Refactor: in USD importer extract read_mesh params into a struct #104459

Closed
Sonny Campbell wants to merge 11 commits from SonnyCampbell_Unity/blender:unity/T91369-parameter-refactor into main

When changing the target branch, be careful to rebase the branch in your fork to match. See documentation.
1546 changed files with 50208 additions and 34268 deletions
Showing only changes of commit a8411f377e - Show all commits

View File

@ -1,8 +0,0 @@
{
"project_id" : "Blender",
"conduit_uri" : "https://developer.blender.org/",
"phabricator.uri" : "https://developer.blender.org/",
"git.default-relative-commit" : "origin/master",
"arc.land.update.default" : "rebase",
"arc.land.onto.default" : "master"
}

View File

@ -236,6 +236,8 @@ ForEachMacros:
- LOOP_UNSELECTED_POINTS
- LOOP_VISIBLE_KEYS
- LOOP_VISIBLE_POINTS
- LIGHT_FOREACH_BEGIN_DIRECTIONAL
- LIGHT_FOREACH_BEGIN_LOCAL
- LISTBASE_CIRCULAR_BACKWARD_BEGIN
- LISTBASE_CIRCULAR_FORWARD_BEGIN
- LISTBASE_FOREACH

View File

@ -0,0 +1,5 @@
${CommitTitle}
${CommitBody}
Pull Request #${PullRequestIndex}

View File

@ -0,0 +1,3 @@
${PullRequestTitle}
Pull Request #${PullRequestIndex}

View File

@ -1,13 +1,15 @@
name: Bug Report
about: File a bug report
labels:
- bug
- "type::Report"
- "status::Needs Triage"
- "priority::Normal"
body:
- type: markdown
attributes:
value: |
### Instructions
First time reporting? See [tips](https://wiki.blender.org/wiki/Process/Bug_Reports) and [walkthrough video](https://www.youtube.com/watch?v=JTD0OJq_rF4).
First time reporting? See [tips](https://wiki.blender.org/wiki/Process/Bug_Reports).
* Use **Help > Report a Bug** in Blender to fill system information and exact Blender version.
* Test [daily builds](https://builder.blender.org/) to verify if the issue is already fixed.
@ -19,6 +21,7 @@ body:
id: body
attributes:
label: "Description"
hide_label: true
value: |
**System Information**
Operating system:

View File

@ -1,9 +1,10 @@
name: Design
about: Create a design task (for developers only)
labels:
- design
- "type::Design"
body:
- type: textarea
id: body
attributes:
label: "Description"
hide_label: true

View File

@ -1,9 +1,10 @@
name: To Do
about: Create a to do task (for developers only)
labels:
- todo
- "type::To Do"
body:
- type: textarea
id: body
attributes:
label: "Description"
hide_label: true

View File

@ -14,7 +14,4 @@ body:
id: body
attributes:
label: "Description"
value: |
Description of the problem that is addressed in the patch.
Description of the proposed solution and its implementation.
hide_label: true

View File

@ -1,5 +1,4 @@
This repository is only used as a mirror of git.blender.org. Blender development happens on
https://developer.blender.org.
This repository is only used as a mirror. Blender development happens on projects.blender.org.
To get started with contributing code, please see:
https://wiki.blender.org/wiki/Process/Contributing_Code

3
.github/stale.yml vendored
View File

@ -15,8 +15,7 @@ staleLabel: stale
# Comment to post when closing a stale Issue or Pull Request.
closeComment: >
This issue has been automatically closed, because this repository is only
used as a mirror of git.blender.org. Blender development happens on
developer.blender.org.
used as a mirror. Blender development happens on projects.blender.org.
To get started contributing code, please read:
https://wiki.blender.org/wiki/Process/Contributing_Code

8
.gitmodules vendored
View File

@ -1,20 +1,20 @@
[submodule "release/scripts/addons"]
path = release/scripts/addons
url = ../blender-addons.git
branch = master
branch = main
ignore = all
[submodule "release/scripts/addons_contrib"]
path = release/scripts/addons_contrib
url = ../blender-addons-contrib.git
branch = master
branch = main
ignore = all
[submodule "release/datafiles/locale"]
path = release/datafiles/locale
url = ../blender-translations.git
branch = master
branch = main
ignore = all
[submodule "source/tools"]
path = source/tools
url = ../blender-dev-tools.git
branch = master
branch = main
ignore = all

View File

@ -524,7 +524,7 @@ endif()
if(NOT APPLE)
option(WITH_CYCLES_DEVICE_HIP "Enable Cycles AMD HIP support" ON)
option(WITH_CYCLES_HIP_BINARIES "Build Cycles AMD HIP binaries" OFF)
set(CYCLES_HIP_BINARIES_ARCH gfx1010 gfx1011 gfx1012 gfx1030 gfx1031 gfx1032 gfx1034 gfx1035 gfx1100 gfx1101 gfx1102 CACHE STRING "AMD HIP architectures to build binaries for")
set(CYCLES_HIP_BINARIES_ARCH gfx900 gfx906 gfx90c gfx902 gfx1010 gfx1011 gfx1012 gfx1030 gfx1031 gfx1032 gfx1034 gfx1035 gfx1100 gfx1101 gfx1102 CACHE STRING "AMD HIP architectures to build binaries for")
mark_as_advanced(WITH_CYCLES_DEVICE_HIP)
mark_as_advanced(CYCLES_HIP_BINARIES_ARCH)
endif()
@ -625,8 +625,10 @@ mark_as_advanced(
# Vulkan
option(WITH_VULKAN_BACKEND "Enable Vulkan as graphics backend (only for development)" OFF)
option(WITH_VULKAN_GUARDEDALLOC "Use guardedalloc for host allocations done inside Vulkan (development option)" OFF)
mark_as_advanced(
WITH_VULKAN_BACKEND
WITH_VULKAN_GUARDEDALLOC
)
# Metal
@ -1241,13 +1243,6 @@ if(WITH_OPENGL)
add_definitions(-DWITH_OPENGL)
endif()
#-----------------------------------------------------------------------------
# Configure Vulkan.
if(WITH_VULKAN_BACKEND)
list(APPEND BLENDER_GL_LIBRARIES ${VULKAN_LIBRARIES})
endif()
# -----------------------------------------------------------------------------
# Configure Metal

View File

@ -71,6 +71,13 @@ Static Source Code Checking
* check_mypy: Checks all Python scripts using mypy,
see: source/tools/check_source/check_mypy_config.py scripts which are included.
Documentation Checking
* check_wiki_file_structure:
Check the WIKI documentation for the source-tree's file structure
matches Blender's source-code.
See: https://wiki.blender.org/wiki/Source/File_Structure
Spell Checkers
This runs the spell checker from the developer tools repositor.
@ -292,7 +299,11 @@ else
ifneq ("$(wildcard $(DEPS_BUILD_DIR)/build.ninja)","")
DEPS_BUILD_COMMAND:=ninja
else
DEPS_BUILD_COMMAND:=make -s
ifeq ($(OS), Darwin)
DEPS_BUILD_COMMAND:=make -s
else
DEPS_BUILD_COMMAND:="$(BLENDER_DIR)/build_files/build_environment/linux/make_deps_wrapper.sh" -s
endif
endif
endif
@ -391,7 +402,7 @@ endif
deps: .FORCE
@echo
@echo Configuring dependencies in \"$(DEPS_BUILD_DIR)\"
@echo Configuring dependencies in \"$(DEPS_BUILD_DIR)\", install to \"$(DEPS_INSTALL_DIR)\"
@cmake -H"$(DEPS_SOURCE_DIR)" \
-B"$(DEPS_BUILD_DIR)" \
@ -481,6 +492,10 @@ check_smatch: .FORCE
check_mypy: .FORCE
@$(PYTHON) "$(BLENDER_DIR)/source/tools/check_source/check_mypy.py"
check_wiki_file_structure: .FORCE
@PYTHONIOENCODING=utf_8 $(PYTHON) \
"$(BLENDER_DIR)/source/tools/check_wiki/check_wiki_file_structure.py"
check_spelling_py: .FORCE
@cd "$(BUILD_DIR)" ; \
PYTHONIOENCODING=utf_8 $(PYTHON) \

View File

@ -24,7 +24,7 @@ Development
-----------
- [Build Instructions](https://wiki.blender.org/wiki/Building_Blender)
- [Code Review & Bug Tracker](https://developer.blender.org)
- [Code Review & Bug Tracker](https://projects.blender.org)
- [Developer Forum](https://devtalk.blender.org)
- [Developer Documentation](https://wiki.blender.org)

View File

@ -2,7 +2,7 @@
# LLVM does not switch over to cpp17 until llvm 16 and building ealier versions with
# MSVC is leading to some crashes in ISPC. Switch back to their default on all platforms
# for now.
# for now.
string(REPLACE "-DCMAKE_CXX_STANDARD=17" " " DPCPP_CMAKE_FLAGS "${DEFAULT_CMAKE_FLAGS}")
if(WIN32)

View File

@ -22,7 +22,7 @@ elseif(UNIX AND NOT APPLE)
)
endif()
# Boolean crashes with Arm assembly, see T103423.
# Boolean crashes with Arm assembly, see #103423.
if(BLENDER_PLATFORM_ARM)
set(GMP_OPTIONS
${GMP_OPTIONS}

View File

@ -40,7 +40,8 @@ ExternalProject_Add(external_igc_llvm
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/clang/0004-OpenCL-support-cl_ext_float_atomics.patch &&
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/clang/0005-OpenCL-Add-cl_khr_integer_dot_product.patch &&
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/llvm/0001-Memory-leak-fix-for-Managed-Static-Mutex.patch &&
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/llvm/0002-Remove-repo-name-in-LLVM-IR.patch
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/llvm/0002-Remove-repo-name-in-LLVM-IR.patch &&
${PATCH_CMD} -p 1 -d ${IGC_LLVM_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/llvm/0003-Add-missing-include-limit-in-benchmark.patch
)
add_dependencies(
external_igc_llvm
@ -55,9 +56,6 @@ ExternalProject_Add(external_igc_spirv_translator
CONFIGURE_COMMAND echo .
BUILD_COMMAND echo .
INSTALL_COMMAND echo .
PATCH_COMMAND ${PATCH_CMD} -p 1 -d ${IGC_SPIRV_TRANSLATOR_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/spirv/0001-update-SPIR-V-headers-for-SPV_INTEL_split_barrier.patch &&
${PATCH_CMD} -p 1 -d ${IGC_SPIRV_TRANSLATOR_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/spirv/0002-Add-support-for-split-barriers-extension-SPV_INTEL_s.patch &&
${PATCH_CMD} -p 1 -d ${IGC_SPIRV_TRANSLATOR_SOURCE_DIR} < ${IGC_OPENCL_CLANG_PATCH_DIR}/spirv/0003-Support-cl_bf16_conversions.patch
)
add_dependencies(
external_igc_spirv_translator

View File

@ -42,7 +42,7 @@ endif()
# LLVM does not switch over to cpp17 until llvm 16 and building ealier versions with
# MSVC is leading to some crashes in ISPC. Switch back to their default on all platforms
# for now.
# for now.
string(REPLACE "-DCMAKE_CXX_STANDARD=17" " " LLVM_CMAKE_FLAGS "${DEFAULT_CMAKE_FLAGS}")
# short project name due to long filename issues on windows

View File

@ -88,6 +88,19 @@ else()
export LDFLAGS=${PYTHON_LDFLAGS} &&
export PKG_CONFIG_PATH=${LIBDIR}/ffi/lib/pkgconfig)
# NOTE: untested on APPLE so far.
if(NOT APPLE)
set(PYTHON_CONFIGURE_EXTRA_ARGS
${PYTHON_CONFIGURE_EXTRA_ARGS}
# Used on most release Linux builds (Fedora for e.g.),
# increases build times noticeably with the benefit of a modest speedup at runtime.
--enable-optimizations
# While LTO is OK when building on the same system, it's incompatible across GCC versions,
# making it impractical for developers to build against, so keep it disabled.
# `--with-lto`
)
endif()
ExternalProject_Add(external_python
URL file://${PACKAGE_DIR}/${PYTHON_FILE}
DOWNLOAD_DIR ${DOWNLOAD_DIR}

View File

@ -10,9 +10,9 @@ if(WIN32)
DOWNLOAD_DIR ${DOWNLOAD_DIR}
URL_HASH ${SSL_HASH_TYPE}=${SSL_HASH}
PREFIX ${BUILD_DIR}/ssl
CONFIGURE_COMMAND echo "."
BUILD_COMMAND echo "."
INSTALL_COMMAND echo "."
CONFIGURE_COMMAND echo "."
BUILD_COMMAND echo "."
INSTALL_COMMAND echo "."
INSTALL_DIR ${LIBDIR}/ssl
)
else()
@ -46,4 +46,4 @@ else()
INSTALL_COMMAND ${CONFIGURE_ENV} && cd ${BUILD_DIR}/ssl/src/external_ssl/ && make install
INSTALL_DIR ${LIBDIR}/ssl
)
endif()
endif()

View File

@ -668,9 +668,9 @@ set(SPIRV_HEADERS_FILE SPIR-V-Headers-${SPIRV_HEADERS_VERSION}.tar.gz)
# compiler, the versions used are taken from the following location
# https://github.com/intel/intel-graphics-compiler/releases
set(IGC_VERSION 1.0.12149.1)
set(IGC_VERSION 1.0.13064.7)
set(IGC_URI https://github.com/intel/intel-graphics-compiler/archive/refs/tags/igc-${IGC_VERSION}.tar.gz)
set(IGC_HASH 44f67f24e3bc5130f9f062533abf8154782a9d0a992bc19b498639a8521ae836)
set(IGC_HASH a929abd4cca2b293961ec0437ee4b3b2147bd3b2c8a3c423af78c0c359b2e5ae)
set(IGC_HASH_TYPE SHA256)
set(IGC_FILE igc-${IGC_VERSION}.tar.gz)
@ -690,15 +690,15 @@ set(IGC_LLVM_FILE ${IGC_LLVM_VERSION}.tar.gz)
#
# WARNING WARNING WARNING
set(IGC_OPENCL_CLANG_VERSION 363a5262d8c7cff3fb28f3bdb5d85c8d7e91c1bb)
set(IGC_OPENCL_CLANG_VERSION ee31812ea8b89d08c2918f045d11a19bd33525c5)
set(IGC_OPENCL_CLANG_URI https://github.com/intel/opencl-clang/archive/${IGC_OPENCL_CLANG_VERSION}.tar.gz)
set(IGC_OPENCL_CLANG_HASH aa8cf72bb239722ce8ce44f79413c6887ecc8ca18477dd520aa5c4809756da9a)
set(IGC_OPENCL_CLANG_HASH 1db6735bbcfaa31e8a9ba39f121d6bafa806ea8919e9f56782d6aaa67771ddda)
set(IGC_OPENCL_CLANG_HASH_TYPE SHA256)
set(IGC_OPENCL_CLANG_FILE opencl-clang-${IGC_OPENCL_CLANG_VERSION}.tar.gz)
set(IGC_VCINTRINSICS_VERSION v0.5.0)
set(IGC_VCINTRINSICS_VERSION v0.11.0)
set(IGC_VCINTRINSICS_URI https://github.com/intel/vc-intrinsics/archive/refs/tags/${IGC_VCINTRINSICS_VERSION}.tar.gz)
set(IGC_VCINTRINSICS_HASH 70bb47c5e32173cf61514941e83ae7c7eb4485e6d2fca60cfa1f50d4f42c41f2)
set(IGC_VCINTRINSICS_HASH e5acd5626ce7fa6d41ce154c50ac805eda734ee66af94ef28e680ac2ad81bb9f)
set(IGC_VCINTRINSICS_HASH_TYPE SHA256)
set(IGC_VCINTRINSICS_FILE vc-intrinsics-${IGC_VCINTRINSICS_VERSION}.tar.gz)
@ -714,9 +714,9 @@ set(IGC_SPIRV_TOOLS_HASH 6e19900e948944243024aedd0a201baf3854b377b9cc7a386553bc1
set(IGC_SPIRV_TOOLS_HASH_TYPE SHA256)
set(IGC_SPIRV_TOOLS_FILE SPIR-V-Tools-${IGC_SPIRV_TOOLS_VERSION}.tar.gz)
set(IGC_SPIRV_TRANSLATOR_VERSION a31ffaeef77e23d500b3ea3d35e0c42ff5648ad9)
set(IGC_SPIRV_TRANSLATOR_VERSION d739c01d65ec00dee64dedd40deed805216a7193)
set(IGC_SPIRV_TRANSLATOR_URI https://github.com/KhronosGroup/SPIRV-LLVM-Translator/archive/${IGC_SPIRV_TRANSLATOR_VERSION}.tar.gz)
set(IGC_SPIRV_TRANSLATOR_HASH 9e26c96a45341b8f8af521bacea20e752623346340addd02af95d669f6e89252)
set(IGC_SPIRV_TRANSLATOR_HASH ddc0cc9ccbe59dadeaf291012d59de142b2e9f2b124dbb634644d39daddaa13e)
set(IGC_SPIRV_TRANSLATOR_HASH_TYPE SHA256)
set(IGC_SPIRV_TRANSLATOR_FILE SPIR-V-Translator-${IGC_SPIRV_TRANSLATOR_VERSION}.tar.gz)
@ -724,15 +724,15 @@ set(IGC_SPIRV_TRANSLATOR_FILE SPIR-V-Translator-${IGC_SPIRV_TRANSLATOR_VERSION}.
### Intel Graphics Compiler DEPS END ###
########################################
set(GMMLIB_VERSION intel-gmmlib-22.1.8)
set(GMMLIB_VERSION intel-gmmlib-22.3.0)
set(GMMLIB_URI https://github.com/intel/gmmlib/archive/refs/tags/${GMMLIB_VERSION}.tar.gz)
set(GMMLIB_HASH bf23e9a3742b4fb98c7666c9e9b29f3219e4b2fb4d831aaf4eed71f5e2d17368)
set(GMMLIB_HASH c1f33e1519edfc527127baeb0436b783430dfd256c643130169a3a71dc86aff9)
set(GMMLIB_HASH_TYPE SHA256)
set(GMMLIB_FILE ${GMMLIB_VERSION}.tar.gz)
set(OCLOC_VERSION 22.38.24278)
set(OCLOC_VERSION 22.49.25018.21)
set(OCLOC_URI https://github.com/intel/compute-runtime/archive/refs/tags/${OCLOC_VERSION}.tar.gz)
set(OCLOC_HASH db0c542fccd651e6404b15a74d46027f1ce0eda8dc9e25a40cbb6c0faef257ee)
set(OCLOC_HASH 92362dae08b503a34e5d3820ed284198c452bcd5e7504d90eb69887b20492c06)
set(OCLOC_HASH_TYPE SHA256)
set(OCLOC_FILE ocloc-${OCLOC_VERSION}.tar.gz)

View File

@ -1,7 +1,7 @@
# SPDX-License-Identifier: GPL-2.0-or-later
if(WIN32)
set(XML2_EXTRA_ARGS
set(XML2_EXTRA_ARGS
-DLIBXML2_WITH_ZLIB=OFF
-DLIBXML2_WITH_LZMA=OFF
-DLIBXML2_WITH_PYTHON=OFF

View File

@ -0,0 +1,74 @@
#!/usr/bin/env bash
# SPDX-License-Identifier: GPL-2.0-or-later
# This script ensures:
# - One dependency is built at a time.
# - That dependency uses all available cores.
#
# Without this, simply calling `make -j$(nproc)` from the `${CMAKE_BUILD_DIR}/deps/`
# directory will build many projects at once.
#
# This is undesirable for the following reasons:
#
# - The output from projects is mixed together,
# making it difficult to track down the cause of a build failure.
#
# - Larger dependencies such as LLVM can bottleneck the build process,
# making it necessary to cancel the build and manually run build commands in each directory.
#
# - Building many projects at once means canceling (Control-C) can lead to the build being in an undefined state.
# It's possible canceling happens as a patch is being applied or files are being copied.
# (steps that aren't part of the compilation process where it's typically safe to cancel).
if [[ -z "$MY_MAKE_CALL_LEVEL" ]]; then
export MY_MAKE_CALL_LEVEL=0
export MY_MAKEFLAGS=$MAKEFLAGS
# Extract the jobs argument (`-jN`, `-j N`, `--jobs=N`).
add_next=0
for i in "$@"; do
case $i in
-j*)
export MY_JOBS_ARG=$i
if [ "$MY_JOBS_ARG" = "-j" ]; then
add_next=1
fi
;;
--jobs=*)
shift # past argument=value
MY_JOBS_ARG=$i
;;
*)
if (( add_next == 1 )); then
MY_JOBS_ARG="$MY_JOBS_ARG $i"
add_next=0
fi
;;
esac
done
unset i add_next
if [[ -z "$MY_JOBS_ARG" ]]; then
MY_JOBS_ARG="-j$(nproc)"
fi
export MY_JOBS_ARG
# Support user defined `MAKEFLAGS`.
export MAKEFLAGS="$MY_MAKEFLAGS -j1"
else
export MY_MAKE_CALL_LEVEL=$(( MY_MAKE_CALL_LEVEL + 1 ))
if (( MY_MAKE_CALL_LEVEL == 1 )); then
# Important to set jobs to 1, otherwise user defined jobs argument is used.
export MAKEFLAGS="$MY_MAKEFLAGS -j1"
elif (( MY_MAKE_CALL_LEVEL == 2 )); then
# This is the level used by each sub-project.
export MAKEFLAGS="$MY_MAKEFLAGS $MY_JOBS_ARG"
fi
# Else leave `MY_MAKEFLAGS` flags as-is, avoids setting a high number of jobs on recursive
# calls (which may easily run out of memory). Let the job-server handle the rest.
fi
# Useful for troubleshooting the wrapper.
# echo "Call level: $MY_MAKE_CALL_LEVEL, args=$@".
# Call actual make but ensure recursive calls run via this script.
exec make MAKE="$0" "$@"

View File

@ -1,7 +1,7 @@
diff -Naur external_igc_opencl_clang.orig/CMakeLists.txt external_igc_opencl_clang/CMakeLists.txt
--- external_igc_opencl_clang.orig/CMakeLists.txt 2022-03-16 05:51:10 -0600
+++ external_igc_opencl_clang/CMakeLists.txt 2022-05-23 10:40:09 -0600
@@ -126,22 +126,24 @@
@@ -147,22 +147,24 @@
)
endif()

View File

@ -24,7 +24,7 @@ SET(_moltenvk_SEARCH_DIRS
# FIXME: These finder modules typically don't use LIBDIR,
# this should be set by `./build_files/cmake/platform/` instead.
IF(DEFINED LIBDIR)
SET(_moltenvk_SEARCH_DIRS ${_moltenvk_SEARCH_DIRS} ${LIBDIR}/vulkan/MoltenVK)
SET(_moltenvk_SEARCH_DIRS ${_moltenvk_SEARCH_DIRS} ${LIBDIR}/moltenvk)
ENDIF()
FIND_PATH(MOLTENVK_INCLUDE_DIR

View File

@ -0,0 +1,63 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright 2023 Blender Foundation.
# - Find ShaderC libraries
# Find the ShaderC includes and libraries
# This module defines
# SHADERC_INCLUDE_DIRS, where to find MoltenVK headers, Set when
# SHADERC_INCLUDE_DIR is found.
# SHADERC_LIBRARIES, libraries to link against to use ShaderC.
# SHADERC_ROOT_DIR, The base directory to search for ShaderC.
# This can also be an environment variable.
# SHADERC_FOUND, If false, do not try to use ShaderC.
#
# If SHADERC_ROOT_DIR was defined in the environment, use it.
IF(NOT SHADERC_ROOT_DIR AND NOT $ENV{SHADERC_ROOT_DIR} STREQUAL "")
SET(SHADERC_ROOT_DIR $ENV{SHADERC_ROOT_DIR})
ENDIF()
SET(_shaderc_SEARCH_DIRS
${SHADERC_ROOT_DIR}
)
# FIXME: These finder modules typically don't use LIBDIR,
# this should be set by `./build_files/cmake/platform/` instead.
IF(DEFINED LIBDIR)
SET(_shaderc_SEARCH_DIRS ${_shaderc_SEARCH_DIRS} ${LIBDIR}/shaderc)
ENDIF()
FIND_PATH(SHADERC_INCLUDE_DIR
NAMES
shaderc/shaderc.h
HINTS
${_shaderc_SEARCH_DIRS}
PATH_SUFFIXES
include
)
FIND_LIBRARY(SHADERC_LIBRARY
NAMES
shaderc_combined
HINTS
${_shaderc_SEARCH_DIRS}
PATH_SUFFIXES
lib
)
# handle the QUIETLY and REQUIRED arguments and set SHADERC_FOUND to TRUE if
# all listed variables are TRUE
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(ShaderC DEFAULT_MSG SHADERC_LIBRARY SHADERC_INCLUDE_DIR)
IF(SHADERC_FOUND)
SET(SHADERC_LIBRARIES ${SHADERC_LIBRARY})
SET(SHADERC_INCLUDE_DIRS ${SHADERC_INCLUDE_DIR})
ENDIF()
MARK_AS_ADVANCED(
SHADERC_INCLUDE_DIR
SHADERC_LIBRARY
)
UNSET(_shaderc_SEARCH_DIRS)

View File

@ -0,0 +1,63 @@
# SPDX-License-Identifier: BSD-3-Clause
# Copyright 2023 Blender Foundation.
# - Find Vulkan libraries
# Find the Vulkan includes and libraries
# This module defines
# VULKAN_INCLUDE_DIRS, where to find Vulkan headers, Set when
# VULKAN_INCLUDE_DIR is found.
# VULKAN_LIBRARIES, libraries to link against to use Vulkan.
# VULKAN_ROOT_DIR, The base directory to search for Vulkan.
# This can also be an environment variable.
# VULKAN_FOUND, If false, do not try to use Vulkan.
#
# If VULKAN_ROOT_DIR was defined in the environment, use it.
IF(NOT VULKAN_ROOT_DIR AND NOT $ENV{VULKAN_ROOT_DIR} STREQUAL "")
SET(VULKAN_ROOT_DIR $ENV{VULKAN_ROOT_DIR})
ENDIF()
SET(_vulkan_SEARCH_DIRS
${VULKAN_ROOT_DIR}
)
# FIXME: These finder modules typically don't use LIBDIR,
# this should be set by `./build_files/cmake/platform/` instead.
IF(DEFINED LIBDIR)
SET(_vulkan_SEARCH_DIRS ${_vulkan_SEARCH_DIRS} ${LIBDIR}/vulkan)
ENDIF()
FIND_PATH(VULKAN_INCLUDE_DIR
NAMES
vulkan/vulkan.h
HINTS
${_vulkan_SEARCH_DIRS}
PATH_SUFFIXES
include
)
FIND_LIBRARY(VULKAN_LIBRARY
NAMES
vulkan
HINTS
${_vulkan_SEARCH_DIRS}
PATH_SUFFIXES
lib
)
# handle the QUIETLY and REQUIRED arguments and set VULKAN_FOUND to TRUE if
# all listed variables are TRUE
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(Vulkan DEFAULT_MSG VULKAN_LIBRARY VULKAN_INCLUDE_DIR)
IF(VULKAN_FOUND)
SET(VULKAN_LIBRARIES ${VULKAN_LIBRARY})
SET(VULKAN_INCLUDE_DIRS ${VULKAN_INCLUDE_DIR})
ENDIF()
MARK_AS_ADVANCED(
VULKAN_INCLUDE_DIR
VULKAN_LIBRARY
)
UNSET(_vulkan_SEARCH_DIRS)

View File

@ -23,19 +23,19 @@ if(EXISTS ${SOURCE_DIR}/.git)
if(MY_WC_BRANCH STREQUAL "HEAD")
# Detached HEAD, check whether commit hash is reachable
# in the master branch
# in the main branch
execute_process(COMMAND git rev-parse --short=12 HEAD
WORKING_DIRECTORY ${SOURCE_DIR}
OUTPUT_VARIABLE MY_WC_HASH
OUTPUT_STRIP_TRAILING_WHITESPACE)
execute_process(COMMAND git branch --list master blender-v* --contains ${MY_WC_HASH}
execute_process(COMMAND git branch --list main blender-v* --contains ${MY_WC_HASH}
WORKING_DIRECTORY ${SOURCE_DIR}
OUTPUT_VARIABLE _git_contains_check
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(NOT _git_contains_check STREQUAL "")
set(MY_WC_BRANCH "master")
set(MY_WC_BRANCH "main")
else()
execute_process(COMMAND git show-ref --tags -d
WORKING_DIRECTORY ${SOURCE_DIR}
@ -48,7 +48,7 @@ if(EXISTS ${SOURCE_DIR}/.git)
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(_git_tag_hashes MATCHES "${_git_head_hash}")
set(MY_WC_BRANCH "master")
set(MY_WC_BRANCH "main")
else()
execute_process(COMMAND git branch --contains ${MY_WC_HASH}
WORKING_DIRECTORY ${SOURCE_DIR}

View File

@ -85,7 +85,7 @@ if(NOT APPLE)
set(WITH_CYCLES_DEVICE_OPTIX ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_CUDA_BINARIES ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_CUBIN_COMPILER OFF CACHE BOOL "" FORCE)
set(WITH_CYCLES_HIP_BINARIES ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_HIP_BINARIES OFF CACHE BOOL "" FORCE)
set(WITH_CYCLES_DEVICE_ONEAPI ON CACHE BOOL "" FORCE)
set(WITH_CYCLES_ONEAPI_BINARIES ON CACHE BOOL "" FORCE)
endif()

View File

@ -11,11 +11,11 @@
mkdir ~/blender-git
cd ~/blender-git
git clone http://git.blender.org/blender.git
git clone https://projects.blender.org/blender/blender.git
cd blender
git submodule update --init --recursive
git submodule foreach git checkout master
git submodule foreach git pull --rebase origin master
git submodule foreach git checkout main
git submodule foreach git pull --rebase origin main
# create build dir
mkdir ~/blender-git/build-cmake
@ -35,7 +35,7 @@ ln -s ~/blender-git/build-cmake/bin/blender ~/blender-git/blender/blender.bin
echo ""
echo "* Useful Commands *"
echo " Run Blender: ~/blender-git/blender/blender.bin"
echo " Update Blender: git pull --rebase; git submodule foreach git pull --rebase origin master"
echo " Update Blender: git pull --rebase; git submodule foreach git pull --rebase origin main"
echo " Reconfigure Blender: cd ~/blender-git/build-cmake ; cmake ."
echo " Build Blender: cd ~/blender-git/build-cmake ; make"
echo ""

View File

@ -544,7 +544,7 @@ endfunction()
function(setup_platform_linker_libs
target
)
# jemalloc must be early in the list, to be before pthread (see T57998)
# jemalloc must be early in the list, to be before pthread (see #57998).
if(WITH_MEM_JEMALLOC)
target_link_libraries(${target} ${JEMALLOC_LIBRARIES})
endif()

View File

@ -97,20 +97,8 @@ add_bundled_libraries(materialx/lib)
if(WITH_VULKAN_BACKEND)
find_package(MoltenVK REQUIRED)
if(EXISTS ${LIBDIR}/vulkan)
set(VULKAN_FOUND On)
set(VULKAN_ROOT_DIR ${LIBDIR}/vulkan/macOS)
set(VULKAN_INCLUDE_DIR ${VULKAN_ROOT_DIR}/include)
set(VULKAN_LIBRARY ${VULKAN_ROOT_DIR}/lib/libvulkan.1.dylib)
set(SHADERC_LIBRARY ${VULKAN_ROOT_DIR}/lib/libshaderc_combined.a)
set(VULKAN_INCLUDE_DIRS ${VULKAN_INCLUDE_DIR} ${MOLTENVK_INCLUDE_DIRS})
set(VULKAN_LIBRARIES ${VULKAN_LIBRARY} ${SHADERC_LIBRARY} ${MOLTENVK_LIBRARIES})
else()
message(WARNING "Vulkan SDK was not found, disabling WITH_VULKAN_BACKEND")
set(WITH_VULKAN_BACKEND OFF)
endif()
find_package(ShaderC REQUIRED)
find_package(Vulkan REQUIRED)
endif()
if(WITH_OPENSUBDIV)
@ -452,7 +440,7 @@ string(APPEND PLATFORM_LINKFLAGS " -stdlib=libc++")
# Make stack size more similar to Embree, required for Embree.
string(APPEND PLATFORM_LINKFLAGS_EXECUTABLE " -Wl,-stack_size,0x100000")
# Suppress ranlib "has no symbols" warnings (workaround for T48250)
# Suppress ranlib "has no symbols" warnings (workaround for #48250).
set(CMAKE_C_ARCHIVE_CREATE "<CMAKE_AR> Scr <TARGET> <LINK_FLAGS> <OBJECTS>")
set(CMAKE_CXX_ARCHIVE_CREATE "<CMAKE_AR> Scr <TARGET> <LINK_FLAGS> <OBJECTS>")
# llvm-ranlib doesn't support this flag. Xcode's libtool does.

View File

@ -111,6 +111,7 @@ find_package_wrapper(Epoxy REQUIRED)
if(WITH_VULKAN_BACKEND)
find_package_wrapper(Vulkan REQUIRED)
find_package_wrapper(ShaderC REQUIRED)
endif()
function(check_freetype_for_brotli)

View File

@ -121,7 +121,7 @@ if(WITH_WINDOWS_BUNDLE_CRT)
include(InstallRequiredSystemLibraries)
# ucrtbase(d).dll cannot be in the manifest, due to the way windows 10 handles
# redirects for this dll, for details see T88813.
# redirects for this dll, for details see #88813.
foreach(lib ${CMAKE_INSTALL_SYSTEM_RUNTIME_LIBS})
string(FIND ${lib} "ucrtbase" pos)
if(NOT pos EQUAL -1)
@ -295,7 +295,7 @@ unset(MATERIALX_LIB_FOLDER_EXISTS)
if(NOT MSVC_CLANG AND # Available with MSVC 15.7+ but not for CLANG.
NOT WITH_WINDOWS_SCCACHE AND # And not when sccache is enabled
NOT VS_CLANG_TIDY) # Clang-tidy does not like these options
add_compile_options(/experimental:external /external:templates- /external:I "${LIBDIR}" /external:W0)
add_compile_options(/experimental:external /external:I "${LIBDIR}" /external:W0)
endif()
# Add each of our libraries to our cmake_prefix_path so find_package() could work

View File

@ -5,16 +5,16 @@
update-code:
git:
submodules:
- branch: master
- branch: main
commit_id: HEAD
path: release/scripts/addons
- branch: master
- branch: main
commit_id: HEAD
path: release/scripts/addons_contrib
- branch: master
- branch: main
commit_id: HEAD
path: release/datafiles/locale
- branch: master
- branch: main
commit_id: HEAD
path: source/tools
svn:

View File

@ -24,7 +24,7 @@ import os
import re
import platform
import string
import setuptools # type: ignore
import setuptools
import sys
from typing import (
@ -58,7 +58,7 @@ Each Blender release supports one Python version, and the package is only compat
## Source Code
* [Releases](https://download.blender.org/source/)
* Repository: [git.blender.org/blender.git](https://git.blender.org/gitweb/gitweb.cgi/blender.git)
* Repository: [projects.blender.org/blender/blender.git](https://projects.blender.org/blender/blender)
## Credits
@ -208,7 +208,7 @@ def main() -> None:
return paths
# Ensure this wheel is marked platform specific.
class BinaryDistribution(setuptools.dist.Distribution): # type: ignore
class BinaryDistribution(setuptools.dist.Distribution):
def has_ext_modules(self) -> bool:
return True

View File

@ -13,10 +13,10 @@ import sys
import make_utils
from make_utils import call
# Parse arguments
# Parse arguments.
def parse_arguments():
def parse_arguments() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--ctest-command", default="ctest")
parser.add_argument("--cmake-command", default="cmake")

View File

@ -170,7 +170,7 @@ def git_update_skip(args: argparse.Namespace, check_remote_exists: bool = True)
return "rebase or merge in progress, complete it first"
# Abort if uncommitted changes.
changes = check_output([args.git_command, 'status', '--porcelain', '--untracked-files=no'])
changes = check_output([args.git_command, 'status', '--porcelain', '--untracked-files=no', '--ignore-submodules'])
if len(changes) != 0:
return "you have unstaged changes"
@ -202,8 +202,8 @@ def submodules_update(
sys.exit(1)
# Update submodules to appropriate given branch,
# falling back to master if none is given and/or found in a sub-repository.
branch_fallback = "master"
# falling back to main if none is given and/or found in a sub-repository.
branch_fallback = "main"
if not branch:
branch = branch_fallback

View File

@ -3,9 +3,9 @@ if NOT exist "%BLENDER_DIR%\source\tools\.git" (
if not "%GIT%" == "" (
"%GIT%" submodule update --init --recursive --progress
if errorlevel 1 goto FAIL
"%GIT%" submodule foreach git checkout master
"%GIT%" submodule foreach git checkout main
if errorlevel 1 goto FAIL
"%GIT%" submodule foreach git pull --rebase origin master
"%GIT%" submodule foreach git pull --rebase origin main
if errorlevel 1 goto FAIL
goto EOF
) else (

View File

@ -38,7 +38,7 @@ PROJECT_NAME = Blender
# could be handy for archiving the generated documentation or if some version
# control system is used.
PROJECT_NUMBER = V3.5
PROJECT_NUMBER = V3.6
# Using the PROJECT_BRIEF tag one can provide an optional one line description
# for a project that appears at the top of each page and should give viewer a

View File

@ -37,7 +37,7 @@ def draw_callback_px(self, context):
# BLF drawing routine
font_id = font_info["font_id"]
blf.position(font_id, 2, 80, 0)
blf.size(font_id, 50, 72)
blf.size(font_id, 50)
blf.draw(font_id, "Hello World")

View File

@ -476,7 +476,7 @@ MODULE_GROUPING = {
# -------------------------------BLENDER----------------------------------------
# converting bytes to strings, due to T30154
# Converting bytes to strings, due to #30154.
BLENDER_REVISION = str(bpy.app.build_hash, 'utf_8')
BLENDER_REVISION_TIMESTAMP = bpy.app.build_commit_timestamp
@ -487,7 +487,7 @@ BLENDER_VERSION_DOTS = "%d.%d" % (bpy.app.version[0], bpy.app.version[1])
if BLENDER_REVISION != "Unknown":
# SHA1 Git hash
BLENDER_VERSION_HASH = BLENDER_REVISION
BLENDER_VERSION_HASH_HTML_LINK = "<a href=https://developer.blender.org/rB%s>%s</a>" % (
BLENDER_VERSION_HASH_HTML_LINK = "<a href=https://projects.blender.org/blender/blender/commit/%s>%s</a>" % (
BLENDER_VERSION_HASH, BLENDER_VERSION_HASH,
)
BLENDER_VERSION_DATE = time.strftime("%d/%m/%Y", time.localtime(BLENDER_REVISION_TIMESTAMP))
@ -647,7 +647,7 @@ def undocumented_message(module_name, type_name, identifier):
module_name, type_name, identifier,
)
return "Undocumented, consider `contributing <https://developer.blender.org/T51061>`__."
return "Undocumented, consider `contributing <https://developer.blender.org/>`__."
def range_str(val):
@ -1816,9 +1816,9 @@ def pyrna2sphinx(basepath):
# operators
def write_ops():
API_BASEURL = "https://developer.blender.org/diffusion/B/browse/master/release/scripts"
API_BASEURL_ADDON = "https://developer.blender.org/diffusion/BA"
API_BASEURL_ADDON_CONTRIB = "https://developer.blender.org/diffusion/BAC"
API_BASEURL = "https://projects.blender.org/blender/blender/src/branch/main/release/scripts"
API_BASEURL_ADDON = "https://projects.blender.org/blender/blender-addons"
API_BASEURL_ADDON_CONTRIB = "https://projects.blender.org/blender/blender-addons-contrib"
op_modules = {}
op = None
@ -2200,7 +2200,7 @@ def write_rst_enum_items(basepath, key, key_no_prefix, enum_items):
Write a single page for a static enum in RST.
This helps avoiding very large lists being in-lined in many places which is an issue
especially with icons in ``bpy.types.UILayout``. See T87008.
especially with icons in ``bpy.types.UILayout``. See #87008.
"""
filepath = os.path.join(basepath, "%s.rst" % key_no_prefix)
with open(filepath, "w", encoding="utf-8") as fh:

View File

@ -156,7 +156,7 @@ var Popover = function() {
},
getNamed : function(v) {
$.each(all_versions, function(ix, title) {
if (ix === "master" || ix === "latest") {
if (ix === "master" || ix === "main" || ix === "latest") {
var m = title.match(/\d\.\d[\w\d\.]*/)[0];
if (parseFloat(m) == v) {
v = ix;

View File

@ -1,5 +1,5 @@
Project: Blender
URL: https://git.blender.org/blender.git
URL: https://projects.blender.org/blender/blender.git
License: Apache 2.0
Upstream version: N/A
Local modifications: None

View File

@ -7,6 +7,7 @@ set(INC
set(INC_SYS
${VULKAN_INCLUDE_DIRS}
${MOLTENVK_INCLUDE_DIRS}
)
set(SRC

View File

@ -0,0 +1,15 @@
diff --git a/extern/vulkan_memory_allocator/vk_mem_alloc.h b/extern/vulkan_memory_allocator/vk_mem_alloc.h
index 60f572038c0..63a9994ba46 100644
--- a/extern/vulkan_memory_allocator/vk_mem_alloc.h
+++ b/extern/vulkan_memory_allocator/vk_mem_alloc.h
@@ -13371,8 +13371,8 @@ bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
// Early return when max found
if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
{
- VMA_ASSERT(m_PassStats.allocationsMoved == m_MaxPassAllocations ||
- m_PassStats.bytesMoved == m_MaxPassBytes && "Exceeded maximal pass threshold!");
+ VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations ||
+ m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!");
return true;
}
return false;

File diff suppressed because it is too large Load Diff

View File

@ -12,6 +12,7 @@ from bpy.props import (
PointerProperty,
StringProperty,
)
from bpy.app.translations import pgettext_iface as iface_
from math import pi
@ -1664,30 +1665,51 @@ class CyclesPreferences(bpy.types.AddonPreferences):
col.label(text="No compatible GPUs found for Cycles", icon='INFO')
if device_type == 'CUDA':
col.label(text="Requires NVIDIA GPU with compute capability 3.0", icon='BLANK1')
compute_capability = "3.0"
col.label(text=iface_("Requires NVIDIA GPU with compute capability %s") % compute_capability,
icon='BLANK1', translate=False)
elif device_type == 'OPTIX':
col.label(text="Requires NVIDIA GPU with compute capability 5.0", icon='BLANK1')
col.label(text="and NVIDIA driver version 470 or newer", icon='BLANK1')
compute_capability = "5.0"
driver_version = "470"
col.label(text=iface_("Requires NVIDIA GPU with compute capability %s") % compute_capability,
icon='BLANK1', translate=False)
col.label(text="and NVIDIA driver version %s or newer" % driver_version,
icon='BLANK1', translate=False)
elif device_type == 'HIP':
import sys
if sys.platform[:3] == "win":
col.label(text="Requires AMD GPU with RDNA architecture", icon='BLANK1')
col.label(text="and AMD Radeon Pro 21.Q4 driver or newer", icon='BLANK1')
elif sys.platform.startswith("linux"):
col.label(text="Requires AMD GPU with RDNA architecture", icon='BLANK1')
col.label(text="and AMD driver version 22.10 or newer", icon='BLANK1')
if True:
col.label(text="HIP temporarily disabled due to compiler bugs", icon='BLANK1')
else:
import sys
if sys.platform[:3] == "win":
driver_version = "21.Q4"
col.label(text="Requires AMD GPU with Vega or RDNA architecture", icon='BLANK1')
col.label(text=iface_("and AMD Radeon Pro %s driver or newer") % driver_version,
icon='BLANK1', translate=False)
elif sys.platform.startswith("linux"):
driver_version = "22.10"
col.label(text="Requires AMD GPU with Vega or RDNA architecture", icon='BLANK1')
col.label(text=iface_("and AMD driver version %s or newer") % driver_version, icon='BLANK1',
translate=False)
elif device_type == 'ONEAPI':
import sys
if sys.platform.startswith("win"):
driver_version = "101.4032"
col.label(text="Requires Intel GPU with Xe-HPG architecture", icon='BLANK1')
col.label(text="and Windows driver version 101.4032 or newer", icon='BLANK1')
col.label(text=iface_("and Windows driver version %s or newer") % driver_version,
icon='BLANK1', translate=False)
elif sys.platform.startswith("linux"):
driver_version = "1.3.24931"
col.label(text="Requires Intel GPU with Xe-HPG architecture and", icon='BLANK1')
col.label(text=" - intel-level-zero-gpu version 1.3.24931 or newer", icon='BLANK1')
col.label(text=iface_(" - intel-level-zero-gpu version %s or newer") % driver_version,
icon='BLANK1', translate=False)
col.label(text=" - oneAPI Level-Zero Loader", icon='BLANK1')
elif device_type == 'METAL':
col.label(text="Requires Apple Silicon with macOS 12.2 or newer", icon='BLANK1')
col.label(text="or AMD with macOS 12.3 or newer", icon='BLANK1')
silicon_mac_version = "12.2"
amd_mac_version = "12.3"
col.label(text=iface_("Requires Apple Silicon with macOS %s or newer") % silicon_mac_version,
icon='BLANK1', translate=False)
col.label(text=iface_("or AMD with macOS %s or newer") % amd_mac_version, icon='BLANK1',
translate=False)
return
for device in devices:
@ -1723,12 +1745,21 @@ class CyclesPreferences(bpy.types.AddonPreferences):
if compute_device_type == 'METAL':
import platform
# MetalRT only works on Apple Silicon at present, pending argument encoding fixes on AMD
# Kernel specialization is only viable on Apple Silicon at present due to relative compilation speed
if platform.machine() == 'arm64':
import re
is_navi_2 = False
for device in devices:
if re.search(r"((RX)|(Pro)|(PRO))\s+W?6\d00X", device.name):
is_navi_2 = True
break
# MetalRT only works on Apple Silicon and Navi2.
is_arm64 = platform.machine() == 'arm64'
if is_arm64 or is_navi_2:
col = layout.column()
col.use_property_split = True
col.prop(self, "kernel_optimization_level")
# Kernel specialization is only supported on Apple Silicon
if is_arm64:
col.prop(self, "kernel_optimization_level")
col.prop(self, "use_metalrt")
def draw(self, context):

View File

@ -20,7 +20,7 @@ class CyclesPresetPanel(PresetPanel, Panel):
@staticmethod
def post_cb(context):
# Modify an arbitrary built-in scene property to force a depsgraph
# update, because add-on properties don't. (see T62325)
# update, because add-on properties don't. (see #62325)
render = context.scene.render
render.filter_size = render.filter_size

View File

@ -105,11 +105,12 @@ GPUShader *BlenderFallbackDisplayShader::bind(int width, int height)
/* Bind shader now to enable uniform assignment. */
GPU_shader_bind(shader_program_);
GPU_shader_uniform_int(shader_program_, image_texture_location_, 0);
int slot = 0;
GPU_shader_uniform_int_ex(shader_program_, image_texture_location_, 1, 1, &slot);
float size[2];
size[0] = width;
size[1] = height;
GPU_shader_uniform_vector(shader_program_, fullscreen_location_, 2, 1, size);
GPU_shader_uniform_float_ex(shader_program_, fullscreen_location_, 2, 1, size);
return shader_program_;
}

View File

@ -20,7 +20,7 @@ BlenderImageLoader::BlenderImageLoader(BL::Image b_image,
: b_image(b_image),
frame(frame),
tile_number(tile_number),
/* Don't free cache for preview render to avoid race condition from T93560, to be fixed
/* Don't free cache for preview render to avoid race condition from #93560, to be fixed
* properly later as we are close to release. */
free_cache(!is_preview_render && !b_image.has_data())
{
@ -72,7 +72,7 @@ bool BlenderImageLoader::load_metadata(const ImageDeviceFeatures &, ImageMetaDat
metadata.colorspace = u_colorspace_raw;
}
else {
/* In some cases (e.g. T94135), the colorspace setting in Blender gets updated as part of the
/* In some cases (e.g. #94135), the colorspace setting in Blender gets updated as part of the
* metadata queries in this function, so update the colorspace setting here. */
PointerRNA colorspace_ptr = b_image.colorspace_settings().ptr;
metadata.colorspace = get_enum_identifier(colorspace_ptr, "name");

View File

@ -24,7 +24,7 @@ void BlenderSync::sync_light(BL::Object &b_parent,
Light *light = light_map.find(key);
/* Check if the transform was modified, in case a linked collection is moved we do not get a
* specific depsgraph update (T88515). This also mimics the behavior for Objects. */
* specific depsgraph update (#88515). This also mimics the behavior for Objects. */
const bool tfm_updated = (light && light->get_tfm() != tfm);
/* Update if either object or light data changed. */
@ -48,6 +48,8 @@ void BlenderSync::sync_light(BL::Object &b_parent,
case BL::Light::type_SPOT: {
BL::SpotLight b_spot_light(b_light);
light->set_size(b_spot_light.shadow_soft_size());
light->set_axisu(transform_get_column(&tfm, 0));
light->set_axisv(transform_get_column(&tfm, 1));
light->set_light_type(LIGHT_SPOT);
light->set_spot_angle(b_spot_light.spot_size());
light->set_spot_smooth(b_spot_light.spot_blend());

View File

@ -94,7 +94,7 @@ void python_thread_state_restore(void **python_thread_state)
*python_thread_state = NULL;
}
static const char *PyC_UnicodeAsByte(PyObject *py_str, PyObject **coerce)
static const char *PyC_UnicodeAsBytes(PyObject *py_str, PyObject **coerce)
{
const char *result = PyUnicode_AsUTF8(py_str);
if (result) {
@ -131,8 +131,8 @@ static PyObject *init_func(PyObject * /*self*/, PyObject *args)
}
PyObject *path_coerce = nullptr, *user_path_coerce = nullptr;
path_init(PyC_UnicodeAsByte(path, &path_coerce),
PyC_UnicodeAsByte(user_path, &user_path_coerce));
path_init(PyC_UnicodeAsBytes(path, &path_coerce),
PyC_UnicodeAsBytes(user_path, &user_path_coerce));
Py_XDECREF(path_coerce);
Py_XDECREF(user_path_coerce);

View File

@ -404,7 +404,7 @@ void BlenderSession::render(BL::Depsgraph &b_depsgraph_)
* point we know that we've got everything to render current view layer.
*/
/* At the moment we only free if we are not doing multi-view
* (or if we are rendering the last view). See T58142/D4239 for discussion.
* (or if we are rendering the last view). See #58142/D4239 for discussion.
*/
if (view_index == num_views - 1) {
free_blender_memory_if_possible();

View File

@ -766,7 +766,7 @@ void BlenderSync::free_data_after_sync(BL::Depsgraph &b_depsgraph)
(BlenderSession::headless || is_interface_locked) &&
/* Baking re-uses the depsgraph multiple times, clearing crashes
* reading un-evaluated mesh data which isn't aligned with the
* geometry we're baking, see T71012. */
* geometry we're baking, see #71012. */
!scene->bake_manager->get_baking() &&
/* Persistent data must main caches for performance and correctness. */
!is_persistent_data;

View File

@ -42,12 +42,15 @@ endif()
###########################################################################
if(WITH_CYCLES_HIP_BINARIES AND WITH_CYCLES_DEVICE_HIP)
find_package(HIP)
set_and_warn_library_found("HIP compiler" HIP_FOUND WITH_CYCLES_HIP_BINARIES)
set(WITH_CYCLES_HIP_BINARIES OFF)
message(STATUS "HIP temporarily disabled due to compiler bugs")
if(HIP_FOUND)
message(STATUS "Found HIP ${HIP_HIPCC_EXECUTABLE} (${HIP_VERSION})")
endif()
# find_package(HIP)
# set_and_warn_library_found("HIP compiler" HIP_FOUND WITH_CYCLES_HIP_BINARIES)
# if(HIP_FOUND)
# message(STATUS "Found HIP ${HIP_HIPCC_EXECUTABLE} (${HIP_VERSION})")
# endif()
endif()
if(NOT WITH_HIP_DYNLOAD)

View File

@ -53,8 +53,12 @@ void CUDADevice::set_error(const string &error)
}
CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: Device(info, stats, profiler), texture_info(this, "texture_info", MEM_GLOBAL)
: GPUDevice(info, stats, profiler)
{
/* Verify that base class types can be used with specific backend types */
static_assert(sizeof(texMemObject) == sizeof(CUtexObject));
static_assert(sizeof(arrayMemObject) == sizeof(CUarray));
first_error = true;
cuDevId = info.num;
@ -65,12 +69,6 @@ CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
need_texture_info = false;
device_texture_headroom = 0;
device_working_headroom = 0;
move_texture_to_host = false;
map_host_limit = 0;
map_host_used = 0;
can_map_host = 0;
pitch_alignment = 0;
/* Initialize CUDA. */
@ -91,8 +89,9 @@ CUDADevice::CUDADevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
/* CU_CTX_MAP_HOST for mapping host memory when out of device memory.
* CU_CTX_LMEM_RESIZE_TO_MAX for reserving local memory ahead of render,
* so we can predict which memory to map to host. */
cuda_assert(
cuDeviceGetAttribute(&can_map_host, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice));
int value;
cuda_assert(cuDeviceGetAttribute(&value, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, cuDevice));
can_map_host = value != 0;
cuda_assert(cuDeviceGetAttribute(
&pitch_alignment, CU_DEVICE_ATTRIBUTE_TEXTURE_PITCH_ALIGNMENT, cuDevice));
@ -499,311 +498,57 @@ void CUDADevice::reserve_local_memory(const uint kernel_features)
# endif
}
void CUDADevice::init_host_memory()
{
/* Limit amount of host mapped memory, because allocating too much can
* cause system instability. Leave at least half or 4 GB of system
* memory free, whichever is smaller. */
size_t default_limit = 4 * 1024 * 1024 * 1024LL;
size_t system_ram = system_physical_ram();
if (system_ram > 0) {
if (system_ram / 2 > default_limit) {
map_host_limit = system_ram - default_limit;
}
else {
map_host_limit = system_ram / 2;
}
}
else {
VLOG_WARNING << "Mapped host memory disabled, failed to get system RAM";
map_host_limit = 0;
}
/* Amount of device memory to keep is free after texture memory
* and working memory allocations respectively. We set the working
* memory limit headroom lower so that some space is left after all
* texture memory allocations. */
device_working_headroom = 32 * 1024 * 1024LL; // 32MB
device_texture_headroom = 128 * 1024 * 1024LL; // 128MB
VLOG_INFO << "Mapped host memory limit set to " << string_human_readable_number(map_host_limit)
<< " bytes. (" << string_human_readable_size(map_host_limit) << ")";
}
void CUDADevice::load_texture_info()
{
if (need_texture_info) {
/* Unset flag before copying, so this does not loop indefinitely if the copy below calls
* into 'move_textures_to_host' (which calls 'load_texture_info' again). */
need_texture_info = false;
texture_info.copy_to_device();
}
}
void CUDADevice::move_textures_to_host(size_t size, bool for_texture)
{
/* Break out of recursive call, which can happen when moving memory on a multi device. */
static bool any_device_moving_textures_to_host = false;
if (any_device_moving_textures_to_host) {
return;
}
/* Signal to reallocate textures in host memory only. */
move_texture_to_host = true;
while (size > 0) {
/* Find suitable memory allocation to move. */
device_memory *max_mem = NULL;
size_t max_size = 0;
bool max_is_image = false;
thread_scoped_lock lock(cuda_mem_map_mutex);
foreach (CUDAMemMap::value_type &pair, cuda_mem_map) {
device_memory &mem = *pair.first;
CUDAMem *cmem = &pair.second;
/* Can only move textures allocated on this device (and not those from peer devices).
* And need to ignore memory that is already on the host. */
if (!mem.is_resident(this) || cmem->use_mapped_host) {
continue;
}
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) &&
(&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
/* Can't move this type of memory. */
if (!is_texture || cmem->array) {
continue;
}
/* For other textures, only move image textures. */
if (for_texture && !is_image) {
continue;
}
/* Try to move largest allocation, prefer moving images. */
if (is_image > max_is_image || (is_image == max_is_image && mem.device_size > max_size)) {
max_is_image = is_image;
max_size = mem.device_size;
max_mem = &mem;
}
}
lock.unlock();
/* Move to host memory. This part is mutex protected since
* multiple CUDA devices could be moving the memory. The
* first one will do it, and the rest will adopt the pointer. */
if (max_mem) {
VLOG_WORK << "Move memory from device to host: " << max_mem->name;
static thread_mutex move_mutex;
thread_scoped_lock lock(move_mutex);
any_device_moving_textures_to_host = true;
/* Potentially need to call back into multi device, so pointer mapping
* and peer devices are updated. This is also necessary since the device
* pointer may just be a key here, so cannot be accessed and freed directly.
* Unfortunately it does mean that memory is reallocated on all other
* devices as well, which is potentially dangerous when still in use (since
* a thread rendering on another devices would only be caught in this mutex
* if it so happens to do an allocation at the same time as well. */
max_mem->device_copy_to();
size = (max_size >= size) ? 0 : size - max_size;
any_device_moving_textures_to_host = false;
}
else {
break;
}
}
/* Unset flag before texture info is reloaded, since it should stay in device memory. */
move_texture_to_host = false;
/* Update texture info array with new pointers. */
load_texture_info();
}
CUDADevice::CUDAMem *CUDADevice::generic_alloc(device_memory &mem, size_t pitch_padding)
void CUDADevice::get_device_memory_info(size_t &total, size_t &free)
{
CUDAContextScope scope(this);
CUdeviceptr device_pointer = 0;
size_t size = mem.memory_size() + pitch_padding;
CUresult mem_alloc_result = CUDA_ERROR_OUT_OF_MEMORY;
const char *status = "";
/* First try allocating in device memory, respecting headroom. We make
* an exception for texture info. It is small and frequently accessed,
* so treat it as working memory.
*
* If there is not enough room for working memory, we will try to move
* textures to host memory, assuming the performance impact would have
* been worse for working memory. */
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) && (&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
size_t headroom = (is_texture) ? device_texture_headroom : device_working_headroom;
size_t total = 0, free = 0;
cuMemGetInfo(&free, &total);
/* Move textures to host memory if needed. */
if (!move_texture_to_host && !is_image && (size + headroom) >= free && can_map_host) {
move_textures_to_host(size + headroom - free, is_texture);
cuMemGetInfo(&free, &total);
}
/* Allocate in device memory. */
if (!move_texture_to_host && (size + headroom) < free) {
mem_alloc_result = cuMemAlloc(&device_pointer, size);
if (mem_alloc_result == CUDA_SUCCESS) {
status = " in device memory";
}
}
/* Fall back to mapped host memory if needed and possible. */
void *shared_pointer = 0;
if (mem_alloc_result != CUDA_SUCCESS && can_map_host && mem.type != MEM_DEVICE_ONLY) {
if (mem.shared_pointer) {
/* Another device already allocated host memory. */
mem_alloc_result = CUDA_SUCCESS;
shared_pointer = mem.shared_pointer;
}
else if (map_host_used + size < map_host_limit) {
/* Allocate host memory ourselves. */
mem_alloc_result = cuMemHostAlloc(
&shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
assert((mem_alloc_result == CUDA_SUCCESS && shared_pointer != 0) ||
(mem_alloc_result != CUDA_SUCCESS && shared_pointer == 0));
}
if (mem_alloc_result == CUDA_SUCCESS) {
cuda_assert(cuMemHostGetDevicePointer_v2(&device_pointer, shared_pointer, 0));
map_host_used += size;
status = " in host memory";
}
}
if (mem_alloc_result != CUDA_SUCCESS) {
if (mem.type == MEM_DEVICE_ONLY) {
status = " failed, out of device memory";
set_error("System is out of GPU memory");
}
else {
status = " failed, out of device and host memory";
set_error("System is out of GPU and shared host memory");
}
}
if (mem.name) {
VLOG_WORK << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")" << status;
}
mem.device_pointer = (device_ptr)device_pointer;
mem.device_size = size;
stats.mem_alloc(size);
if (!mem.device_pointer) {
return NULL;
}
/* Insert into map of allocations. */
thread_scoped_lock lock(cuda_mem_map_mutex);
CUDAMem *cmem = &cuda_mem_map[&mem];
if (shared_pointer != 0) {
/* Replace host pointer with our host allocation. Only works if
* CUDA memory layout is the same and has no pitch padding. Also
* does not work if we move textures to host during a render,
* since other devices might be using the memory. */
if (!move_texture_to_host && pitch_padding == 0 && mem.host_pointer &&
mem.host_pointer != shared_pointer) {
memcpy(shared_pointer, mem.host_pointer, size);
/* A Call to device_memory::host_free() should be preceded by
* a call to device_memory::device_free() for host memory
* allocated by a device to be handled properly. Two exceptions
* are here and a call in OptiXDevice::generic_alloc(), where
* the current host memory can be assumed to be allocated by
* device_memory::host_alloc(), not by a device */
mem.host_free();
mem.host_pointer = shared_pointer;
}
mem.shared_pointer = shared_pointer;
mem.shared_counter++;
cmem->use_mapped_host = true;
}
else {
cmem->use_mapped_host = false;
}
return cmem;
}
void CUDADevice::generic_copy_to(device_memory &mem)
bool CUDADevice::alloc_device(void *&device_pointer, size_t size)
{
if (!mem.host_pointer || !mem.device_pointer) {
return;
}
CUDAContextScope scope(this);
/* If use_mapped_host of mem is false, the current device only uses device memory allocated by
* cuMemAlloc regardless of mem.host_pointer and mem.shared_pointer, and should copy data from
* mem.host_pointer. */
thread_scoped_lock lock(cuda_mem_map_mutex);
if (!cuda_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const CUDAContextScope scope(this);
cuda_assert(
cuMemcpyHtoD((CUdeviceptr)mem.device_pointer, mem.host_pointer, mem.memory_size()));
}
CUresult mem_alloc_result = cuMemAlloc((CUdeviceptr *)&device_pointer, size);
return mem_alloc_result == CUDA_SUCCESS;
}
void CUDADevice::generic_free(device_memory &mem)
void CUDADevice::free_device(void *device_pointer)
{
if (mem.device_pointer) {
CUDAContextScope scope(this);
thread_scoped_lock lock(cuda_mem_map_mutex);
DCHECK(cuda_mem_map.find(&mem) != cuda_mem_map.end());
const CUDAMem &cmem = cuda_mem_map[&mem];
CUDAContextScope scope(this);
/* If cmem.use_mapped_host is true, reference counting is used
* to safely free a mapped host memory. */
cuda_assert(cuMemFree((CUdeviceptr)device_pointer));
}
if (cmem.use_mapped_host) {
assert(mem.shared_pointer);
if (mem.shared_pointer) {
assert(mem.shared_counter > 0);
if (--mem.shared_counter == 0) {
if (mem.host_pointer == mem.shared_pointer) {
mem.host_pointer = 0;
}
cuMemFreeHost(mem.shared_pointer);
mem.shared_pointer = 0;
}
}
map_host_used -= mem.device_size;
}
else {
/* Free device memory. */
cuda_assert(cuMemFree(mem.device_pointer));
}
bool CUDADevice::alloc_host(void *&shared_pointer, size_t size)
{
CUDAContextScope scope(this);
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
CUresult mem_alloc_result = cuMemHostAlloc(
&shared_pointer, size, CU_MEMHOSTALLOC_DEVICEMAP | CU_MEMHOSTALLOC_WRITECOMBINED);
return mem_alloc_result == CUDA_SUCCESS;
}
cuda_mem_map.erase(cuda_mem_map.find(&mem));
}
void CUDADevice::free_host(void *shared_pointer)
{
CUDAContextScope scope(this);
cuMemFreeHost(shared_pointer);
}
bool CUDADevice::transform_host_pointer(void *&device_pointer, void *&shared_pointer)
{
CUDAContextScope scope(this);
cuda_assert(cuMemHostGetDevicePointer_v2((CUdeviceptr *)&device_pointer, shared_pointer, 0));
return true;
}
void CUDADevice::copy_host_to_device(void *device_pointer, void *host_pointer, size_t size)
{
const CUDAContextScope scope(this);
cuda_assert(cuMemcpyHtoD((CUdeviceptr)device_pointer, host_pointer, size));
}
void CUDADevice::mem_alloc(device_memory &mem)
@ -868,8 +613,8 @@ void CUDADevice::mem_zero(device_memory &mem)
/* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
* regardless of mem.host_pointer and mem.shared_pointer. */
thread_scoped_lock lock(cuda_mem_map_mutex);
if (!cuda_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
thread_scoped_lock lock(device_mem_map_mutex);
if (!device_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const CUDAContextScope scope(this);
cuda_assert(cuMemsetD8((CUdeviceptr)mem.device_pointer, 0, mem.memory_size()));
}
@ -994,19 +739,19 @@ void CUDADevice::tex_alloc(device_texture &mem)
return;
}
CUDAMem *cmem = NULL;
Mem *cmem = NULL;
CUarray array_3d = NULL;
size_t src_pitch = mem.data_width * dsize * mem.data_elements;
size_t dst_pitch = src_pitch;
if (!mem.is_resident(this)) {
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
if (mem.data_depth > 1) {
array_3d = (CUarray)mem.device_pointer;
cmem->array = array_3d;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
dst_pitch = align_up(src_pitch, pitch_alignment);
@ -1050,10 +795,10 @@ void CUDADevice::tex_alloc(device_texture &mem)
mem.device_size = size;
stats.mem_alloc(size);
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
cmem->array = array_3d;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
/* 2D texture, using pitch aligned linear memory. */
@ -1137,8 +882,8 @@ void CUDADevice::tex_alloc(device_texture &mem)
texDesc.filterMode = filter_mode;
texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
thread_scoped_lock lock(cuda_mem_map_mutex);
cmem = &cuda_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cuda_assert(cuTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
@ -1153,9 +898,9 @@ void CUDADevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
CUDAContextScope scope(this);
thread_scoped_lock lock(cuda_mem_map_mutex);
DCHECK(cuda_mem_map.find(&mem) != cuda_mem_map.end());
const CUDAMem &cmem = cuda_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
DCHECK(device_mem_map.find(&mem) != device_mem_map.end());
const Mem &cmem = device_mem_map[&mem];
if (cmem.texobject) {
/* Free bindless texture. */
@ -1164,16 +909,16 @@ void CUDADevice::tex_free(device_texture &mem)
if (!mem.is_resident(this)) {
/* Do not free memory here, since it was allocated on a different device. */
cuda_mem_map.erase(cuda_mem_map.find(&mem));
device_mem_map.erase(device_mem_map.find(&mem));
}
else if (cmem.array) {
/* Free array. */
cuArrayDestroy(cmem.array);
cuArrayDestroy(reinterpret_cast<CUarray>(cmem.array));
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
cuda_mem_map.erase(cuda_mem_map.find(&mem));
device_mem_map.erase(device_mem_map.find(&mem));
}
else {
lock.unlock();

View File

@ -21,7 +21,7 @@ CCL_NAMESPACE_BEGIN
class DeviceQueue;
class CUDADevice : public Device {
class CUDADevice : public GPUDevice {
friend class CUDAContextScope;
@ -29,36 +29,11 @@ class CUDADevice : public Device {
CUdevice cuDevice;
CUcontext cuContext;
CUmodule cuModule;
size_t device_texture_headroom;
size_t device_working_headroom;
bool move_texture_to_host;
size_t map_host_used;
size_t map_host_limit;
int can_map_host;
int pitch_alignment;
int cuDevId;
int cuDevArchitecture;
bool first_error;
struct CUDAMem {
CUDAMem() : texobject(0), array(0), use_mapped_host(false)
{
}
CUtexObject texobject;
CUarray array;
/* If true, a mapped host memory in shared_pointer is being used. */
bool use_mapped_host;
};
typedef map<device_memory *, CUDAMem> CUDAMemMap;
CUDAMemMap cuda_mem_map;
thread_mutex cuda_mem_map_mutex;
/* Bindless Textures */
device_vector<TextureInfo> texture_info;
bool need_texture_info;
CUDADeviceKernels kernels;
static bool have_precompiled_kernels();
@ -88,17 +63,13 @@ class CUDADevice : public Device {
void reserve_local_memory(const uint kernel_features);
void init_host_memory();
void load_texture_info();
void move_textures_to_host(size_t size, bool for_texture);
CUDAMem *generic_alloc(device_memory &mem, size_t pitch_padding = 0);
void generic_copy_to(device_memory &mem);
void generic_free(device_memory &mem);
virtual void get_device_memory_info(size_t &total, size_t &free) override;
virtual bool alloc_device(void *&device_pointer, size_t size) override;
virtual void free_device(void *device_pointer) override;
virtual bool alloc_host(void *&shared_pointer, size_t size) override;
virtual void free_host(void *shared_pointer) override;
virtual bool transform_host_pointer(void *&device_pointer, void *&shared_pointer) override;
virtual void copy_host_to_device(void *device_pointer, void *host_pointer, size_t size) override;
void mem_alloc(device_memory &mem) override;

View File

@ -452,6 +452,320 @@ void *Device::get_cpu_osl_memory()
return nullptr;
}
GPUDevice::~GPUDevice() noexcept(false)
{
}
bool GPUDevice::load_texture_info()
{
if (need_texture_info) {
/* Unset flag before copying, so this does not loop indefinitely if the copy below calls
* into 'move_textures_to_host' (which calls 'load_texture_info' again). */
need_texture_info = false;
texture_info.copy_to_device();
return true;
}
else {
return false;
}
}
void GPUDevice::init_host_memory(size_t preferred_texture_headroom,
size_t preferred_working_headroom)
{
/* Limit amount of host mapped memory, because allocating too much can
* cause system instability. Leave at least half or 4 GB of system
* memory free, whichever is smaller. */
size_t default_limit = 4 * 1024 * 1024 * 1024LL;
size_t system_ram = system_physical_ram();
if (system_ram > 0) {
if (system_ram / 2 > default_limit) {
map_host_limit = system_ram - default_limit;
}
else {
map_host_limit = system_ram / 2;
}
}
else {
VLOG_WARNING << "Mapped host memory disabled, failed to get system RAM";
map_host_limit = 0;
}
/* Amount of device memory to keep free after texture memory
* and working memory allocations respectively. We set the working
* memory limit headroom lower than the working one so there
* is space left for it. */
device_working_headroom = preferred_working_headroom > 0 ? preferred_working_headroom :
32 * 1024 * 1024LL; // 32MB
device_texture_headroom = preferred_texture_headroom > 0 ? preferred_texture_headroom :
128 * 1024 * 1024LL; // 128MB
VLOG_INFO << "Mapped host memory limit set to " << string_human_readable_number(map_host_limit)
<< " bytes. (" << string_human_readable_size(map_host_limit) << ")";
}
void GPUDevice::move_textures_to_host(size_t size, bool for_texture)
{
/* Break out of recursive call, which can happen when moving memory on a multi device. */
static bool any_device_moving_textures_to_host = false;
if (any_device_moving_textures_to_host) {
return;
}
/* Signal to reallocate textures in host memory only. */
move_texture_to_host = true;
while (size > 0) {
/* Find suitable memory allocation to move. */
device_memory *max_mem = NULL;
size_t max_size = 0;
bool max_is_image = false;
thread_scoped_lock lock(device_mem_map_mutex);
foreach (MemMap::value_type &pair, device_mem_map) {
device_memory &mem = *pair.first;
Mem *cmem = &pair.second;
/* Can only move textures allocated on this device (and not those from peer devices).
* And need to ignore memory that is already on the host. */
if (!mem.is_resident(this) || cmem->use_mapped_host) {
continue;
}
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) &&
(&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
/* Can't move this type of memory. */
if (!is_texture || cmem->array) {
continue;
}
/* For other textures, only move image textures. */
if (for_texture && !is_image) {
continue;
}
/* Try to move largest allocation, prefer moving images. */
if (is_image > max_is_image || (is_image == max_is_image && mem.device_size > max_size)) {
max_is_image = is_image;
max_size = mem.device_size;
max_mem = &mem;
}
}
lock.unlock();
/* Move to host memory. This part is mutex protected since
* multiple backend devices could be moving the memory. The
* first one will do it, and the rest will adopt the pointer. */
if (max_mem) {
VLOG_WORK << "Move memory from device to host: " << max_mem->name;
static thread_mutex move_mutex;
thread_scoped_lock lock(move_mutex);
any_device_moving_textures_to_host = true;
/* Potentially need to call back into multi device, so pointer mapping
* and peer devices are updated. This is also necessary since the device
* pointer may just be a key here, so cannot be accessed and freed directly.
* Unfortunately it does mean that memory is reallocated on all other
* devices as well, which is potentially dangerous when still in use (since
* a thread rendering on another devices would only be caught in this mutex
* if it so happens to do an allocation at the same time as well. */
max_mem->device_copy_to();
size = (max_size >= size) ? 0 : size - max_size;
any_device_moving_textures_to_host = false;
}
else {
break;
}
}
/* Unset flag before texture info is reloaded, since it should stay in device memory. */
move_texture_to_host = false;
/* Update texture info array with new pointers. */
load_texture_info();
}
GPUDevice::Mem *GPUDevice::generic_alloc(device_memory &mem, size_t pitch_padding)
{
void *device_pointer = 0;
size_t size = mem.memory_size() + pitch_padding;
bool mem_alloc_result = false;
const char *status = "";
/* First try allocating in device memory, respecting headroom. We make
* an exception for texture info. It is small and frequently accessed,
* so treat it as working memory.
*
* If there is not enough room for working memory, we will try to move
* textures to host memory, assuming the performance impact would have
* been worse for working memory. */
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) && (&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
size_t headroom = (is_texture) ? device_texture_headroom : device_working_headroom;
size_t total = 0, free = 0;
get_device_memory_info(total, free);
/* Move textures to host memory if needed. */
if (!move_texture_to_host && !is_image && (size + headroom) >= free && can_map_host) {
move_textures_to_host(size + headroom - free, is_texture);
get_device_memory_info(total, free);
}
/* Allocate in device memory. */
if (!move_texture_to_host && (size + headroom) < free) {
mem_alloc_result = alloc_device(device_pointer, size);
if (mem_alloc_result) {
device_mem_in_use += size;
status = " in device memory";
}
}
/* Fall back to mapped host memory if needed and possible. */
void *shared_pointer = 0;
if (!mem_alloc_result && can_map_host && mem.type != MEM_DEVICE_ONLY) {
if (mem.shared_pointer) {
/* Another device already allocated host memory. */
mem_alloc_result = true;
shared_pointer = mem.shared_pointer;
}
else if (map_host_used + size < map_host_limit) {
/* Allocate host memory ourselves. */
mem_alloc_result = alloc_host(shared_pointer, size);
assert((mem_alloc_result && shared_pointer != 0) ||
(!mem_alloc_result && shared_pointer == 0));
}
if (mem_alloc_result) {
assert(transform_host_pointer(device_pointer, shared_pointer));
map_host_used += size;
status = " in host memory";
}
}
if (!mem_alloc_result) {
if (mem.type == MEM_DEVICE_ONLY) {
status = " failed, out of device memory";
set_error("System is out of GPU memory");
}
else {
status = " failed, out of device and host memory";
set_error("System is out of GPU and shared host memory");
}
}
if (mem.name) {
VLOG_WORK << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")" << status;
}
mem.device_pointer = (device_ptr)device_pointer;
mem.device_size = size;
stats.mem_alloc(size);
if (!mem.device_pointer) {
return NULL;
}
/* Insert into map of allocations. */
thread_scoped_lock lock(device_mem_map_mutex);
Mem *cmem = &device_mem_map[&mem];
if (shared_pointer != 0) {
/* Replace host pointer with our host allocation. Only works if
* memory layout is the same and has no pitch padding. Also
* does not work if we move textures to host during a render,
* since other devices might be using the memory. */
if (!move_texture_to_host && pitch_padding == 0 && mem.host_pointer &&
mem.host_pointer != shared_pointer) {
memcpy(shared_pointer, mem.host_pointer, size);
/* A Call to device_memory::host_free() should be preceded by
* a call to device_memory::device_free() for host memory
* allocated by a device to be handled properly. Two exceptions
* are here and a call in OptiXDevice::generic_alloc(), where
* the current host memory can be assumed to be allocated by
* device_memory::host_alloc(), not by a device */
mem.host_free();
mem.host_pointer = shared_pointer;
}
mem.shared_pointer = shared_pointer;
mem.shared_counter++;
cmem->use_mapped_host = true;
}
else {
cmem->use_mapped_host = false;
}
return cmem;
}
void GPUDevice::generic_free(device_memory &mem)
{
if (mem.device_pointer) {
thread_scoped_lock lock(device_mem_map_mutex);
DCHECK(device_mem_map.find(&mem) != device_mem_map.end());
const Mem &cmem = device_mem_map[&mem];
/* If cmem.use_mapped_host is true, reference counting is used
* to safely free a mapped host memory. */
if (cmem.use_mapped_host) {
assert(mem.shared_pointer);
if (mem.shared_pointer) {
assert(mem.shared_counter > 0);
if (--mem.shared_counter == 0) {
if (mem.host_pointer == mem.shared_pointer) {
mem.host_pointer = 0;
}
free_host(mem.shared_pointer);
mem.shared_pointer = 0;
}
}
map_host_used -= mem.device_size;
}
else {
/* Free device memory. */
free_device((void *)mem.device_pointer);
device_mem_in_use -= mem.device_size;
}
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
device_mem_map.erase(device_mem_map.find(&mem));
}
}
void GPUDevice::generic_copy_to(device_memory &mem)
{
if (!mem.host_pointer || !mem.device_pointer) {
return;
}
/* If use_mapped_host of mem is false, the current device only uses device memory allocated by
* backend device allocation regardless of mem.host_pointer and mem.shared_pointer, and should
* copy data from mem.host_pointer. */
thread_scoped_lock lock(device_mem_map_mutex);
if (!device_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
copy_host_to_device((void *)mem.device_pointer, mem.host_pointer, mem.memory_size());
}
}
/* DeviceInfo */
CCL_NAMESPACE_END

View File

@ -309,6 +309,93 @@ class Device {
static uint devices_initialized_mask;
};
/* Device, which is GPU, with some common functionality for GPU backends */
class GPUDevice : public Device {
protected:
GPUDevice(const DeviceInfo &info_, Stats &stats_, Profiler &profiler_)
: Device(info_, stats_, profiler_),
texture_info(this, "texture_info", MEM_GLOBAL),
need_texture_info(false),
can_map_host(false),
map_host_used(0),
map_host_limit(0),
device_texture_headroom(0),
device_working_headroom(0),
device_mem_map(),
device_mem_map_mutex(),
move_texture_to_host(false),
device_mem_in_use(0)
{
}
public:
virtual ~GPUDevice() noexcept(false);
/* For GPUs that can use bindless textures in some way or another. */
device_vector<TextureInfo> texture_info;
bool need_texture_info;
/* Returns true if the texture info was copied to the device (meaning, some more
* re-initialization might be needed). */
virtual bool load_texture_info();
protected:
/* Memory allocation, only accessed through device_memory. */
friend class device_memory;
bool can_map_host;
size_t map_host_used;
size_t map_host_limit;
size_t device_texture_headroom;
size_t device_working_headroom;
typedef unsigned long long texMemObject;
typedef unsigned long long arrayMemObject;
struct Mem {
Mem() : texobject(0), array(0), use_mapped_host(false)
{
}
texMemObject texobject;
arrayMemObject array;
/* If true, a mapped host memory in shared_pointer is being used. */
bool use_mapped_host;
};
typedef map<device_memory *, Mem> MemMap;
MemMap device_mem_map;
thread_mutex device_mem_map_mutex;
bool move_texture_to_host;
/* Simple counter which will try to track amount of used device memory */
size_t device_mem_in_use;
virtual void init_host_memory(size_t preferred_texture_headroom = 0,
size_t preferred_working_headroom = 0);
virtual void move_textures_to_host(size_t size, bool for_texture);
/* Allocation, deallocation and copy functions, with corresponding
* support of device/host allocations. */
virtual GPUDevice::Mem *generic_alloc(device_memory &mem, size_t pitch_padding = 0);
virtual void generic_free(device_memory &mem);
virtual void generic_copy_to(device_memory &mem);
/* total - amount of device memory, free - amount of available device memory */
virtual void get_device_memory_info(size_t &total, size_t &free) = 0;
virtual bool alloc_device(void *&device_pointer, size_t size) = 0;
virtual void free_device(void *device_pointer) = 0;
virtual bool alloc_host(void *&shared_pointer, size_t size) = 0;
virtual void free_host(void *shared_pointer) = 0;
/* This function should return device pointer corresponding to shared pointer, which
* is host buffer, allocated in `alloc_host`. The function should `true`, if such
* address transformation is possible and `false` otherwise. */
virtual bool transform_host_pointer(void *&device_pointer, void *&shared_pointer) = 0;
virtual void copy_host_to_device(void *device_pointer, void *host_pointer, size_t size) = 0;
};
CCL_NAMESPACE_END
#endif /* __DEVICE_H__ */

View File

@ -53,8 +53,12 @@ void HIPDevice::set_error(const string &error)
}
HIPDevice::HIPDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: Device(info, stats, profiler), texture_info(this, "texture_info", MEM_GLOBAL)
: GPUDevice(info, stats, profiler)
{
/* Verify that base class types can be used with specific backend types */
static_assert(sizeof(texMemObject) == sizeof(hipTextureObject_t));
static_assert(sizeof(arrayMemObject) == sizeof(hArray));
first_error = true;
hipDevId = info.num;
@ -65,12 +69,6 @@ HIPDevice::HIPDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
need_texture_info = false;
device_texture_headroom = 0;
device_working_headroom = 0;
move_texture_to_host = false;
map_host_limit = 0;
map_host_used = 0;
can_map_host = 0;
pitch_alignment = 0;
/* Initialize HIP. */
@ -91,7 +89,9 @@ HIPDevice::HIPDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
/* hipDeviceMapHost for mapping host memory when out of device memory.
* hipDeviceLmemResizeToMax for reserving local memory ahead of render,
* so we can predict which memory to map to host. */
hip_assert(hipDeviceGetAttribute(&can_map_host, hipDeviceAttributeCanMapHostMemory, hipDevice));
int value;
hip_assert(hipDeviceGetAttribute(&value, hipDeviceAttributeCanMapHostMemory, hipDevice));
can_map_host = value != 0;
hip_assert(
hipDeviceGetAttribute(&pitch_alignment, hipDeviceAttributeTexturePitchAlignment, hipDevice));
@ -460,305 +460,58 @@ void HIPDevice::reserve_local_memory(const uint kernel_features)
# endif
}
void HIPDevice::init_host_memory()
{
/* Limit amount of host mapped memory, because allocating too much can
* cause system instability. Leave at least half or 4 GB of system
* memory free, whichever is smaller. */
size_t default_limit = 4 * 1024 * 1024 * 1024LL;
size_t system_ram = system_physical_ram();
if (system_ram > 0) {
if (system_ram / 2 > default_limit) {
map_host_limit = system_ram - default_limit;
}
else {
map_host_limit = system_ram / 2;
}
}
else {
VLOG_WARNING << "Mapped host memory disabled, failed to get system RAM";
map_host_limit = 0;
}
/* Amount of device memory to keep is free after texture memory
* and working memory allocations respectively. We set the working
* memory limit headroom lower so that some space is left after all
* texture memory allocations. */
device_working_headroom = 32 * 1024 * 1024LL; // 32MB
device_texture_headroom = 128 * 1024 * 1024LL; // 128MB
VLOG_INFO << "Mapped host memory limit set to " << string_human_readable_number(map_host_limit)
<< " bytes. (" << string_human_readable_size(map_host_limit) << ")";
}
void HIPDevice::load_texture_info()
{
if (need_texture_info) {
/* Unset flag before copying, so this does not loop indefinitely if the copy below calls
* into 'move_textures_to_host' (which calls 'load_texture_info' again). */
need_texture_info = false;
texture_info.copy_to_device();
}
}
void HIPDevice::move_textures_to_host(size_t size, bool for_texture)
{
/* Break out of recursive call, which can happen when moving memory on a multi device. */
static bool any_device_moving_textures_to_host = false;
if (any_device_moving_textures_to_host) {
return;
}
/* Signal to reallocate textures in host memory only. */
move_texture_to_host = true;
while (size > 0) {
/* Find suitable memory allocation to move. */
device_memory *max_mem = NULL;
size_t max_size = 0;
bool max_is_image = false;
thread_scoped_lock lock(hip_mem_map_mutex);
foreach (HIPMemMap::value_type &pair, hip_mem_map) {
device_memory &mem = *pair.first;
HIPMem *cmem = &pair.second;
/* Can only move textures allocated on this device (and not those from peer devices).
* And need to ignore memory that is already on the host. */
if (!mem.is_resident(this) || cmem->use_mapped_host) {
continue;
}
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) &&
(&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
/* Can't move this type of memory. */
if (!is_texture || cmem->array) {
continue;
}
/* For other textures, only move image textures. */
if (for_texture && !is_image) {
continue;
}
/* Try to move largest allocation, prefer moving images. */
if (is_image > max_is_image || (is_image == max_is_image && mem.device_size > max_size)) {
max_is_image = is_image;
max_size = mem.device_size;
max_mem = &mem;
}
}
lock.unlock();
/* Move to host memory. This part is mutex protected since
* multiple HIP devices could be moving the memory. The
* first one will do it, and the rest will adopt the pointer. */
if (max_mem) {
VLOG_WORK << "Move memory from device to host: " << max_mem->name;
static thread_mutex move_mutex;
thread_scoped_lock lock(move_mutex);
any_device_moving_textures_to_host = true;
/* Potentially need to call back into multi device, so pointer mapping
* and peer devices are updated. This is also necessary since the device
* pointer may just be a key here, so cannot be accessed and freed directly.
* Unfortunately it does mean that memory is reallocated on all other
* devices as well, which is potentially dangerous when still in use (since
* a thread rendering on another devices would only be caught in this mutex
* if it so happens to do an allocation at the same time as well. */
max_mem->device_copy_to();
size = (max_size >= size) ? 0 : size - max_size;
any_device_moving_textures_to_host = false;
}
else {
break;
}
}
/* Unset flag before texture info is reloaded, since it should stay in device memory. */
move_texture_to_host = false;
/* Update texture info array with new pointers. */
load_texture_info();
}
HIPDevice::HIPMem *HIPDevice::generic_alloc(device_memory &mem, size_t pitch_padding)
void HIPDevice::get_device_memory_info(size_t &total, size_t &free)
{
HIPContextScope scope(this);
hipDeviceptr_t device_pointer = 0;
size_t size = mem.memory_size() + pitch_padding;
hipError_t mem_alloc_result = hipErrorOutOfMemory;
const char *status = "";
/* First try allocating in device memory, respecting headroom. We make
* an exception for texture info. It is small and frequently accessed,
* so treat it as working memory.
*
* If there is not enough room for working memory, we will try to move
* textures to host memory, assuming the performance impact would have
* been worse for working memory. */
bool is_texture = (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) && (&mem != &texture_info);
bool is_image = is_texture && (mem.data_height > 1);
size_t headroom = (is_texture) ? device_texture_headroom : device_working_headroom;
size_t total = 0, free = 0;
hipMemGetInfo(&free, &total);
/* Move textures to host memory if needed. */
if (!move_texture_to_host && !is_image && (size + headroom) >= free && can_map_host) {
move_textures_to_host(size + headroom - free, is_texture);
hipMemGetInfo(&free, &total);
}
/* Allocate in device memory. */
if (!move_texture_to_host && (size + headroom) < free) {
mem_alloc_result = hipMalloc(&device_pointer, size);
if (mem_alloc_result == hipSuccess) {
status = " in device memory";
}
}
/* Fall back to mapped host memory if needed and possible. */
void *shared_pointer = 0;
if (mem_alloc_result != hipSuccess && can_map_host) {
if (mem.shared_pointer) {
/* Another device already allocated host memory. */
mem_alloc_result = hipSuccess;
shared_pointer = mem.shared_pointer;
}
else if (map_host_used + size < map_host_limit) {
/* Allocate host memory ourselves. */
mem_alloc_result = hipHostMalloc(
&shared_pointer, size, hipHostMallocMapped | hipHostMallocWriteCombined);
assert((mem_alloc_result == hipSuccess && shared_pointer != 0) ||
(mem_alloc_result != hipSuccess && shared_pointer == 0));
}
if (mem_alloc_result == hipSuccess) {
hip_assert(hipHostGetDevicePointer(&device_pointer, shared_pointer, 0));
map_host_used += size;
status = " in host memory";
}
}
if (mem_alloc_result != hipSuccess) {
status = " failed, out of device and host memory";
set_error("System is out of GPU and shared host memory");
}
if (mem.name) {
VLOG_WORK << "Buffer allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")" << status;
}
mem.device_pointer = (device_ptr)device_pointer;
mem.device_size = size;
stats.mem_alloc(size);
if (!mem.device_pointer) {
return NULL;
}
/* Insert into map of allocations. */
thread_scoped_lock lock(hip_mem_map_mutex);
HIPMem *cmem = &hip_mem_map[&mem];
if (shared_pointer != 0) {
/* Replace host pointer with our host allocation. Only works if
* HIP memory layout is the same and has no pitch padding. Also
* does not work if we move textures to host during a render,
* since other devices might be using the memory. */
if (!move_texture_to_host && pitch_padding == 0 && mem.host_pointer &&
mem.host_pointer != shared_pointer) {
memcpy(shared_pointer, mem.host_pointer, size);
/* A Call to device_memory::host_free() should be preceded by
* a call to device_memory::device_free() for host memory
* allocated by a device to be handled properly. Two exceptions
* are here and a call in OptiXDevice::generic_alloc(), where
* the current host memory can be assumed to be allocated by
* device_memory::host_alloc(), not by a device */
mem.host_free();
mem.host_pointer = shared_pointer;
}
mem.shared_pointer = shared_pointer;
mem.shared_counter++;
cmem->use_mapped_host = true;
}
else {
cmem->use_mapped_host = false;
}
return cmem;
}
void HIPDevice::generic_copy_to(device_memory &mem)
bool HIPDevice::alloc_device(void *&device_pointer, size_t size)
{
if (!mem.host_pointer || !mem.device_pointer) {
return;
}
HIPContextScope scope(this);
/* If use_mapped_host of mem is false, the current device only uses device memory allocated by
* hipMalloc regardless of mem.host_pointer and mem.shared_pointer, and should copy data from
* mem.host_pointer. */
thread_scoped_lock lock(hip_mem_map_mutex);
if (!hip_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const HIPContextScope scope(this);
hip_assert(
hipMemcpyHtoD((hipDeviceptr_t)mem.device_pointer, mem.host_pointer, mem.memory_size()));
}
hipError_t mem_alloc_result = hipMalloc((hipDeviceptr_t *)&device_pointer, size);
return mem_alloc_result == hipSuccess;
}
void HIPDevice::generic_free(device_memory &mem)
void HIPDevice::free_device(void *device_pointer)
{
if (mem.device_pointer) {
HIPContextScope scope(this);
thread_scoped_lock lock(hip_mem_map_mutex);
DCHECK(hip_mem_map.find(&mem) != hip_mem_map.end());
const HIPMem &cmem = hip_mem_map[&mem];
HIPContextScope scope(this);
/* If cmem.use_mapped_host is true, reference counting is used
* to safely free a mapped host memory. */
hip_assert(hipFree((hipDeviceptr_t)device_pointer));
}
if (cmem.use_mapped_host) {
assert(mem.shared_pointer);
if (mem.shared_pointer) {
assert(mem.shared_counter > 0);
if (--mem.shared_counter == 0) {
if (mem.host_pointer == mem.shared_pointer) {
mem.host_pointer = 0;
}
hipHostFree(mem.shared_pointer);
mem.shared_pointer = 0;
}
}
map_host_used -= mem.device_size;
}
else {
/* Free device memory. */
hip_assert(hipFree(mem.device_pointer));
}
bool HIPDevice::alloc_host(void *&shared_pointer, size_t size)
{
HIPContextScope scope(this);
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
hipError_t mem_alloc_result = hipHostMalloc(
&shared_pointer, size, hipHostMallocMapped | hipHostMallocWriteCombined);
hip_mem_map.erase(hip_mem_map.find(&mem));
}
return mem_alloc_result == hipSuccess;
}
void HIPDevice::free_host(void *shared_pointer)
{
HIPContextScope scope(this);
hipHostFree(shared_pointer);
}
bool HIPDevice::transform_host_pointer(void *&device_pointer, void *&shared_pointer)
{
HIPContextScope scope(this);
hip_assert(hipHostGetDevicePointer((hipDeviceptr_t *)&device_pointer, shared_pointer, 0));
return true;
}
void HIPDevice::copy_host_to_device(void *device_pointer, void *host_pointer, size_t size)
{
const HIPContextScope scope(this);
hip_assert(hipMemcpyHtoD((hipDeviceptr_t)device_pointer, host_pointer, size));
}
void HIPDevice::mem_alloc(device_memory &mem)
@ -823,8 +576,8 @@ void HIPDevice::mem_zero(device_memory &mem)
/* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
* regardless of mem.host_pointer and mem.shared_pointer. */
thread_scoped_lock lock(hip_mem_map_mutex);
if (!hip_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
thread_scoped_lock lock(device_mem_map_mutex);
if (!device_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const HIPContextScope scope(this);
hip_assert(hipMemsetD8((hipDeviceptr_t)mem.device_pointer, 0, mem.memory_size()));
}
@ -951,19 +704,19 @@ void HIPDevice::tex_alloc(device_texture &mem)
return;
}
HIPMem *cmem = NULL;
Mem *cmem = NULL;
hArray array_3d = NULL;
size_t src_pitch = mem.data_width * dsize * mem.data_elements;
size_t dst_pitch = src_pitch;
if (!mem.is_resident(this)) {
thread_scoped_lock lock(hip_mem_map_mutex);
cmem = &hip_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
if (mem.data_depth > 1) {
array_3d = (hArray)mem.device_pointer;
cmem->array = array_3d;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
dst_pitch = align_up(src_pitch, pitch_alignment);
@ -1007,10 +760,10 @@ void HIPDevice::tex_alloc(device_texture &mem)
mem.device_size = size;
stats.mem_alloc(size);
thread_scoped_lock lock(hip_mem_map_mutex);
cmem = &hip_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
cmem->array = array_3d;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
/* 2D texture, using pitch aligned linear memory. */
@ -1095,8 +848,8 @@ void HIPDevice::tex_alloc(device_texture &mem)
texDesc.filterMode = filter_mode;
texDesc.flags = HIP_TRSF_NORMALIZED_COORDINATES;
thread_scoped_lock lock(hip_mem_map_mutex);
cmem = &hip_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
hip_assert(hipTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
@ -1111,9 +864,9 @@ void HIPDevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
HIPContextScope scope(this);
thread_scoped_lock lock(hip_mem_map_mutex);
DCHECK(hip_mem_map.find(&mem) != hip_mem_map.end());
const HIPMem &cmem = hip_mem_map[&mem];
thread_scoped_lock lock(device_mem_map_mutex);
DCHECK(device_mem_map.find(&mem) != device_mem_map.end());
const Mem &cmem = device_mem_map[&mem];
if (cmem.texobject) {
/* Free bindless texture. */
@ -1122,16 +875,16 @@ void HIPDevice::tex_free(device_texture &mem)
if (!mem.is_resident(this)) {
/* Do not free memory here, since it was allocated on a different device. */
hip_mem_map.erase(hip_mem_map.find(&mem));
device_mem_map.erase(device_mem_map.find(&mem));
}
else if (cmem.array) {
/* Free array. */
hipArrayDestroy(cmem.array);
hipArrayDestroy(reinterpret_cast<hArray>(cmem.array));
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
hip_mem_map.erase(hip_mem_map.find(&mem));
device_mem_map.erase(device_mem_map.find(&mem));
}
else {
lock.unlock();
@ -1153,7 +906,7 @@ bool HIPDevice::should_use_graphics_interop()
* possible, but from the empiric measurements it can be considerably slower than using naive
* pixels copy. */
/* Disable graphics interop for now, because of driver bug in 21.40. See T92972 */
/* Disable graphics interop for now, because of driver bug in 21.40. See #92972 */
# if 0
HIPContextScope scope(this);

View File

@ -18,7 +18,7 @@ CCL_NAMESPACE_BEGIN
class DeviceQueue;
class HIPDevice : public Device {
class HIPDevice : public GPUDevice {
friend class HIPContextScope;
@ -26,36 +26,11 @@ class HIPDevice : public Device {
hipDevice_t hipDevice;
hipCtx_t hipContext;
hipModule_t hipModule;
size_t device_texture_headroom;
size_t device_working_headroom;
bool move_texture_to_host;
size_t map_host_used;
size_t map_host_limit;
int can_map_host;
int pitch_alignment;
int hipDevId;
int hipDevArchitecture;
bool first_error;
struct HIPMem {
HIPMem() : texobject(0), array(0), use_mapped_host(false)
{
}
hipTextureObject_t texobject;
hArray array;
/* If true, a mapped host memory in shared_pointer is being used. */
bool use_mapped_host;
};
typedef map<device_memory *, HIPMem> HIPMemMap;
HIPMemMap hip_mem_map;
thread_mutex hip_mem_map_mutex;
/* Bindless Textures */
device_vector<TextureInfo> texture_info;
bool need_texture_info;
HIPDeviceKernels kernels;
static bool have_precompiled_kernels();
@ -81,17 +56,13 @@ class HIPDevice : public Device {
virtual bool load_kernels(const uint kernel_features) override;
void reserve_local_memory(const uint kernel_features);
void init_host_memory();
void load_texture_info();
void move_textures_to_host(size_t size, bool for_texture);
HIPMem *generic_alloc(device_memory &mem, size_t pitch_padding = 0);
void generic_copy_to(device_memory &mem);
void generic_free(device_memory &mem);
virtual void get_device_memory_info(size_t &total, size_t &free) override;
virtual bool alloc_device(void *&device_pointer, size_t size) override;
virtual void free_device(void *device_pointer) override;
virtual bool alloc_host(void *&shared_pointer, size_t size) override;
virtual void free_host(void *shared_pointer) override;
virtual bool transform_host_pointer(void *&device_pointer, void *&shared_pointer) override;
virtual void copy_host_to_device(void *device_pointer, void *host_pointer, size_t size) override;
void mem_alloc(device_memory &mem) override;

View File

@ -51,7 +51,7 @@ static inline bool hipSupportsDevice(const int hipDevId)
hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
return (major >= 10);
return (major >= 9);
}
CCL_NAMESPACE_END

View File

@ -73,6 +73,10 @@ const char *device_kernel_as_string(DeviceKernel kernel)
return "integrator_terminated_paths_array";
case DEVICE_KERNEL_INTEGRATOR_SORTED_PATHS_ARRAY:
return "integrator_sorted_paths_array";
case DEVICE_KERNEL_INTEGRATOR_SORT_BUCKET_PASS:
return "integrator_sort_bucket_pass";
case DEVICE_KERNEL_INTEGRATOR_SORT_WRITE_PASS:
return "integrator_sort_write_pass";
case DEVICE_KERNEL_INTEGRATOR_COMPACT_PATHS_ARRAY:
return "integrator_compact_paths_array";
case DEVICE_KERNEL_INTEGRATOR_COMPACT_STATES:

View File

@ -247,6 +247,8 @@ class device_memory {
bool is_resident(Device *sub_device) const;
protected:
friend class Device;
friend class GPUDevice;
friend class CUDADevice;
friend class OptiXDevice;
friend class HIPDevice;

View File

@ -21,6 +21,7 @@ class BVHMetal : public BVH {
API_AVAILABLE(macos(11.0))
vector<id<MTLAccelerationStructure>> blas_array;
vector<uint32_t> blas_lookup;
bool motion_blur = false;

View File

@ -816,6 +816,11 @@ bool BVHMetal::build_TLAS(Progress &progress,
uint32_t instance_index = 0;
uint32_t motion_transform_index = 0;
// allocate look up buffer for wost case scenario
uint64_t count = objects.size();
blas_lookup.resize(count);
for (Object *ob : objects) {
/* Skip non-traceable objects */
if (!ob->is_traceable())
@ -843,12 +848,15 @@ bool BVHMetal::build_TLAS(Progress &progress,
/* Set user instance ID to object index */
int object_index = ob->get_device_index();
uint32_t user_id = uint32_t(object_index);
int currIndex = instance_index++;
assert(user_id < blas_lookup.size());
blas_lookup[user_id] = accel_struct_index;
/* Bake into the appropriate descriptor */
if (motion_blur) {
MTLAccelerationStructureMotionInstanceDescriptor *instances =
(MTLAccelerationStructureMotionInstanceDescriptor *)[instanceBuf contents];
MTLAccelerationStructureMotionInstanceDescriptor &desc = instances[instance_index++];
MTLAccelerationStructureMotionInstanceDescriptor &desc = instances[currIndex];
desc.accelerationStructureIndex = accel_struct_index;
desc.userID = user_id;
@ -894,7 +902,7 @@ bool BVHMetal::build_TLAS(Progress &progress,
else {
MTLAccelerationStructureUserIDInstanceDescriptor *instances =
(MTLAccelerationStructureUserIDInstanceDescriptor *)[instanceBuf contents];
MTLAccelerationStructureUserIDInstanceDescriptor &desc = instances[instance_index++];
MTLAccelerationStructureUserIDInstanceDescriptor &desc = instances[currIndex];
desc.accelerationStructureIndex = accel_struct_index;
desc.userID = user_id;

View File

@ -55,6 +55,10 @@ void device_metal_info(vector<DeviceInfo> &devices)
info.denoisers = DENOISER_NONE;
info.id = id;
if (MetalInfo::get_device_vendor(device) == METAL_GPU_AMD) {
info.has_light_tree = false;
}
devices.push_back(info);
device_index++;
}

View File

@ -74,6 +74,11 @@ class MetalDevice : public Device {
id<MTLBuffer> texture_bindings_3d = nil;
std::vector<id<MTLTexture>> texture_slot_map;
/* BLAS encoding & lookup */
id<MTLArgumentEncoder> mtlBlasArgEncoder = nil;
id<MTLBuffer> blas_buffer = nil;
id<MTLBuffer> blas_lookup_buffer = nil;
bool use_metalrt = false;
MetalPipelineType kernel_specialization_level = PSO_GENERIC;
@ -105,6 +110,8 @@ class MetalDevice : public Device {
bool use_adaptive_compilation();
bool use_local_atomic_sort() const;
bool make_source_and_check_if_compile_needed(MetalPipelineType pso_type);
void make_source(MetalPipelineType pso_type, const uint kernel_features);

View File

@ -105,6 +105,7 @@ MetalDevice::MetalDevice(const DeviceInfo &info, Stats &stats, Profiler &profile
}
case METAL_GPU_AMD: {
max_threads_per_threadgroup = 128;
use_metalrt = info.use_metalrt;
break;
}
case METAL_GPU_APPLE: {
@ -192,6 +193,10 @@ MetalDevice::MetalDevice(const DeviceInfo &info, Stats &stats, Profiler &profile
arg_desc_as.dataType = MTLDataTypeInstanceAccelerationStructure;
arg_desc_as.access = MTLArgumentAccessReadOnly;
MTLArgumentDescriptor *arg_desc_ptrs = [[MTLArgumentDescriptor alloc] init];
arg_desc_ptrs.dataType = MTLDataTypePointer;
arg_desc_ptrs.access = MTLArgumentAccessReadOnly;
MTLArgumentDescriptor *arg_desc_ift = [[MTLArgumentDescriptor alloc] init];
arg_desc_ift.dataType = MTLDataTypeIntersectionFunctionTable;
arg_desc_ift.access = MTLArgumentAccessReadOnly;
@ -204,14 +209,28 @@ MetalDevice::MetalDevice(const DeviceInfo &info, Stats &stats, Profiler &profile
[ancillary_desc addObject:[arg_desc_ift copy]]; /* ift_shadow */
arg_desc_ift.index = index++;
[ancillary_desc addObject:[arg_desc_ift copy]]; /* ift_local */
arg_desc_ift.index = index++;
[ancillary_desc addObject:[arg_desc_ift copy]]; /* ift_local_prim */
arg_desc_ptrs.index = index++;
[ancillary_desc addObject:[arg_desc_ptrs copy]]; /* blas array */
arg_desc_ptrs.index = index++;
[ancillary_desc addObject:[arg_desc_ptrs copy]]; /* look up table for blas */
[arg_desc_ift release];
[arg_desc_as release];
[arg_desc_ptrs release];
}
}
mtlAncillaryArgEncoder = [mtlDevice newArgumentEncoderWithArguments:ancillary_desc];
// preparing the blas arg encoder
MTLArgumentDescriptor *arg_desc_blas = [[MTLArgumentDescriptor alloc] init];
arg_desc_blas.dataType = MTLDataTypeInstanceAccelerationStructure;
arg_desc_blas.access = MTLArgumentAccessReadOnly;
mtlBlasArgEncoder = [mtlDevice newArgumentEncoderWithArguments:@[ arg_desc_blas ]];
[arg_desc_blas release];
for (int i = 0; i < ancillary_desc.count; i++) {
[ancillary_desc[i] release];
}
@ -271,6 +290,11 @@ bool MetalDevice::use_adaptive_compilation()
return DebugFlags().metal.adaptive_compile;
}
bool MetalDevice::use_local_atomic_sort() const
{
return DebugFlags().metal.use_local_atomic_sort;
}
void MetalDevice::make_source(MetalPipelineType pso_type, const uint kernel_features)
{
string global_defines;
@ -278,6 +302,10 @@ void MetalDevice::make_source(MetalPipelineType pso_type, const uint kernel_feat
global_defines += "#define __KERNEL_FEATURES__ " + to_string(kernel_features) + "\n";
}
if (use_local_atomic_sort()) {
global_defines += "#define __KERNEL_LOCAL_ATOMIC_SORT__\n";
}
if (use_metalrt) {
global_defines += "#define __METALRT__\n";
if (motion_blur) {
@ -558,7 +586,7 @@ void MetalDevice::erase_allocation(device_memory &mem)
if (it != metal_mem_map.end()) {
MetalMem *mmem = it->second.get();
/* blank out reference to MetalMem* in the launch params (fixes crash T94736) */
/* blank out reference to MetalMem* in the launch params (fixes crash #94736) */
if (mmem->pointer_index >= 0) {
device_ptr *pointers = (device_ptr *)&launch_params;
pointers[mmem->pointer_index] = 0;
@ -1231,6 +1259,33 @@ void MetalDevice::build_bvh(BVH *bvh, Progress &progress, bool refit)
if (@available(macos 11.0, *)) {
if (bvh->params.top_level) {
bvhMetalRT = bvh_metal;
// allocate required buffers for BLAS array
uint64_t count = bvhMetalRT->blas_array.size();
uint64_t bufferSize = mtlBlasArgEncoder.encodedLength * count;
blas_buffer = [mtlDevice newBufferWithLength:bufferSize options:default_storage_mode];
stats.mem_alloc(blas_buffer.allocatedSize);
for (uint64_t i = 0; i < count; ++i) {
[mtlBlasArgEncoder setArgumentBuffer:blas_buffer
offset:i * mtlBlasArgEncoder.encodedLength];
[mtlBlasArgEncoder setAccelerationStructure:bvhMetalRT->blas_array[i] atIndex:0];
}
count = bvhMetalRT->blas_lookup.size();
bufferSize = sizeof(uint32_t) * count;
blas_lookup_buffer = [mtlDevice newBufferWithLength:bufferSize
options:default_storage_mode];
stats.mem_alloc(blas_lookup_buffer.allocatedSize);
memcpy([blas_lookup_buffer contents],
bvhMetalRT -> blas_lookup.data(),
blas_lookup_buffer.allocatedSize);
if (default_storage_mode == MTLResourceStorageModeManaged) {
[blas_buffer didModifyRange:NSMakeRange(0, blas_buffer.length)];
[blas_lookup_buffer didModifyRange:NSMakeRange(0, blas_lookup_buffer.length)];
}
}
}
}

View File

@ -19,6 +19,8 @@ enum {
METALRT_FUNC_SHADOW_BOX,
METALRT_FUNC_LOCAL_TRI,
METALRT_FUNC_LOCAL_BOX,
METALRT_FUNC_LOCAL_TRI_PRIM,
METALRT_FUNC_LOCAL_BOX_PRIM,
METALRT_FUNC_CURVE_RIBBON,
METALRT_FUNC_CURVE_RIBBON_SHADOW,
METALRT_FUNC_CURVE_ALL,
@ -28,7 +30,13 @@ enum {
METALRT_FUNC_NUM
};
enum { METALRT_TABLE_DEFAULT, METALRT_TABLE_SHADOW, METALRT_TABLE_LOCAL, METALRT_TABLE_NUM };
enum {
METALRT_TABLE_DEFAULT,
METALRT_TABLE_SHADOW,
METALRT_TABLE_LOCAL,
METALRT_TABLE_LOCAL_PRIM,
METALRT_TABLE_NUM
};
/* Pipeline State Object types */
enum MetalPipelineType {

View File

@ -87,6 +87,9 @@ struct ShaderCache {
break;
}
}
occupancy_tuning[DEVICE_KERNEL_INTEGRATOR_SORT_BUCKET_PASS] = {1024, 1024};
occupancy_tuning[DEVICE_KERNEL_INTEGRATOR_SORT_WRITE_PASS] = {1024, 1024};
}
~ShaderCache();
@ -521,6 +524,8 @@ void MetalKernelPipeline::compile()
"__anyhit__cycles_metalrt_shadow_all_hit_box",
"__anyhit__cycles_metalrt_local_hit_tri",
"__anyhit__cycles_metalrt_local_hit_box",
"__anyhit__cycles_metalrt_local_hit_tri_prim",
"__anyhit__cycles_metalrt_local_hit_box_prim",
"__intersection__curve_ribbon",
"__intersection__curve_ribbon_shadow",
"__intersection__curve_all",
@ -611,11 +616,17 @@ void MetalKernelPipeline::compile()
rt_intersection_function[METALRT_FUNC_LOCAL_BOX],
rt_intersection_function[METALRT_FUNC_LOCAL_BOX],
nil];
table_functions[METALRT_TABLE_LOCAL_PRIM] = [NSArray
arrayWithObjects:rt_intersection_function[METALRT_FUNC_LOCAL_TRI_PRIM],
rt_intersection_function[METALRT_FUNC_LOCAL_BOX_PRIM],
rt_intersection_function[METALRT_FUNC_LOCAL_BOX_PRIM],
nil];
NSMutableSet *unique_functions = [NSMutableSet
setWithArray:table_functions[METALRT_TABLE_DEFAULT]];
[unique_functions addObjectsFromArray:table_functions[METALRT_TABLE_SHADOW]];
[unique_functions addObjectsFromArray:table_functions[METALRT_TABLE_LOCAL]];
[unique_functions addObjectsFromArray:table_functions[METALRT_TABLE_LOCAL_PRIM]];
if (kernel_has_intersection(device_kernel)) {
linked_functions = [[NSArray arrayWithArray:[unique_functions allObjects]]

View File

@ -25,6 +25,7 @@ class MetalDeviceQueue : public DeviceQueue {
virtual int num_concurrent_states(const size_t) const override;
virtual int num_concurrent_busy_states(const size_t) const override;
virtual int num_sort_partition_elements() const override;
virtual bool supports_local_atomic_sort() const override;
virtual void init_execution() override;

View File

@ -315,6 +315,11 @@ int MetalDeviceQueue::num_sort_partition_elements() const
return MetalInfo::optimal_sort_partition_elements(metal_device_->mtlDevice);
}
bool MetalDeviceQueue::supports_local_atomic_sort() const
{
return metal_device_->use_local_atomic_sort();
}
void MetalDeviceQueue::init_execution()
{
/* Synchronize all textures and memory copies before executing task. */
@ -477,6 +482,12 @@ bool MetalDeviceQueue::enqueue(DeviceKernel kernel,
if (metal_device_->bvhMetalRT) {
id<MTLAccelerationStructure> accel_struct = metal_device_->bvhMetalRT->accel_struct;
[metal_device_->mtlAncillaryArgEncoder setAccelerationStructure:accel_struct atIndex:2];
[metal_device_->mtlAncillaryArgEncoder setBuffer:metal_device_->blas_buffer
offset:0
atIndex:7];
[metal_device_->mtlAncillaryArgEncoder setBuffer:metal_device_->blas_lookup_buffer
offset:0
atIndex:8];
}
for (int table = 0; table < METALRT_TABLE_NUM; table++) {
@ -527,6 +538,10 @@ bool MetalDeviceQueue::enqueue(DeviceKernel kernel,
if (bvhMetalRT) {
/* Mark all Accelerations resources as used */
[mtlComputeCommandEncoder useResource:bvhMetalRT->accel_struct usage:MTLResourceUsageRead];
[mtlComputeCommandEncoder useResource:metal_device_->blas_buffer
usage:MTLResourceUsageRead];
[mtlComputeCommandEncoder useResource:metal_device_->blas_lookup_buffer
usage:MTLResourceUsageRead];
[mtlComputeCommandEncoder useResources:bvhMetalRT->blas_array.data()
count:bvhMetalRT->blas_array.size()
usage:MTLResourceUsageRead];
@ -553,13 +568,24 @@ bool MetalDeviceQueue::enqueue(DeviceKernel kernel,
/* See parallel_active_index.h for why this amount of shared memory is needed.
* Rounded up to 16 bytes for Metal */
shared_mem_bytes = (int)round_up((num_threads_per_block + 1) * sizeof(int), 16);
[mtlComputeCommandEncoder setThreadgroupMemoryLength:shared_mem_bytes atIndex:0];
break;
case DEVICE_KERNEL_INTEGRATOR_SORT_BUCKET_PASS:
case DEVICE_KERNEL_INTEGRATOR_SORT_WRITE_PASS: {
int key_count = metal_device_->launch_params.data.max_shaders;
shared_mem_bytes = (int)round_up(key_count * sizeof(int), 16);
break;
}
default:
break;
}
if (shared_mem_bytes) {
assert(shared_mem_bytes <= 32 * 1024);
[mtlComputeCommandEncoder setThreadgroupMemoryLength:shared_mem_bytes atIndex:0];
}
MTLSize size_threadgroups_per_dispatch = MTLSizeMake(
divide_up(work_size, num_threads_per_block), 1, 1);
MTLSize size_threads_per_threadgroup = MTLSizeMake(num_threads_per_block, 1, 1);

View File

@ -64,6 +64,12 @@ MetalGPUVendor MetalInfo::get_device_vendor(id<MTLDevice> device)
return METAL_GPU_INTEL;
}
else if (strstr(device_name, "AMD")) {
/* Setting this env var hides AMD devices thus exposing any integrated Intel devices. */
if (auto str = getenv("CYCLES_METAL_FORCE_INTEL")) {
if (atoi(str)) {
return METAL_GPU_UNKNOWN;
}
}
return METAL_GPU_AMD;
}
else if (strstr(device_name, "Apple")) {
@ -96,6 +102,15 @@ vector<id<MTLDevice>> const &MetalInfo::get_usable_devices()
return usable_devices;
}
/* If the system has both an AMD GPU (discrete) and an Intel one (integrated), prefer the AMD
* one. This can be overridden with CYCLES_METAL_FORCE_INTEL. */
bool has_usable_amd_gpu = false;
if (@available(macos 12.3, *)) {
for (id<MTLDevice> device in MTLCopyAllDevices()) {
has_usable_amd_gpu |= (get_device_vendor(device) == METAL_GPU_AMD);
}
}
metal_printf("Usable Metal devices:\n");
for (id<MTLDevice> device in MTLCopyAllDevices()) {
string device_name = get_device_name(device);
@ -111,8 +126,10 @@ vector<id<MTLDevice>> const &MetalInfo::get_usable_devices()
}
# if defined(MAC_OS_VERSION_13_0)
if (@available(macos 13.0, *)) {
usable |= (vendor == METAL_GPU_INTEL);
if (!has_usable_amd_gpu) {
if (@available(macos 13.0, *)) {
usable |= (vendor == METAL_GPU_INTEL);
}
}
# endif

View File

@ -377,7 +377,7 @@ void OneapiDevice::tex_alloc(device_texture &mem)
generic_alloc(mem);
generic_copy_to(mem);
/* Resize if needed. Also, in case of resize - allocate in advance for future allocs. */
/* Resize if needed. Also, in case of resize - allocate in advance for future allocations. */
const uint slot = mem.slot;
if (slot >= texture_info_.size()) {
texture_info_.resize(slot + 128);

View File

@ -854,12 +854,14 @@ bool OptiXDevice::load_osl_kernels()
context, group_descs, 2, &group_options, nullptr, 0, &osl_groups[i * 2]));
}
OptixStackSizes stack_size[NUM_PROGRAM_GROUPS] = {};
vector<OptixStackSizes> osl_stack_size(osl_groups.size());
/* Update SBT with new entries. */
sbt_data.alloc(NUM_PROGRAM_GROUPS + osl_groups.size());
for (int i = 0; i < NUM_PROGRAM_GROUPS; ++i) {
optix_assert(optixSbtRecordPackHeader(groups[i], &sbt_data[i]));
optix_assert(optixProgramGroupGetStackSize(groups[i], &stack_size[i]));
}
for (size_t i = 0; i < osl_groups.size(); ++i) {
if (osl_groups[i] != NULL) {
@ -907,13 +909,15 @@ bool OptiXDevice::load_osl_kernels()
0,
&pipelines[PIP_SHADE]));
const unsigned int css = std::max(stack_size[PG_RGEN_SHADE_SURFACE_RAYTRACE].cssRG,
stack_size[PG_RGEN_SHADE_SURFACE_MNEE].cssRG);
unsigned int dss = 0;
for (unsigned int i = 0; i < osl_stack_size.size(); ++i) {
dss = std::max(dss, osl_stack_size[i].dssDC);
}
optix_assert(optixPipelineSetStackSize(
pipelines[PIP_SHADE], 0, dss, 0, pipeline_options.usesMotionBlur ? 3 : 2));
pipelines[PIP_SHADE], 0, dss, css, pipeline_options.usesMotionBlur ? 3 : 2));
}
return !have_error();

View File

@ -112,6 +112,13 @@ class DeviceQueue {
return 65536;
}
/* Does device support local atomic sorting kernels (INTEGRATOR_SORT_BUCKET_PASS and
* INTEGRATOR_SORT_WRITE_PASS)? */
virtual bool supports_local_atomic_sort() const
{
return false;
}
/* Initialize execution of kernels on this queue.
*
* Will, for example, load all data required by the kernels from Device to global or path state.

View File

@ -71,6 +71,8 @@ PathTraceWorkGPU::PathTraceWorkGPU(Device *device,
device, "integrator_shader_mnee_sort_counter", MEM_READ_WRITE),
integrator_shader_sort_prefix_sum_(
device, "integrator_shader_sort_prefix_sum", MEM_READ_WRITE),
integrator_shader_sort_partition_key_offsets_(
device, "integrator_shader_sort_partition_key_offsets", MEM_READ_WRITE),
integrator_next_main_path_index_(device, "integrator_next_main_path_index", MEM_READ_WRITE),
integrator_next_shadow_path_index_(
device, "integrator_next_shadow_path_index", MEM_READ_WRITE),
@ -207,33 +209,45 @@ void PathTraceWorkGPU::alloc_integrator_sorting()
integrator_state_gpu_.sort_partition_divisor = (int)divide_up(max_num_paths_,
num_sort_partitions_);
/* Allocate arrays for shader sorting. */
const int sort_buckets = device_scene_->data.max_shaders * num_sort_partitions_;
if (integrator_shader_sort_counter_.size() < sort_buckets) {
integrator_shader_sort_counter_.alloc(sort_buckets);
integrator_shader_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE] =
(int *)integrator_shader_sort_counter_.device_pointer;
integrator_shader_sort_prefix_sum_.alloc(sort_buckets);
integrator_shader_sort_prefix_sum_.zero_to_device();
}
if (device_scene_->data.kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) {
if (integrator_shader_raytrace_sort_counter_.size() < sort_buckets) {
integrator_shader_raytrace_sort_counter_.alloc(sort_buckets);
integrator_shader_raytrace_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE] =
(int *)integrator_shader_raytrace_sort_counter_.device_pointer;
if (num_sort_partitions_ > 1 && queue_->supports_local_atomic_sort()) {
/* Allocate array for partitioned shader sorting using local atomics. */
const int num_offsets = (device_scene_->data.max_shaders + 1) * num_sort_partitions_;
if (integrator_shader_sort_partition_key_offsets_.size() < num_offsets) {
integrator_shader_sort_partition_key_offsets_.alloc(num_offsets);
integrator_shader_sort_partition_key_offsets_.zero_to_device();
}
integrator_state_gpu_.sort_partition_key_offsets =
(int *)integrator_shader_sort_partition_key_offsets_.device_pointer;
}
else {
/* Allocate arrays for shader sorting. */
const int sort_buckets = device_scene_->data.max_shaders * num_sort_partitions_;
if (integrator_shader_sort_counter_.size() < sort_buckets) {
integrator_shader_sort_counter_.alloc(sort_buckets);
integrator_shader_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE] =
(int *)integrator_shader_sort_counter_.device_pointer;
if (device_scene_->data.kernel_features & KERNEL_FEATURE_MNEE) {
if (integrator_shader_mnee_sort_counter_.size() < sort_buckets) {
integrator_shader_mnee_sort_counter_.alloc(sort_buckets);
integrator_shader_mnee_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE] =
(int *)integrator_shader_mnee_sort_counter_.device_pointer;
integrator_shader_sort_prefix_sum_.alloc(sort_buckets);
integrator_shader_sort_prefix_sum_.zero_to_device();
}
if (device_scene_->data.kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) {
if (integrator_shader_raytrace_sort_counter_.size() < sort_buckets) {
integrator_shader_raytrace_sort_counter_.alloc(sort_buckets);
integrator_shader_raytrace_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE] =
(int *)integrator_shader_raytrace_sort_counter_.device_pointer;
}
}
if (device_scene_->data.kernel_features & KERNEL_FEATURE_MNEE) {
if (integrator_shader_mnee_sort_counter_.size() < sort_buckets) {
integrator_shader_mnee_sort_counter_.alloc(sort_buckets);
integrator_shader_mnee_sort_counter_.zero_to_device();
integrator_state_gpu_.sort_key_counter[DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE] =
(int *)integrator_shader_mnee_sort_counter_.device_pointer;
}
}
}
}
@ -451,8 +465,7 @@ void PathTraceWorkGPU::enqueue_path_iteration(DeviceKernel kernel, const int num
work_size = num_queued;
d_path_index = queued_paths_.device_pointer;
compute_sorted_queued_paths(
DEVICE_KERNEL_INTEGRATOR_SORTED_PATHS_ARRAY, kernel, num_paths_limit);
compute_sorted_queued_paths(kernel, num_paths_limit);
}
else if (num_queued < work_size) {
work_size = num_queued;
@ -511,11 +524,26 @@ void PathTraceWorkGPU::enqueue_path_iteration(DeviceKernel kernel, const int num
}
}
void PathTraceWorkGPU::compute_sorted_queued_paths(DeviceKernel kernel,
DeviceKernel queued_kernel,
void PathTraceWorkGPU::compute_sorted_queued_paths(DeviceKernel queued_kernel,
const int num_paths_limit)
{
int d_queued_kernel = queued_kernel;
/* Launch kernel to fill the active paths arrays. */
if (num_sort_partitions_ > 1 && queue_->supports_local_atomic_sort()) {
const int work_size = kernel_max_active_main_path_index(queued_kernel);
device_ptr d_queued_paths = queued_paths_.device_pointer;
int partition_size = (int)integrator_state_gpu_.sort_partition_divisor;
DeviceKernelArguments args(
&work_size, &partition_size, &num_paths_limit, &d_queued_paths, &d_queued_kernel);
queue_->enqueue(DEVICE_KERNEL_INTEGRATOR_SORT_BUCKET_PASS, 1024 * num_sort_partitions_, args);
queue_->enqueue(DEVICE_KERNEL_INTEGRATOR_SORT_WRITE_PASS, 1024 * num_sort_partitions_, args);
return;
}
device_ptr d_counter = (device_ptr)integrator_state_gpu_.sort_key_counter[d_queued_kernel];
device_ptr d_prefix_sum = integrator_shader_sort_prefix_sum_.device_pointer;
assert(d_counter != 0 && d_prefix_sum != 0);
@ -552,7 +580,7 @@ void PathTraceWorkGPU::compute_sorted_queued_paths(DeviceKernel kernel,
&d_prefix_sum,
&d_queued_kernel);
queue_->enqueue(kernel, work_size, args);
queue_->enqueue(DEVICE_KERNEL_INTEGRATOR_SORTED_PATHS_ARRAY, work_size, args);
}
}

View File

@ -70,9 +70,7 @@ class PathTraceWorkGPU : public PathTraceWork {
void enqueue_path_iteration(DeviceKernel kernel, const int num_paths_limit = INT_MAX);
void compute_queued_paths(DeviceKernel kernel, DeviceKernel queued_kernel);
void compute_sorted_queued_paths(DeviceKernel kernel,
DeviceKernel queued_kernel,
const int num_paths_limit);
void compute_sorted_queued_paths(DeviceKernel queued_kernel, const int num_paths_limit);
void compact_main_paths(const int num_active_paths);
void compact_shadow_paths();
@ -135,6 +133,7 @@ class PathTraceWorkGPU : public PathTraceWork {
device_vector<int> integrator_shader_raytrace_sort_counter_;
device_vector<int> integrator_shader_mnee_sort_counter_;
device_vector<int> integrator_shader_sort_prefix_sum_;
device_vector<int> integrator_shader_sort_partition_key_offsets_;
/* Path split. */
device_vector<int> integrator_next_main_path_index_;
device_vector<int> integrator_next_shadow_path_index_;

View File

@ -886,7 +886,7 @@ int RenderScheduler::get_num_samples_during_navigation(int resolution_divider) c
{
/* Special trick for fast navigation: schedule multiple samples during fast navigation
* (which will prefer to use lower resolution to keep up with refresh rate). This gives more
* usable visual feedback for artists. There are a couple of tricks though. */
* usable visual feedback for artists. */
if (is_denoise_active_during_update()) {
/* When denoising is used during navigation prefer using a higher resolution with less samples
@ -896,25 +896,12 @@ int RenderScheduler::get_num_samples_during_navigation(int resolution_divider) c
return 1;
}
if (resolution_divider <= pixel_size_) {
/* When resolution divider is at or below pixel size, schedule one sample. This doesn't effect
* the sample count at this resolution division, but instead assists in the calculation of
* the resolution divider. */
return 1;
}
if (resolution_divider == pixel_size_ * 2) {
/* When resolution divider is the previous step to the final resolution, schedule two samples.
* This is so that rendering on lower resolution does not exceed time that it takes to render
* first sample at the full resolution. */
return 2;
}
/* Always render 4 samples, even if scene is configured for less.
* The idea here is to have enough information on the screen. Resolution divider of 2 allows us
* to have 4 time extra samples, so overall worst case timing is the same as the final resolution
* at one sample. */
return 4;
/* Schedule samples equal to the resolution divider up to a maximum of 4.
* The idea is to have enough information on the screen by increasing the sample count as the
* resolution is decreased. */
/* NOTE: Changing this formula will change the formula in
* `RenderScheduler::calculate_resolution_divider_for_time()`. */
return min(max(1, resolution_divider / pixel_size_), 4);
}
bool RenderScheduler::work_need_adaptive_filter() const
@ -1100,9 +1087,10 @@ void RenderScheduler::update_start_resolution_divider()
/* TODO(sergey): Need to add hysteresis to avoid resolution divider bouncing around when actual
* render time is somewhere on a boundary between two resolutions. */
/* Never increase resolution to higher than the pixel size (which is possible if the scene is
* simple and compute device is fast). */
start_resolution_divider_ = max(resolution_divider_for_update, pixel_size_);
/* Don't let resolution drop below the desired one. It's better to be slow than provide an
* unreadable viewport render. */
start_resolution_divider_ = min(resolution_divider_for_update,
default_start_resolution_divider_);
VLOG_WORK << "Calculated resolution divider is " << start_resolution_divider_;
}
@ -1187,24 +1175,24 @@ void RenderScheduler::check_time_limit_reached()
int RenderScheduler::calculate_resolution_divider_for_time(double desired_time, double actual_time)
{
/* TODO(sergey): There should a non-iterative analytical formula here. */
const double ratio_between_times = actual_time / desired_time;
int resolution_divider = 1;
/* We can pass `ratio_between_times` to `get_num_samples_during_navigation()` to get our
* navigation samples because the equation for calculating the resolution divider is as follows:
* `actual_time / desired_time = sqr(resolution_divider) / sample_count`.
* While `resolution_divider` is less than or equal to 4, `resolution_divider = sample_count`
* (This relationship is determined in `get_num_samples_during_navigation()`). With some
* substitution we end up with `actual_time / desired_time = resolution_divider` while the
* resolution divider is less than or equal to 4. Once the resolution divider increases above 4,
* the relationship of `actual_time / desired_time = resolution_divider` is no longer true,
* however the sample count retrieved from `get_num_samples_during_navigation()` is still
* accurate if we continue using this assumption. It should be noted that the interaction between
* `pixel_size`, sample count, and resolution divider are automatically accounted for and that's
* why `pixel_size` isn't included in any of the equations. */
const int navigation_samples = get_num_samples_during_navigation(
ceil_to_int(ratio_between_times));
/* This algorithm iterates through resolution dividers until a divider is found that achieves
* the desired render time. A limit of default_start_resolution_divider_ is put in place as the
* maximum resolution divider to avoid an unreadable viewport due to a low resolution.
* pre_resolution_division_samples and post_resolution_division_samples are used in this
* calculation to better predict the performance impact of changing resolution divisions as
* the sample count can also change between resolution divisions. */
while (actual_time > desired_time && resolution_divider < default_start_resolution_divider_) {
int pre_resolution_division_samples = get_num_samples_during_navigation(resolution_divider);
resolution_divider = resolution_divider * 2;
int post_resolution_division_samples = get_num_samples_during_navigation(resolution_divider);
actual_time /= 4.0 * pre_resolution_division_samples / post_resolution_division_samples;
}
return resolution_divider;
return ceil_to_int(sqrt(navigation_samples * ratio_between_times));
}
int calculate_resolution_divider_for_resolution(int width, int height, int resolution)

View File

@ -412,11 +412,12 @@ if(WITH_CYCLES_CUDA_BINARIES)
# warn for other versions
if((CUDA_VERSION STREQUAL "101") OR
(CUDA_VERSION STREQUAL "102") OR
(CUDA_VERSION_MAJOR STREQUAL "11"))
(CUDA_VERSION_MAJOR STREQUAL "11") OR
(CUDA_VERSION_MAJOR STREQUAL "12"))
else()
message(WARNING
"CUDA version ${CUDA_VERSION_MAJOR}.${CUDA_VERSION_MINOR} detected, "
"build may succeed but only CUDA 11, 10.2 and 10.1 have been tested")
"build may succeed but only CUDA 12, 11, 10.2 and 10.1 have been tested")
endif()
# build for each arch
@ -514,6 +515,16 @@ if(WITH_CYCLES_CUDA_BINARIES)
else()
message(STATUS "CUDA binaries for ${arch} require CUDA 10 or earlier, skipped.")
endif()
elseif(${arch} MATCHES ".*_3.")
if(DEFINED CUDA11_NVCC_EXECUTABLE)
set(cuda_nvcc_executable ${CUDA11_NVCC_EXECUTABLE})
set(cuda_toolkit_root_dir ${CUDA11_TOOLKIT_ROOT_DIR})
elseif("${CUDA_VERSION}" LESS 120) # Support for sm_35, sm_37 was removed in CUDA 12
set(cuda_nvcc_executable ${CUDA_NVCC_EXECUTABLE})
set(cuda_toolkit_root_dir ${CUDA_TOOLKIT_ROOT_DIR})
else()
message(STATUS "CUDA binaries for ${arch} require CUDA 11 or earlier, skipped.")
endif()
elseif(${arch} MATCHES ".*_7." AND "${CUDA_VERSION}" LESS 100)
message(STATUS "CUDA binaries for ${arch} require CUDA 10.0+, skipped.")
elseif(${arch} MATCHES ".*_8.")

View File

@ -170,7 +170,7 @@ ccl_device_inline int bsdf_sample(KernelGlobals kg,
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
label = bsdf_microfacet_ggx_sample(
kg, sc, Ng, sd->wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
sc, Ng, sd->wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
break;
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
@ -185,7 +185,7 @@ ccl_device_inline int bsdf_sample(KernelGlobals kg,
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID:
label = bsdf_microfacet_beckmann_sample(
kg, sc, Ng, sd->wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
sc, Ng, sd->wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
break;
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
label = bsdf_ashikhmin_shirley_sample(
@ -661,4 +661,38 @@ ccl_device void bsdf_blur(KernelGlobals kg, ccl_private ShaderClosure *sc, float
#endif
}
ccl_device_inline Spectrum bsdf_albedo(ccl_private const ShaderData *sd,
ccl_private const ShaderClosure *sc)
{
Spectrum albedo = sc->weight;
/* Some closures include additional components such as Fresnel terms that cause their albedo to
* be below 1. The point of this function is to return a best-effort estimation of their albedo,
* meaning the amount of reflected/refracted light that would be expected when illuminated by a
* uniform white background.
* This is used for the denoising albedo pass and diffuse/glossy/transmission color passes.
* NOTE: This should always match the sample_weight of the closure - as in, if there's an albedo
* adjustment in here, the sample_weight should also be reduced accordingly.
* TODO(lukas): Consider calling this function to determine the sample_weight? Would be a bit of
* extra overhead though. */
#if defined(__SVM__) || defined(__OSL__)
switch (sc->type) {
case CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID:
case CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID:
albedo *= microfacet_fresnel((ccl_private const MicrofacetBsdf *)sc, sd->wi, sc->N);
break;
case CLOSURE_BSDF_PRINCIPLED_SHEEN_ID:
albedo *= ((ccl_private const PrincipledSheenBsdf *)sc)->avg_value;
break;
case CLOSURE_BSDF_HAIR_PRINCIPLED_ID:
albedo *= bsdf_principled_hair_albedo(sd, sc);
break;
default:
break;
}
#endif
return albedo;
}
CCL_NAMESPACE_END

View File

@ -478,10 +478,18 @@ ccl_device_inline float bsdf_principled_hair_albedo_roughness_scale(
return (((((0.245f * x) + 5.574f) * x - 10.73f) * x + 2.532f) * x - 0.215f) * x + 5.969f;
}
ccl_device Spectrum bsdf_principled_hair_albedo(ccl_private const ShaderClosure *sc)
ccl_device Spectrum bsdf_principled_hair_albedo(ccl_private const ShaderData *sd,
ccl_private const ShaderClosure *sc)
{
ccl_private PrincipledHairBSDF *bsdf = (ccl_private PrincipledHairBSDF *)sc;
return exp(-sqrt(bsdf->sigma) * bsdf_principled_hair_albedo_roughness_scale(bsdf->v));
const float cos_theta_o = cos_from_sin(dot(sd->wi, safe_normalize(sd->dPdu)));
const float cos_gamma_o = cos_from_sin(bsdf->extra->geom.w);
const float f = fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta);
const float roughness_scale = bsdf_principled_hair_albedo_roughness_scale(bsdf->v);
/* TODO(lukas): Adding the Fresnel term here as a workaround until the proper refactor. */
return exp(-sqrt(bsdf->sigma) * roughness_scale) + make_spectrum(f);
}
ccl_device_inline Spectrum

View File

@ -23,8 +23,6 @@ enum MicrofacetType {
typedef struct MicrofacetExtra {
Spectrum color, cspec0;
Spectrum fresnel_color;
float clearcoat;
} MicrofacetExtra;
typedef struct MicrofacetBsdf {
@ -42,8 +40,7 @@ static_assert(sizeof(ShaderClosure) >= sizeof(MicrofacetBsdf), "MicrofacetBsdf i
* Eric Heitz and Eugene d'Eon, EGSR 2014.
* https://hal.inria.fr/hal-00996995v2/document */
ccl_device_forceinline float3 microfacet_beckmann_sample_vndf(KernelGlobals kg,
const float3 wi,
ccl_device_forceinline float3 microfacet_beckmann_sample_vndf(const float3 wi,
const float alpha_x,
const float alpha_y,
const float randu,
@ -185,26 +182,25 @@ ccl_device_forceinline float3 microfacet_ggx_sample_vndf(const float3 wi,
*
* Else it is simply white
*/
ccl_device_forceinline Spectrum reflection_color(ccl_private const MicrofacetBsdf *bsdf,
float3 L,
float3 H)
ccl_device_forceinline Spectrum microfacet_fresnel(ccl_private const MicrofacetBsdf *bsdf,
float3 wi,
float3 H)
{
Spectrum F = one_spectrum();
bool use_clearcoat = bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID;
bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID || use_clearcoat);
if (use_fresnel) {
float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
F = interpolate_fresnel_color(L, H, bsdf->ior, F0, bsdf->extra->cspec0);
if (CLOSURE_IS_BSDF_MICROFACET_FRESNEL(bsdf->type)) {
return interpolate_fresnel_color(wi, H, bsdf->ior, bsdf->extra->cspec0);
}
if (use_clearcoat) {
F *= 0.25f * bsdf->extra->clearcoat;
else if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
return make_spectrum(fresnel_dielectric_cos(dot(wi, H), bsdf->ior));
}
else {
return one_spectrum();
}
}
return F;
ccl_device_forceinline void bsdf_microfacet_adjust_weight(ccl_private const ShaderData *sd,
ccl_private MicrofacetBsdf *bsdf)
{
bsdf->sample_weight *= average(microfacet_fresnel(bsdf, sd->wi, bsdf->N));
}
/* Generalized Trowbridge-Reitz for clearcoat. */
@ -293,22 +289,6 @@ ccl_device_inline float bsdf_aniso_D(float alpha_x, float alpha_y, float3 H)
}
}
ccl_device_forceinline void bsdf_microfacet_fresnel_color(ccl_private const ShaderData *sd,
ccl_private MicrofacetBsdf *bsdf)
{
kernel_assert(CLOSURE_IS_BSDF_MICROFACET_FRESNEL(bsdf->type));
float F0 = fresnel_dielectric_cos(1.0f, bsdf->ior);
bsdf->extra->fresnel_color = interpolate_fresnel_color(
sd->wi, bsdf->N, bsdf->ior, F0, bsdf->extra->cspec0);
if (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID) {
bsdf->extra->fresnel_color *= 0.25f * bsdf->extra->clearcoat;
}
bsdf->sample_weight *= average(bsdf->extra->fresnel_color);
}
template<MicrofacetType m_type>
ccl_device Spectrum bsdf_microfacet_eval(ccl_private const ShaderClosure *sc,
const float3 Ng,
@ -381,14 +361,12 @@ ccl_device Spectrum bsdf_microfacet_eval(ccl_private const ShaderClosure *sc,
*pdf = common / (1.0f + lambdaI);
const Spectrum F = m_refractive ? one_spectrum() : reflection_color(bsdf, wo, H);
const Spectrum F = microfacet_fresnel(bsdf, wo, H);
return F * common / (1.0f + lambdaO + lambdaI);
}
template<MicrofacetType m_type>
ccl_device int bsdf_microfacet_sample(KernelGlobals kg,
ccl_private const ShaderClosure *sc,
ccl_device int bsdf_microfacet_sample(ccl_private const ShaderClosure *sc,
float3 Ng,
float3 wi,
float randu,
@ -431,7 +409,7 @@ ccl_device int bsdf_microfacet_sample(KernelGlobals kg,
}
else {
/* m_type == MicrofacetType::BECKMANN */
local_H = microfacet_beckmann_sample_vndf(kg, local_I, alpha_x, alpha_y, randu, randv);
local_H = microfacet_beckmann_sample_vndf(local_I, alpha_x, alpha_y, randu, randv);
}
const float3 H = X * local_H.x + Y * local_H.y + N * local_H.z;
@ -465,14 +443,7 @@ ccl_device int bsdf_microfacet_sample(KernelGlobals kg,
label |= LABEL_SINGULAR;
/* Some high number for MIS. */
*pdf = 1e6f;
*eval = make_spectrum(1e6f);
bool use_fresnel = (bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID ||
bsdf->type == CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID);
if (use_fresnel && !m_refractive) {
*eval *= reflection_color(bsdf, *wo, H);
}
*eval = make_spectrum(1e6f) * microfacet_fresnel(bsdf, *wo, H);
}
else {
label |= LABEL_GLOSSY;
@ -513,8 +484,7 @@ ccl_device int bsdf_microfacet_sample(KernelGlobals kg,
*pdf = common / (1.0f + lambdaI);
Spectrum F = m_refractive ? one_spectrum() : reflection_color(bsdf, *wo, H);
Spectrum F = microfacet_fresnel(bsdf, *wo, H);
*eval = F * common / (1.0f + lambdaI + lambdaO);
}
@ -549,14 +519,6 @@ ccl_device int bsdf_microfacet_ggx_setup(ccl_private MicrofacetBsdf *bsdf)
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
/* Required to maintain OSL interface. */
ccl_device int bsdf_microfacet_ggx_isotropic_setup(ccl_private MicrofacetBsdf *bsdf)
{
bsdf->alpha_y = bsdf->alpha_x;
return bsdf_microfacet_ggx_setup(bsdf);
}
ccl_device int bsdf_microfacet_ggx_fresnel_setup(ccl_private MicrofacetBsdf *bsdf,
ccl_private const ShaderData *sd)
{
@ -567,7 +529,7 @@ ccl_device int bsdf_microfacet_ggx_fresnel_setup(ccl_private MicrofacetBsdf *bsd
bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_FRESNEL_ID;
bsdf_microfacet_fresnel_color(sd, bsdf);
bsdf_microfacet_adjust_weight(sd, bsdf);
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
@ -575,14 +537,12 @@ ccl_device int bsdf_microfacet_ggx_fresnel_setup(ccl_private MicrofacetBsdf *bsd
ccl_device int bsdf_microfacet_ggx_clearcoat_setup(ccl_private MicrofacetBsdf *bsdf,
ccl_private const ShaderData *sd)
{
bsdf->extra->cspec0 = saturate(bsdf->extra->cspec0);
bsdf->alpha_x = saturatef(bsdf->alpha_x);
bsdf->alpha_y = bsdf->alpha_x;
bsdf->type = CLOSURE_BSDF_MICROFACET_GGX_CLEARCOAT_ID;
bsdf_microfacet_fresnel_color(sd, bsdf);
bsdf_microfacet_adjust_weight(sd, bsdf);
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
@ -616,8 +576,7 @@ ccl_device Spectrum bsdf_microfacet_ggx_eval(ccl_private const ShaderClosure *sc
return bsdf_microfacet_eval<MicrofacetType::GGX>(sc, Ng, wi, wo, pdf);
}
ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals kg,
ccl_private const ShaderClosure *sc,
ccl_device int bsdf_microfacet_ggx_sample(ccl_private const ShaderClosure *sc,
float3 Ng,
float3 wi,
float randu,
@ -629,7 +588,7 @@ ccl_device int bsdf_microfacet_ggx_sample(KernelGlobals kg,
ccl_private float *eta)
{
return bsdf_microfacet_sample<MicrofacetType::GGX>(
kg, sc, Ng, wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
sc, Ng, wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
}
/* Beckmann microfacet with Smith shadow-masking from:
@ -646,14 +605,6 @@ ccl_device int bsdf_microfacet_beckmann_setup(ccl_private MicrofacetBsdf *bsdf)
return SD_BSDF | SD_BSDF_HAS_EVAL;
}
/* Required to maintain OSL interface. */
ccl_device int bsdf_microfacet_beckmann_isotropic_setup(ccl_private MicrofacetBsdf *bsdf)
{
bsdf->alpha_y = bsdf->alpha_x;
return bsdf_microfacet_beckmann_setup(bsdf);
}
ccl_device int bsdf_microfacet_beckmann_refraction_setup(ccl_private MicrofacetBsdf *bsdf)
{
bsdf->alpha_x = saturatef(bsdf->alpha_x);
@ -680,8 +631,7 @@ ccl_device Spectrum bsdf_microfacet_beckmann_eval(ccl_private const ShaderClosur
return bsdf_microfacet_eval<MicrofacetType::BECKMANN>(sc, Ng, wi, wo, pdf);
}
ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals kg,
ccl_private const ShaderClosure *sc,
ccl_device int bsdf_microfacet_beckmann_sample(ccl_private const ShaderClosure *sc,
float3 Ng,
float3 wi,
float randu,
@ -693,7 +643,7 @@ ccl_device int bsdf_microfacet_beckmann_sample(KernelGlobals kg,
ccl_private float *eta)
{
return bsdf_microfacet_sample<MicrofacetType::BECKMANN>(
kg, sc, Ng, wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
sc, Ng, wi, randu, randv, eval, wo, pdf, sampled_roughness, eta);
}
CCL_NAMESPACE_END

View File

@ -401,7 +401,7 @@ ccl_device int bsdf_microfacet_multi_ggx_fresnel_setup(ccl_private MicrofacetBsd
bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_FRESNEL_ID;
bsdf_microfacet_fresnel_color(sd, bsdf);
bsdf_microfacet_adjust_weight(sd, bsdf);
return bsdf_microfacet_multi_ggx_common_setup(bsdf);
}
@ -575,7 +575,7 @@ ccl_device int bsdf_microfacet_multi_ggx_glass_fresnel_setup(ccl_private Microfa
bsdf->type = CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_FRESNEL_ID;
bsdf_microfacet_fresnel_color(sd, bsdf);
bsdf_microfacet_adjust_weight(sd, bsdf);
return SD_BSDF | SD_BSDF_HAS_EVAL | SD_BSDF_NEEDS_LCG;
}

View File

@ -73,9 +73,8 @@ ccl_device_forceinline Spectrum MF_FUNCTION_FULL_NAME(mf_eval)(float3 wi,
eval = make_spectrum(val);
#endif
float F0 = fresnel_dielectric_cos(1.0f, eta);
if (use_fresnel) {
throughput = interpolate_fresnel_color(wi, wh, eta, F0, cspec0);
throughput = interpolate_fresnel_color(wi, wh, eta, cspec0);
eval *= throughput;
}
@ -144,11 +143,11 @@ ccl_device_forceinline Spectrum MF_FUNCTION_FULL_NAME(mf_eval)(float3 wi,
throughput *= color;
}
else if (use_fresnel && order > 0) {
throughput *= interpolate_fresnel_color(wi_prev, wm, eta, F0, cspec0);
throughput *= interpolate_fresnel_color(wi_prev, wm, eta, cspec0);
}
#else /* MF_MULTI_GLOSSY */
if (use_fresnel && order > 0) {
throughput *= interpolate_fresnel_color(-wr, wm, eta, F0, cspec0);
throughput *= interpolate_fresnel_color(-wr, wm, eta, cspec0);
}
wr = mf_sample_phase_glossy(-wr, &throughput, wm);
#endif
@ -192,8 +191,6 @@ ccl_device_forceinline Spectrum MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi,
float G1_r = 0.0f;
bool outside = true;
float F0 = fresnel_dielectric_cos(1.0f, eta);
int order;
for (order = 0; order < 10; order++) {
/* Sample microfacet height. */
@ -229,22 +226,12 @@ ccl_device_forceinline Spectrum MF_FUNCTION_FULL_NAME(mf_sample)(float3 wi,
throughput *= color;
}
else {
Spectrum t_color = interpolate_fresnel_color(wi_prev, wm, eta, F0, cspec0);
if (order == 0)
throughput = t_color;
else
throughput *= t_color;
throughput *= interpolate_fresnel_color(wi_prev, wm, eta, cspec0);
}
}
#else /* MF_MULTI_GLOSSY */
if (use_fresnel) {
Spectrum t_color = interpolate_fresnel_color(-wr, wm, eta, F0, cspec0);
if (order == 0)
throughput = t_color;
else
throughput *= t_color;
throughput *= interpolate_fresnel_color(-wr, wm, eta, cspec0);
}
wr = mf_sample_phase_glossy(-wr, &throughput, wm);
#endif

View File

@ -89,19 +89,21 @@ ccl_device float schlick_fresnel(float u)
return m2 * m2 * m; // pow(m, 5)
}
/* Calculate the fresnel color which is a blend between white and the F0 color (cspec0) */
ccl_device_forceinline Spectrum
interpolate_fresnel_color(float3 L, float3 H, float ior, float F0, Spectrum cspec0)
/* Calculate the fresnel color, which is a blend between white and the F0 color */
ccl_device_forceinline Spectrum interpolate_fresnel_color(float3 L,
float3 H,
float ior,
Spectrum F0)
{
/* Calculate the fresnel interpolation factor
* The value from fresnel_dielectric_cos(...) has to be normalized because
* the cspec0 keeps the F0 color
*/
float F0_norm = 1.0f / (1.0f - F0);
float FH = (fresnel_dielectric_cos(dot(L, H), ior) - F0) * F0_norm;
/* Compute the real Fresnel term and remap it from real_F0..1 to F0..1.
* The reason why we use this remapping instead of directly doing the
* Schlick approximation lerp(F0, 1.0, (1.0-cosLH)^5) is that for cases
* with similar IORs (e.g. ice in water), the relative IOR can be close
* enough to 1.0 that the Schlick approximation becomes inaccurate. */
float real_F = fresnel_dielectric_cos(dot(L, H), ior);
float real_F0 = fresnel_dielectric_cos(1.0f, ior);
/* Blend between white and a specular color with respect to the fresnel */
return cspec0 * (1.0f - FH) + make_spectrum(FH);
return mix(F0, one_spectrum(), inverse_lerp(real_F0, 1.0f, real_F));
}
ccl_device float3 ensure_valid_reflection(float3 Ng, float3 I, float3 N)

View File

@ -10,7 +10,7 @@
#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_AVX2
# define KERNEL_STUB
#else
/* SSE optimization disabled for now on 32 bit, see bug T36316. */
/* SSE optimization disabled for now on 32 bit, see bug #36316. */
# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
# define __KERNEL_SSE__
# define __KERNEL_SSE2__

View File

@ -10,7 +10,7 @@
#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE2
# define KERNEL_STUB
#else
/* SSE optimization disabled for now on 32 bit, see bug T36316. */
/* SSE optimization disabled for now on 32 bit, see bug #36316. */
# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
# define __KERNEL_SSE2__
# endif

View File

@ -10,7 +10,7 @@
#ifndef WITH_CYCLES_OPTIMIZED_KERNEL_SSE41
# define KERNEL_STUB
#else
/* SSE optimization disabled for now on 32 bit, see bug T36316. */
/* SSE optimization disabled for now on 32 bit, see bug #36316. */
# if !(defined(__GNUC__) && (defined(i386) || defined(_M_IX86)))
# define __KERNEL_SSE2__
# define __KERNEL_SSE3__

View File

@ -401,6 +401,72 @@ ccl_gpu_kernel_threads(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_sort_bucket_pass,
int num_states,
int partition_size,
int num_states_limit,
ccl_global int *indices,
int kernel_index)
{
#if defined(__KERNEL_LOCAL_ATOMIC_SORT__)
int max_shaders = context.launch_params_metal.data.max_shaders;
ccl_global ushort *d_queued_kernel = (ccl_global ushort *)
kernel_integrator_state.path.queued_kernel;
ccl_global uint *d_shader_sort_key = (ccl_global uint *)
kernel_integrator_state.path.shader_sort_key;
ccl_global int *key_offsets = (ccl_global int *)
kernel_integrator_state.sort_partition_key_offsets;
gpu_parallel_sort_bucket_pass(num_states,
partition_size,
max_shaders,
kernel_index,
d_queued_kernel,
d_shader_sort_key,
key_offsets,
(threadgroup int *)threadgroup_array,
metal_local_id,
metal_local_size,
metal_grid_id);
#endif
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_SORT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_sort_write_pass,
int num_states,
int partition_size,
int num_states_limit,
ccl_global int *indices,
int kernel_index)
{
#if defined(__KERNEL_LOCAL_ATOMIC_SORT__)
int max_shaders = context.launch_params_metal.data.max_shaders;
ccl_global ushort *d_queued_kernel = (ccl_global ushort *)
kernel_integrator_state.path.queued_kernel;
ccl_global uint *d_shader_sort_key = (ccl_global uint *)
kernel_integrator_state.path.shader_sort_key;
ccl_global int *key_offsets = (ccl_global int *)
kernel_integrator_state.sort_partition_key_offsets;
gpu_parallel_sort_write_pass(num_states,
partition_size,
max_shaders,
kernel_index,
num_states_limit,
indices,
d_queued_kernel,
d_shader_sort_key,
key_offsets,
(threadgroup int *)threadgroup_array,
metal_local_id,
metal_local_size,
metal_grid_id);
#endif
}
ccl_gpu_kernel_postfix
ccl_gpu_kernel_threads(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
ccl_gpu_kernel_signature(integrator_compact_paths_array,
int num_states,
@ -579,7 +645,7 @@ ccl_device_inline void kernel_gpu_film_convert_half_write(ccl_global uchar4 *rgb
const int y,
const half4 half_pixel)
{
/* Work around HIP issue with half float display, see T92972. */
/* Work around HIP issue with half float display, see #92972. */
#ifdef __KERNEL_HIP__
ccl_global half *out = ((ccl_global half *)rgba) + (rgba_offset + y * rgba_stride + x) * 4;
out[0] = half_pixel.x;

View File

@ -178,7 +178,7 @@ __device__
simd_lane_index, \
simd_group_index, \
num_simd_groups, \
simdgroup_offset)
(threadgroup int *)threadgroup_array)
#elif defined(__KERNEL_ONEAPI__)
# define gpu_parallel_active_index_array(num_states, indices, num_indices, is_active_op) \

View File

@ -19,6 +19,115 @@ CCL_NAMESPACE_BEGIN
# define GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE 512
#endif
#define GPU_PARALLEL_SORTED_INDEX_INACTIVE_KEY (~0)
#define GPU_PARALLEL_SORT_BLOCK_SIZE 1024
#if defined(__KERNEL_LOCAL_ATOMIC_SORT__)
# define atomic_store_local(p, x) \
atomic_store_explicit((threadgroup atomic_int *)p, x, memory_order_relaxed)
# define atomic_load_local(p) \
atomic_load_explicit((threadgroup atomic_int *)p, memory_order_relaxed)
ccl_device_inline void gpu_parallel_sort_bucket_pass(const uint num_states,
const uint partition_size,
const uint max_shaders,
const uint queued_kernel,
ccl_global ushort *d_queued_kernel,
ccl_global uint *d_shader_sort_key,
ccl_global int *partition_key_offsets,
ccl_gpu_shared int *buckets,
const ushort local_id,
const ushort local_size,
const ushort grid_id)
{
/* Zero the bucket sizes. */
if (local_id < max_shaders) {
atomic_store_local(&buckets[local_id], 0);
}
ccl_gpu_syncthreads();
/* Determine bucket sizes within the partitions. */
const uint partition_start = partition_size * uint(grid_id);
const uint partition_end = min(num_states, partition_start + partition_size);
for (int state_index = partition_start + uint(local_id); state_index < partition_end;
state_index += uint(local_size)) {
ushort kernel_index = d_queued_kernel[state_index];
if (kernel_index == queued_kernel) {
uint key = d_shader_sort_key[state_index] % max_shaders;
atomic_fetch_and_add_uint32(&buckets[key], 1);
}
}
ccl_gpu_syncthreads();
/* Calculate the partition's local offsets from the prefix sum of bucket sizes. */
if (local_id == 0) {
int offset = 0;
for (int i = 0; i < max_shaders; i++) {
partition_key_offsets[i + uint(grid_id) * (max_shaders + 1)] = offset;
offset = offset + atomic_load_local(&buckets[i]);
}
/* Store the number of active states in this partition. */
partition_key_offsets[max_shaders + uint(grid_id) * (max_shaders + 1)] = offset;
}
}
ccl_device_inline void gpu_parallel_sort_write_pass(const uint num_states,
const uint partition_size,
const uint max_shaders,
const uint queued_kernel,
const int num_states_limit,
ccl_global int *indices,
ccl_global ushort *d_queued_kernel,
ccl_global uint *d_shader_sort_key,
ccl_global int *partition_key_offsets,
ccl_gpu_shared int *local_offset,
const ushort local_id,
const ushort local_size,
const ushort grid_id)
{
/* Calculate each partition's global offset from the prefix sum of the active state counts per
* partition. */
if (local_id < max_shaders) {
int partition_offset = 0;
for (int i = 0; i < uint(grid_id); i++) {
int partition_key_count = partition_key_offsets[max_shaders + uint(i) * (max_shaders + 1)];
partition_offset += partition_key_count;
}
ccl_global int *key_offsets = partition_key_offsets + (uint(grid_id) * (max_shaders + 1));
atomic_store_local(&local_offset[local_id], key_offsets[local_id] + partition_offset);
}
ccl_gpu_syncthreads();
/* Write the sorted active indices. */
const uint partition_start = partition_size * uint(grid_id);
const uint partition_end = min(num_states, partition_start + partition_size);
ccl_global int *key_offsets = partition_key_offsets + (uint(grid_id) * max_shaders);
for (int state_index = partition_start + uint(local_id); state_index < partition_end;
state_index += uint(local_size)) {
ushort kernel_index = d_queued_kernel[state_index];
if (kernel_index == queued_kernel) {
uint key = d_shader_sort_key[state_index] % max_shaders;
int index = atomic_fetch_and_add_uint32(&local_offset[key], 1);
if (index < num_states_limit) {
indices[index] = state_index;
}
}
}
}
#endif /* __KERNEL_LOCAL_ATOMIC_SORT__ */
template<typename GetKeyOp>
__device__ void gpu_parallel_sorted_index_array(const uint state_index,

View File

@ -172,17 +172,14 @@ ccl_device_intersect bool scene_intersect_local(KernelGlobals kg,
kernel_assert(!"Invalid ift_local");
return false;
}
# endif
metal::raytracing::ray r(ray->P, ray->D, ray->tmin, ray->tmax);
metalrt_intersector_type metalrt_intersect;
metalrt_intersect.force_opacity(metal::raytracing::forced_opacity::non_opaque);
bool triangle_only = !kernel_data.bvh.have_curves && !kernel_data.bvh.have_points;
if (triangle_only) {
metalrt_intersect.assume_geometry_type(metal::raytracing::geometry_type::triangle);
if (is_null_intersection_function_table(metal_ancillaries->ift_local_prim)) {
if (local_isect) {
local_isect->num_hits = 0;
}
kernel_assert(!"Invalid ift_local_prim");
return false;
}
# endif
MetalRTIntersectionLocalPayload payload;
payload.self = ray->self;
@ -195,14 +192,48 @@ ccl_device_intersect bool scene_intersect_local(KernelGlobals kg,
}
payload.result = false;
typename metalrt_intersector_type::result_type intersection;
metal::raytracing::ray r(ray->P, ray->D, ray->tmin, ray->tmax);
# if defined(__METALRT_MOTION__)
metalrt_intersector_type metalrt_intersect;
typename metalrt_intersector_type::result_type intersection;
metalrt_intersect.force_opacity(metal::raytracing::forced_opacity::non_opaque);
bool triangle_only = !kernel_data.bvh.have_curves && !kernel_data.bvh.have_points;
if (triangle_only) {
metalrt_intersect.assume_geometry_type(metal::raytracing::geometry_type::triangle);
}
intersection = metalrt_intersect.intersect(
r, metal_ancillaries->accel_struct, 0xFF, ray->time, metal_ancillaries->ift_local, payload);
# else
metalrt_blas_intersector_type metalrt_intersect;
typename metalrt_blas_intersector_type::result_type intersection;
metalrt_intersect.force_opacity(metal::raytracing::forced_opacity::non_opaque);
bool triangle_only = !kernel_data.bvh.have_curves && !kernel_data.bvh.have_points;
if (triangle_only) {
metalrt_intersect.assume_geometry_type(metal::raytracing::geometry_type::triangle);
}
// if we know we are going to get max one hit, like for random-sss-walk we can
// optimize and accept the first hit
if (max_hits == 1) {
metalrt_intersect.accept_any_intersection(true);
}
int blas_index = metal_ancillaries->blas_userID_to_index_lookUp[local_object];
// transform the ray into object's local space
Transform itfm = kernel_data_fetch(objects, local_object).itfm;
r.origin = transform_point(&itfm, r.origin);
r.direction = transform_direction(&itfm, r.direction);
intersection = metalrt_intersect.intersect(
r, metal_ancillaries->accel_struct, 0xFF, metal_ancillaries->ift_local, payload);
r,
metal_ancillaries->blas_accel_structs[blas_index].blas,
metal_ancillaries->ift_local_prim,
payload);
# endif
if (lcg_state) {

View File

@ -105,10 +105,11 @@ struct kernel_gpu_##name \
{ \
PARAMS_MAKER(__VA_ARGS__)(__VA_ARGS__) \
void run(thread MetalKernelContext& context, \
threadgroup int *simdgroup_offset, \
threadgroup atomic_int *threadgroup_array, \
const uint metal_global_id, \
const ushort metal_local_id, \
const ushort metal_local_size, \
const ushort metal_grid_id, \
uint simdgroup_size, \
uint simd_lane_index, \
uint simd_group_index, \
@ -117,22 +118,24 @@ struct kernel_gpu_##name \
kernel void cycles_metal_##name(device const kernel_gpu_##name *params_struct, \
constant KernelParamsMetal &ccl_restrict _launch_params_metal, \
constant MetalAncillaries *_metal_ancillaries, \
threadgroup int *simdgroup_offset[[ threadgroup(0) ]], \
threadgroup atomic_int *threadgroup_array[[ threadgroup(0) ]], \
const uint metal_global_id [[thread_position_in_grid]], \
const ushort metal_local_id [[thread_position_in_threadgroup]], \
const ushort metal_local_size [[threads_per_threadgroup]], \
const ushort metal_grid_id [[threadgroup_position_in_grid]], \
uint simdgroup_size [[threads_per_simdgroup]], \
uint simd_lane_index [[thread_index_in_simdgroup]], \
uint simd_group_index [[simdgroup_index_in_threadgroup]], \
uint num_simd_groups [[simdgroups_per_threadgroup]]) { \
MetalKernelContext context(_launch_params_metal, _metal_ancillaries); \
params_struct->run(context, simdgroup_offset, metal_global_id, metal_local_id, metal_local_size, simdgroup_size, simd_lane_index, simd_group_index, num_simd_groups); \
params_struct->run(context, threadgroup_array, metal_global_id, metal_local_id, metal_local_size, metal_grid_id, simdgroup_size, simd_lane_index, simd_group_index, num_simd_groups); \
} \
void kernel_gpu_##name::run(thread MetalKernelContext& context, \
threadgroup int *simdgroup_offset, \
threadgroup atomic_int *threadgroup_array, \
const uint metal_global_id, \
const ushort metal_local_id, \
const ushort metal_local_size, \
const ushort metal_grid_id, \
uint simdgroup_size, \
uint simd_lane_index, \
uint simd_group_index, \
@ -263,13 +266,25 @@ ccl_device_forceinline uchar4 make_uchar4(const uchar x,
# if defined(__METALRT_MOTION__)
# define METALRT_TAGS instancing, instance_motion, primitive_motion
# define METALRT_BLAS_TAGS , primitive_motion
# else
# define METALRT_TAGS instancing
# define METALRT_BLAS_TAGS
# endif /* __METALRT_MOTION__ */
typedef acceleration_structure<METALRT_TAGS> metalrt_as_type;
typedef intersection_function_table<triangle_data, METALRT_TAGS> metalrt_ift_type;
typedef metal::raytracing::intersector<triangle_data, METALRT_TAGS> metalrt_intersector_type;
# if defined(__METALRT_MOTION__)
typedef acceleration_structure<primitive_motion> metalrt_blas_as_type;
typedef intersection_function_table<triangle_data, primitive_motion> metalrt_blas_ift_type;
typedef metal::raytracing::intersector<triangle_data, primitive_motion>
metalrt_blas_intersector_type;
# else
typedef acceleration_structure<> metalrt_blas_as_type;
typedef intersection_function_table<triangle_data> metalrt_blas_ift_type;
typedef metal::raytracing::intersector<triangle_data> metalrt_blas_intersector_type;
# endif
#endif /* __METALRT__ */
@ -282,6 +297,12 @@ struct Texture3DParamsMetal {
texture3d<float, access::sample> tex;
};
#ifdef __METALRT__
struct MetalRTBlasWrapper {
metalrt_blas_as_type blas;
};
#endif
struct MetalAncillaries {
device Texture2DParamsMetal *textures_2d;
device Texture3DParamsMetal *textures_3d;
@ -291,6 +312,9 @@ struct MetalAncillaries {
metalrt_ift_type ift_default;
metalrt_ift_type ift_shadow;
metalrt_ift_type ift_local;
metalrt_blas_ift_type ift_local_prim;
constant MetalRTBlasWrapper *blas_accel_structs;
constant int *blas_userID_to_index_lookUp;
#endif
};

View File

@ -34,7 +34,7 @@ class MetalKernelContext {
kernel_assert(0);
return 0;
}
#ifdef __KERNEL_METAL_INTEL__
template<typename TextureType, typename CoordsType>
inline __attribute__((__always_inline__))
@ -55,7 +55,7 @@ class MetalKernelContext {
}
}
#endif
// texture2d
template<>
inline __attribute__((__always_inline__))

View File

@ -139,6 +139,20 @@ TReturn metalrt_local_hit(constant KernelParamsMetal &launch_params_metal,
#endif
}
[[intersection(triangle, triangle_data )]] TriangleIntersectionResult
__anyhit__cycles_metalrt_local_hit_tri_prim(
constant KernelParamsMetal &launch_params_metal [[buffer(1)]],
ray_data MetalKernelContext::MetalRTIntersectionLocalPayload &payload [[payload]],
uint primitive_id [[primitive_id]],
float2 barycentrics [[barycentric_coord]],
float ray_tmax [[distance]])
{
//instance_id, aka the user_id has been removed. If we take this function we optimized the
//SSS for starting traversal from a primitive acceleration structure instead of the root of the global AS.
//this means we will always be intersecting the correct object no need for the userid to check
return metalrt_local_hit<TriangleIntersectionResult, METALRT_HIT_TRIANGLE>(
launch_params_metal, payload, payload.local_object, primitive_id, barycentrics, ray_tmax);
}
[[intersection(triangle, triangle_data, METALRT_TAGS)]] TriangleIntersectionResult
__anyhit__cycles_metalrt_local_hit_tri(
constant KernelParamsMetal &launch_params_metal [[buffer(1)]],
@ -163,6 +177,17 @@ __anyhit__cycles_metalrt_local_hit_box(const float ray_tmax [[max_distance]])
return result;
}
[[intersection(bounding_box, triangle_data )]] BoundingBoxIntersectionResult
__anyhit__cycles_metalrt_local_hit_box_prim(const float ray_tmax [[max_distance]])
{
/* unused function */
BoundingBoxIntersectionResult result;
result.distance = ray_tmax;
result.accept = false;
result.continue_search = false;
return result;
}
template<uint intersection_type>
bool metalrt_shadow_all_hit(constant KernelParamsMetal &launch_params_metal,
ray_data MetalKernelContext::MetalRTIntersectionShadowPayload &payload,

View File

@ -195,9 +195,9 @@ using sycl::half;
#define fmodf(x, y) sycl::fmod((x), (y))
#define lgammaf(x) sycl::lgamma((x))
/* sycl::native::cos precision is not sufficient and -ffast-math lets
* the current DPC++ compiler overload sycl::cos with it.
* We work around this issue by directly calling the spirv implementation which
/* `sycl::native::cos` precision is not sufficient and `-ffast-math` lets
* the current DPC++ compiler overload `sycl::cos` with it.
* We work around this issue by directly calling the SPIRV implementation which
* provides greater precision. */
#if defined(__SYCL_DEVICE_ONLY__) && defined(__SPIR__)
# define cosf(x) __spirv_ocl_cos(((float)(x)))

View File

@ -372,6 +372,16 @@ bool oneapi_enqueue_kernel(KernelContext *kernel_context,
kg, cgh, global_size, local_size, args, oneapi_kernel_integrator_sorted_paths_array);
break;
}
case DEVICE_KERNEL_INTEGRATOR_SORT_BUCKET_PASS: {
oneapi_call(
kg, cgh, global_size, local_size, args, oneapi_kernel_integrator_sort_bucket_pass);
break;
}
case DEVICE_KERNEL_INTEGRATOR_SORT_WRITE_PASS: {
oneapi_call(
kg, cgh, global_size, local_size, args, oneapi_kernel_integrator_sort_write_pass);
break;
}
case DEVICE_KERNEL_INTEGRATOR_COMPACT_PATHS_ARRAY: {
oneapi_call(kg,
cgh,

Some files were not shown because too many files have changed in this diff Show More