')
verts = [list(p.vertices) for p in polys if len(p.vertices) == sides]
verts = np.array(verts).reshape((-1,sides))
# filling corners
patches[:,0,0] = verts[:,0]
patches[:,n-1,0] = verts[:,1]
patches[:,n-1,n-1] = verts[:,2]
patches[:,0,n-1] = verts[:,3]
if subs != 0:
shift_verts = np.roll(verts, -1, axis=1)[:,:,None]
edge_keys = np.concatenate((shift_verts, verts[:,:,None]), axis=2)
edge_keys.sort()
edge_verts = np.array(me_low.edge_keys) # edges keys
edges_index = np.empty((ne,ne),dtype='int')
edges_index[edge_verts[:,0],edge_verts[:,1]] = np.arange(ne)
evi = np.arange(nevi) + nv
evi = evi.reshape(ne,n-2) # edges inner verts
straight = np.arange(n-2)+1
inverted = np.flip(straight)
inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])
ek1 = me_high.edge_keys # edges keys
ek1 = np.array(ek1) # edge keys highres
keys0 = ek1[np.arange(ne)*(n-1)] # first inner edge
keys1 = ek1[np.arange(ne)*(n-1)+n-2] # last inner edge
edges_dir = np.zeros((nev,nev),dtype='bool') # Better memory usage
#edges_dir = np.zeros((nev,nev),dtype='int8') ### Memory usage not efficient, dictionary as alternative?
edges_dir[keys0[:,0], keys0[:,1]] = 1
edges_dir[keys1[:,0], keys1[:,1]] = 1
pick_verts = np.array((inverted,straight))
patch_index = np.arange(nf)[:,None,None]
# edge 0
e0 = edge_keys[:,0] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,0], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir.astype('int8')][:,None,:] # indexes order along the side
patches[patch_index,ids,0] = edge_verts[:,None,:] # assign indexes
# edge 1
e0 = edge_keys[:,1] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,1], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir.astype('int8')][:,:,None] # indexes order along the side
patches[patch_index,n-1,ids] = edge_verts[:,:,None] # assign indexes
# edge 2
e0 = edge_keys[:,2] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,3], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir.astype('int8')][:,None,:] # indexes order along the side
patches[patch_index,ids,n-1] = edge_verts[:,None,:] # assign indexes
# edge 3
e0 = edge_keys[:,3] # get edge key (faces, 2)
edge_id = edges_index[e0[:,0],e0[:,1]] # edge index
edge_verts = evi[edge_id] # indexes of inner vertices
dir = edges_dir[verts[:,0], edge_verts[:,0]] # check correct direction
ids = pick_verts[dir.astype('int8')][:,:,None] # indexes order along the side
patches[patch_index,0,ids] = edge_verts[:,:,None] # assign indexes
# fill inners
patches[:,1:-1,1:-1] = inners[None,:,:] + ips[:,None,None]
return patches, mask, materials
def get_vertices_numpy(mesh):
'''
Create a numpy array with the vertices of a given mesh
'''
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
verts = np.array(verts).reshape((n_verts,3))
return verts
def get_vertices_and_normals_numpy(mesh):
'''
Create two numpy arrays with the vertices and the normals of a given mesh
'''
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
normals = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
mesh.vertices.foreach_get('normal', normals)
verts = np.array(verts).reshape((n_verts,3))
normals = np.array(normals).reshape((n_verts,3))
return verts, normals
def get_normals_numpy(mesh):
'''
Create a numpy array with the normals of a given mesh
'''
n_verts = len(mesh.vertices)
normals = [0]*n_verts*3
mesh.vertices.foreach_get('normal', normals)
normals = np.array(normals).reshape((n_verts,3))
return normals
def get_edges_numpy(mesh):
'''
Create a numpy array with the edges of a given mesh
'''
n_edges = len(mesh.edges)
edges = [0]*n_edges*2
mesh.edges.foreach_get('vertices', edges)
edges = np.array(edges).reshape((n_edges,2)).astype('int')
return edges
def get_edges_id_numpy(mesh):
n_edges = len(mesh.edges)
edges = [0]*n_edges*2
mesh.edges.foreach_get('vertices', edges)
edges = np.array(edges).reshape((n_edges,2))
indexes = np.arange(n_edges).reshape((n_edges,1))
edges = np.concatenate((edges,indexes), axis=1)
return edges
def get_polygons_select_numpy(mesh):
n_polys = len(mesh.polygons)
selections = [0]*n_polys*2
mesh.polygons.foreach_get('select', selections)
selections = np.array(selections)
return selections
def get_attribute_numpy(elements_list, attribute='select', mult=1):
'''
Generate a numpy array getting attribute from a list of element using
the foreach_get() function.
'''
n_elements = len(elements_list)
values = [0]*n_elements*mult
elements_list.foreach_get(attribute, values)
values = np.array(values)
if mult > 1: values = values.reshape((n_elements,mult))
return values
def get_vertices(mesh):
n_verts = len(mesh.vertices)
verts = [0]*n_verts*3
mesh.vertices.foreach_get('co', verts)
verts = np.array(verts).reshape((n_verts,3))
verts = [Vector(v) for v in verts]
return verts
def get_faces(mesh):
faces = [[v for v in f.vertices] for f in mesh.polygons]
return faces
def get_faces_numpy(mesh):
faces = [[v for v in f.vertices] for f in mesh.polygons]
return np.array(faces)
def get_faces_edges_numpy(mesh):
faces = [v.edge_keys for f in mesh.polygons]
return np.array(faces)
def find_curves(edges, n_verts):
verts_dict = {key:[] for key in range(n_verts)}
for e in edges:
verts_dict[e[0]].append(e[1])
verts_dict[e[1]].append(e[0])
curves = []
while True:
if len(verts_dict) == 0: break
# next starting point
v = list(verts_dict.keys())[0]
# neighbors
v01 = verts_dict[v]
if len(v01) == 0:
verts_dict.pop(v)
continue
curve = []
if len(v01) > 1: curve.append(v01[1]) # add neighbors
curve.append(v) # add starting point
curve.append(v01[0]) # add neighbors
verts_dict.pop(v)
# start building curve
while True:
#last_point = curve[-1]
#if last_point not in verts_dict: break
# try to change direction if needed
if curve[-1] in verts_dict: pass
elif curve[0] in verts_dict: curve.reverse()
else: break
# neighbors points
last_point = curve[-1]
v01 = verts_dict[last_point]
# curve end
if len(v01) == 1:
verts_dict.pop(last_point)
if curve[0] in verts_dict: continue
else: break
# chose next point
new_point = None
if v01[0] == curve[-2]: new_point = v01[1]
elif v01[1] == curve[-2]: new_point = v01[0]
#else: break
#if new_point != curve[1]:
curve.append(new_point)
verts_dict.pop(last_point)
if curve[0] == curve[-1]:
verts_dict.pop(new_point)
break
curves.append(curve)
return curves
def curve_from_points(points, name='Curve'):
curve = bpy.data.curves.new(name,'CURVE')
for c in points:
s = curve.splines.new('POLY')
s.points.add(len(c))
for i,p in enumerate(c): s.points[i].co = p.xyz + [1]
ob_curve = bpy.data.objects.new(name,curve)
return ob_curve
def curve_from_pydata(points, radii, indexes, name='Curve', skip_open=False, merge_distance=1, set_active=True, only_data=False):
curve = bpy.data.curves.new(name,'CURVE')
curve.dimensions = '3D'
use_rad = True
for c in indexes:
bool_cyclic = c[0] == c[-1]
if bool_cyclic: c.pop(-1)
# cleanup
pts = np.array([points[i] for i in c])
try:
rad = np.array([radii[i] for i in c])
except:
use_rad = False
rad = 1
if merge_distance > 0:
pts1 = np.roll(pts,1,axis=0)
dist = np.linalg.norm(pts1-pts, axis=1)
count = 0
n = len(dist)
mask = np.ones(n).astype('bool')
for i in range(n):
count += dist[i]
if count > merge_distance: count = 0
else: mask[i] = False
pts = pts[mask]
if use_rad: rad = rad[mask]
if skip_open and not bool_cyclic: continue
s = curve.splines.new('POLY')
n_pts = len(pts)
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',co)
if use_rad: s.points.foreach_set('radius',rad)
s.use_cyclic_u = bool_cyclic
if only_data:
return curve
else:
ob_curve = bpy.data.objects.new(name,curve)
bpy.context.collection.objects.link(ob_curve)
if set_active:
bpy.context.view_layer.objects.active = ob_curve
return ob_curve
def update_curve_from_pydata(curve, points, normals, radii, indexes, merge_distance=1, pattern=[1,0], depth=0.1, offset=0):
curve.splines.clear()
use_rad = True
for ic, c in enumerate(indexes):
bool_cyclic = c[0] == c[-1]
if bool_cyclic: c.pop(-1)
# cleanup
pts = np.array([points[i] for i in c if i != None])
nor = np.array([normals[i] for i in c if i != None])
try:
rad = np.array([radii[i] for i in c if i != None])
except:
use_rad = False
rad = 1
if merge_distance > 0:
pts1 = np.roll(pts,1,axis=0)
dist = np.linalg.norm(pts1-pts, axis=1)
count = 0
n = len(dist)
mask = np.ones(n).astype('bool')
for i in range(n):
count += dist[i]
if count > merge_distance: count = 0
else: mask[i] = False
pts = pts[mask]
nor = nor[mask]
if use_rad: rad = rad[mask]
#if skip_open and not bool_cyclic: continue
n_pts = len(pts)
series = np.arange(n_pts)
patt1 = series + (series-series%pattern[1])/pattern[1]*pattern[0]+pattern[0]
patt1 = patt1[patt1<n_pts].astype('int')
patt0 = series + (series-series%pattern[0])/pattern[0]*pattern[1]
patt0 = patt0[patt0<n_pts].astype('int')
nor[patt0] *= 0.5*depth*(1 + offset)
nor[patt1] *= 0.5*depth*(-1 + offset)
if pattern[0]*pattern[1] != 0: pts += nor
s = curve.splines.new('POLY')
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',co)
if use_rad: s.points.foreach_set('radius',rad)
s.use_cyclic_u = bool_cyclic
def loops_from_bmesh(edges):
"""
Return one or more loops given some starting edges.
:arg edges: Edges used as seeds.
:type edges: List of :class:'bmesh.types.BMEdge'
:return: Elements in each loop (Verts, Edges), where:
- Verts - List of Lists of :class:'bmesh.types.BMVert'
- Edges - List of Lists of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
todo_edges = list(edges)
#todo_edges = [e.index for e in bm.edges]
vert_loops = []
edge_loops = []
while len(todo_edges) > 0:
edge = todo_edges[0]
vert_loop, edge_loop = run_edge_loop(edge)
for e in edge_loop:
try: todo_edges.remove(e)
except: pass
edge_loops.append(edge_loop)
vert_loops.append(vert_loop)
#if len(todo_edges) == 0: break
return vert_loops, edge_loops
def run_edge_loop_direction(edge,vert):
"""
Return vertices and edges along a loop in a specific direction.
:arg edge: Edges used as seed.
:type edges: :class:'bmesh.types.BMEdge'
:arg edge: Vertex of the Edge used for the direction.
:type vert: :class:'bmesh.types.BMVert'
:return: Elements in the loop (Verts, Edges), where:
- Verts - List of :class:'bmesh.types.BMVert'
- Edges - List of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
edge0 = edge
edge_loop = [edge]
vert_loop = [vert]
while True:
link_edges = list(vert.link_edges)
link_edges.remove(edge)
n_edges = len(link_edges)
if n_edges == 1:
edge = link_edges[0]
elif n_edges < 4:
link_faces = edge.link_faces
if len(link_faces) == 0: break
edge = None
for e in link_edges:
link_faces1 = e.link_faces
if len(link_faces) == len(link_faces1):
common_faces = [f for f in link_faces1 if f in link_faces]
if len(common_faces) == 0:
edge = e
break
else: break
if edge == None: break
edge_loop.append(edge)
vert = edge.other_vert(vert)
vert_loop.append(vert)
if edge == edge0: break
return vert_loop, edge_loop
def run_edge_loop(edge):
"""
Return vertices and edges along a loop in both directions.
:arg edge: Edges used as seed.
:type edges: :class:'bmesh.types.BMEdge'
:return: Elements in the loop (Verts, Edges), where:
- Verts - List of :class:'bmesh.types.BMVert'
- Edges - List of :class:'bmesh.types.BMEdge'
:rtype: tuple
"""
vert0 = edge.verts[0]
vert_loop0, edge_loop0 = run_edge_loop_direction(edge, vert0)
if len(edge_loop0) == 1 or edge_loop0[0] != edge_loop0[-1]:
vert1 = edge.verts[1]
vert_loop1, edge_loop1 = run_edge_loop_direction(edge, vert1)
edge_loop0.reverse()
vert_loop0.reverse()
edge_loop = edge_loop0[:-1] + edge_loop1
vert_loop = vert_loop0 + vert_loop1
else:
edge_loop = edge_loop0[1:]
vert_loop = vert_loop0
return vert_loop, edge_loop
def curve_from_vertices(indexes, verts, name='Curve'):
"""
Curve data from given vertices.
:arg indexes: List of Lists of indexes of the vertices.
:type indexes: List of Lists of int
:arg verts: List of vertices.
:type verts: List of :class:'bpy.types.MeshVertex'
:arg name: Name of the Curve data.
:type name: str
:return: Generated Curve data
:rtype: :class:'bpy.types.Curve'
"""
curve = bpy.data.curves.new(name,'CURVE')
for c in indexes:
s = curve.splines.new('POLY')
s.points.add(len(c))
for i,p in enumerate(c):
s.points[i].co = verts[p].co.xyz + [1]
#s.points[i].tilt = degrees(asin(verts[p].co.z))
ob_curve = bpy.data.objects.new(name,curve)
return ob_curve
def nurbs_from_vertices(indexes, co, radii=[], name='Curve', set_active=True, interpolation='POLY'):
curve = bpy.data.curves.new(name,'CURVE')
curve.dimensions = '3D'
curve.resolution_u = 2
curve.bevel_depth = 0.01
curve.bevel_resolution = 0
for pts in indexes:
s = curve.splines.new(interpolation)
n_pts = len(pts)
s.points.add(n_pts-1)
w = np.ones(n_pts).reshape((n_pts,1))
curve_co = np.concatenate((co[pts],w),axis=1).reshape((n_pts*4))
s.points.foreach_set('co',curve_co)
try:
s.points.foreach_set('radius',radii[pts])
except: pass
s.use_endpoint_u = True
ob_curve = bpy.data.objects.new(name,curve)
bpy.context.collection.objects.link(ob_curve)
if set_active:
bpy.context.view_layer.objects.active = ob_curve
ob_curve.select_set(True)
return ob_curve
# ------------------------------------------------------------------
# VERTEX GROUPS AND WEIGHT
# ------------------------------------------------------------------
def get_weight(vertex_group, n_verts):
"""
Read weight values from given Vertex Group.
:arg vertex_group: Vertex Group.
:type vertex_group: :class:'bpy.types.VertexGroup'
:arg n_verts: Number of Vertices (output list size).
:type n_verts: int
:return: Read weight values.
:rtype: list
"""
weight = [0]*n_verts
for i in range(n_verts):
try: weight[i] = vertex_group.weight(i)
except: pass
return weight
def get_weight_numpy(vertex_group, n_verts):
"""
Read weight values from given Vertex Group.
:arg vertex_group: Vertex Group.
:type vertex_group: :class:'bpy.types.VertexGroup'
:arg n_verts: Number of Vertices (output list size).
:type n_verts: int
:return: Read weight values as numpy array.
:rtype: :class:'numpy.ndarray'
"""
weight = [0]*n_verts
for i in range(n_verts):
try: weight[i] = vertex_group.weight(i)
except: pass
return np.array(weight)
def bmesh_get_weight_numpy(group_index, layer, verts):
weight = np.zeros(len(verts))
for i, v in enumerate(verts):
dvert = v[layer]
if group_index in dvert:
weight[i] = dvert[group_index]
#dvert[group_index] = 0.5
return weight
def bmesh_set_weight_numpy(group_index, layer, verts, weight):
for i, v in enumerate(verts):
dvert = v[layer]
if group_index in dvert:
dvert[group_index] = weight[i]
return verts
def bmesh_set_weight_numpy(bm, group_index, weight):
layer = bm.verts.layers.deform.verify()
for i, v in enumerate(bm.verts):
dvert = v[layer]
#if group_index in dvert:
dvert[group_index] = weight[i]
return bm
def set_weight_numpy(vg, weight):
for i, w in enumerate(weight):
vg.add([i], w, 'REPLACE')
return vg
def uv_from_bmesh(bm, uv_index=None):
if uv_index:
uv_lay = bm.loops.layers.uv[uv_index]
else:
uv_lay = bm.loops.layers.uv.active
uv_co = [0]*len(bm.verts)
for face in bm.faces:
for vert,loop in zip(face.verts, face.loops):
uv_co[vert.index] = loop[uv_lay].uv
return uv_co
def get_uv_edge_vectors(me, uv_map = 0, only_positive=False):
count = 0
uv_vectors = {}
for i, f in enumerate(me.polygons):
f_verts = len(f.vertices)
for j0 in range(f_verts):
j1 = (j0+1)%f_verts
uv0 = me.uv_layers[uv_map].data[count+j0].uv
uv1 = me.uv_layers[uv_map].data[count+j1].uv
delta_uv = (uv1-uv0).normalized()
if only_positive:
delta_uv.x = abs(delta_uv.x)
delta_uv.y = abs(delta_uv.y)
edge_key = tuple(sorted([f.vertices[j0], f.vertices[j1]]))
uv_vectors[edge_key] = delta_uv
count += f_verts
uv_vectors = [uv_vectors[tuple(sorted(e.vertices))] for e in me.edges]
return uv_vectors
def mesh_diffusion(me, values, iter, diff=0.2, uv_dir=0):
values = np.array(values)
n_verts = len(me.vertices)
n_edges = len(me.edges)
edge_verts = [0]*n_edges*2
#me.edges.foreach_get("vertices", edge_verts)
count = 0
edge_verts = []
uv_factor = {}
uv_ang = (0.5 + uv_dir*0.5)*pi/2
uv_vec = Vector((cos(uv_ang), sin(uv_ang)))
for i, f in enumerate(me.polygons):
f_verts = len(f.vertices)
for j0 in range(f_verts):
j1 = (j0+1)%f_verts
if uv_dir != 0:
uv0 = me.uv_layers[0].data[count+j0].uv
uv1 = me.uv_layers[0].data[count+j1].uv
delta_uv = (uv1-uv0).normalized()
delta_uv.x = abs(delta_uv.x)
delta_uv.y = abs(delta_uv.y)
dir = uv_vec.dot(delta_uv)
else:
dir = 1
#dir = abs(dir)
#uv_factor.append(dir)
edge_key = [f.vertices[j0], f.vertices[j1]]
edge_key.sort()
uv_factor[tuple(edge_key)] = dir
count += f_verts
id0 = []
id1 = []
uv_mult = []
for ek, val in uv_factor.items():
id0.append(ek[0])
id1.append(ek[1])
uv_mult.append(val)
id0 = np.array(id0)
id1 = np.array(id1)
uv_mult = np.array(uv_mult)
#edge_verts = np.array(edge_verts)
#arr = np.arange(n_edges)*2
#id0 = edge_verts[arr] # first vertex indices for each edge
#id1 = edge_verts[arr+1] # second vertex indices for each edge
for ii in range(iter):
lap = np.zeros(n_verts)
if uv_dir != 0:
lap0 = (values[id1] - values[id0])*uv_mult # laplacian increment for first vertex of each edge
else:
lap0 = (values[id1] - values[id0])
np.add.at(lap, id0, lap0)
np.add.at(lap, id1, -lap0)
values += diff*lap
return values
def mesh_diffusion_vector(me, vectors, iter, diff, uv_dir=0):
vectors = np.array(vectors)
x = vectors[:,0]
y = vectors[:,1]
z = vectors[:,2]
x = mesh_diffusion(me, x, iter, diff, uv_dir)
y = mesh_diffusion(me, y, iter, diff, uv_dir)
z = mesh_diffusion(me, z, iter, diff, uv_dir)
vectors[:,0] = x
vectors[:,1] = y
vectors[:,2] = z
return vectors
# ------------------------------------------------------------------
# MODIFIERS
# ------------------------------------------------------------------
def mod_preserve_topology(mod):
same_topology_modifiers = ('DATA_TRANSFER','NORMAL_EDIT','WEIGHTED_NORMAL',
'UV_PROJECT','UV_WARP','VERTEX_WEIGHT_EDIT','VERTEX_WEIGHT_MIX',
'VERTEX_WEIGHT_PROXIMITY','ARMATURE','CAST','CURVE','DISPLACE','HOOK',
'LAPLACIANDEFORM','LATTICE','MESH_DEFORM','SHRINKWRAP','SIMPLE_DEFORM',
'SMOOTH','CORRECTIVE_SMOOTH','LAPLACIANSMOOTH','SURFACE_DEFORM','WARP',
'WAVE','CLOTH','COLLISION','DYNAMIC_PAINT','SOFT_BODY'
)
return mod.type in same_topology_modifiers
def mod_preserve_shape(mod):
same_shape_modifiers = ('DATA_TRANSFER','NORMAL_EDIT','WEIGHTED_NORMAL',
'UV_PROJECT','UV_WARP','VERTEX_WEIGHT_EDIT','VERTEX_WEIGHT_MIX',
'VERTEX_WEIGHT_PROXIMITY','DYNAMIC_PAINT'
)
return mod.type in same_shape_modifiers
def recurLayerCollection(layerColl, collName):
'''
Recursively transverse layer_collection for a particular name.
'''
found = None
if (layerColl.name == collName):
return layerColl
for layer in layerColl.children:
found = recurLayerCollection(layer, collName)
if found:
return found
def auto_layer_collection():
'''
Automatically change active layer collection.
'''
layer = bpy.context.view_layer.active_layer_collection
layer_collection = bpy.context.view_layer.layer_collection
if layer.hide_viewport or layer.collection.hide_viewport:
collections = bpy.context.object.users_collection
for c in collections:
lc = recurLayerCollection(layer_collection, c.name)
if not c.hide_viewport and not lc.hide_viewport:
bpy.context.view_layer.active_layer_collection = lc