bdk-blender/intern/quadriflow/quadriflow_capi.cpp
Sergey Sharybin a12a8a71bb Remove "All Rights Reserved" from Blender Foundation copyright code
The goal is to solve confusion of the "All rights reserved" for licensing
code under an open-source license.

The phrase "All rights reserved" comes from a historical convention that
required this phrase for the copyright protection to apply. This convention
is no longer relevant.

However, even though the phrase has no meaning in establishing the copyright
it has not lost meaning in terms of licensing.

This change makes it so code under the Blender Foundation copyright does
not use "all rights reserved". This is also how the GPL license itself
states how to apply it to the source code:

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software ...

This change does not change copyright notice in cases when the copyright
is dual (BF and an author), or just an author of the code. It also does
mot change copyright which is inherited from NaN Holding BV as it needs
some further investigation about what is the proper way to handle it.
2023-03-30 10:51:59 +02:00

222 lines
5.8 KiB
C++

/* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright 2019 Blender Foundation */
#include <unordered_map>
#include "MEM_guardedalloc.h"
#include "config.hpp"
#include "field-math.hpp"
#include "loader.hpp"
#include "optimizer.hpp"
#include "parametrizer.hpp"
#include "quadriflow_capi.hpp"
using namespace qflow;
struct ObjVertex {
uint32_t p = (uint32_t)-1;
uint32_t n = (uint32_t)-1;
uint32_t uv = (uint32_t)-1;
ObjVertex()
{
}
ObjVertex(uint32_t pi)
{
p = pi;
}
bool operator==(const ObjVertex &v) const
{
return v.p == p && v.n == n && v.uv == uv;
}
};
struct ObjVertexHash {
std::size_t operator()(const ObjVertex &v) const
{
size_t hash = std::hash<uint32_t>()(v.p);
hash = hash * 37 + std::hash<uint32_t>()(v.uv);
hash = hash * 37 + std::hash<uint32_t>()(v.n);
return hash;
}
};
typedef std::unordered_map<ObjVertex, uint32_t, ObjVertexHash> VertexMap;
static int check_if_canceled(float progress,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
int cancel = 0;
update_cb(update_cb_data, progress, &cancel);
return cancel;
}
void QFLOW_quadriflow_remesh(QuadriflowRemeshData *qrd,
void (*update_cb)(void *, float progress, int *cancel),
void *update_cb_data)
{
Parametrizer field;
VertexMap vertexMap;
/* Get remeshing parameters. */
int faces = qrd->target_faces;
if (qrd->preserve_sharp) {
field.flag_preserve_sharp = 1;
}
if (qrd->preserve_boundary) {
field.flag_preserve_boundary = 1;
}
if (qrd->adaptive_scale) {
field.flag_adaptive_scale = 1;
}
if (qrd->minimum_cost_flow) {
field.flag_minimum_cost_flow = 1;
}
if (qrd->aggresive_sat) {
field.flag_aggresive_sat = 1;
}
if (qrd->rng_seed) {
field.hierarchy.rng_seed = qrd->rng_seed;
}
if (check_if_canceled(0.0f, update_cb, update_cb_data) != 0) {
return;
}
/* Copy mesh to quadriflow data structures. */
std::vector<Vector3d> positions;
std::vector<uint32_t> indices;
std::vector<ObjVertex> vertices;
for (int i = 0; i < qrd->totverts; i++) {
Vector3d v(qrd->verts[i * 3], qrd->verts[i * 3 + 1], qrd->verts[i * 3 + 2]);
positions.push_back(v);
}
for (int q = 0; q < qrd->totfaces; q++) {
Vector3i f(qrd->faces[q * 3], qrd->faces[q * 3 + 1], qrd->faces[q * 3 + 2]);
ObjVertex tri[6];
int nVertices = 3;
tri[0] = ObjVertex(f[0]);
tri[1] = ObjVertex(f[1]);
tri[2] = ObjVertex(f[2]);
for (int i = 0; i < nVertices; ++i) {
const ObjVertex &v = tri[i];
VertexMap::const_iterator it = vertexMap.find(v);
if (it == vertexMap.end()) {
vertexMap[v] = (uint32_t)vertices.size();
indices.push_back((uint32_t)vertices.size());
vertices.push_back(v);
}
else {
indices.push_back(it->second);
}
}
}
field.F.resize(3, indices.size() / 3);
memcpy(field.F.data(), indices.data(), sizeof(uint32_t) * indices.size());
field.V.resize(3, vertices.size());
for (uint32_t i = 0; i < vertices.size(); ++i) {
field.V.col(i) = positions.at(vertices[i].p);
}
if (check_if_canceled(0.1f, update_cb, update_cb_data)) {
return;
}
/* Start processing the input mesh data */
field.NormalizeMesh();
field.Initialize(faces);
if (check_if_canceled(0.2f, update_cb, update_cb_data)) {
return;
}
/* Setup mesh boundary constraints if needed */
if (field.flag_preserve_boundary) {
Hierarchy &mRes = field.hierarchy;
mRes.clearConstraints();
for (uint32_t i = 0; i < 3 * mRes.mF.cols(); ++i) {
if (mRes.mE2E[i] == -1) {
uint32_t i0 = mRes.mF(i % 3, i / 3);
uint32_t i1 = mRes.mF((i + 1) % 3, i / 3);
Vector3d p0 = mRes.mV[0].col(i0), p1 = mRes.mV[0].col(i1);
Vector3d edge = p1 - p0;
if (edge.squaredNorm() > 0) {
edge.normalize();
mRes.mCO[0].col(i0) = p0;
mRes.mCO[0].col(i1) = p1;
mRes.mCQ[0].col(i0) = mRes.mCQ[0].col(i1) = edge;
mRes.mCQw[0][i0] = mRes.mCQw[0][i1] = mRes.mCOw[0][i0] = mRes.mCOw[0][i1] = 1.0;
}
}
}
mRes.propagateConstraints();
}
/* Optimize the mesh field orientations (tangental field etc) */
Optimizer::optimize_orientations(field.hierarchy);
field.ComputeOrientationSingularities();
if (check_if_canceled(0.3f, update_cb, update_cb_data)) {
return;
}
if (field.flag_adaptive_scale == 1) {
field.EstimateSlope();
}
if (check_if_canceled(0.4f, update_cb, update_cb_data)) {
return;
}
Optimizer::optimize_scale(field.hierarchy, field.rho, field.flag_adaptive_scale);
field.flag_adaptive_scale = 1;
Optimizer::optimize_positions(field.hierarchy, field.flag_adaptive_scale);
field.ComputePositionSingularities();
if (check_if_canceled(0.5f, update_cb, update_cb_data)) {
return;
}
/* Compute the final quad geomtry using a maxflow solver */
field.ComputeIndexMap();
if (check_if_canceled(0.9f, update_cb, update_cb_data)) {
return;
}
/* Get the output mesh data */
qrd->out_totverts = field.O_compact.size();
qrd->out_totfaces = field.F_compact.size();
qrd->out_verts = (float *)MEM_malloc_arrayN(qrd->out_totverts, sizeof(float[3]), __func__);
qrd->out_faces = (int *)MEM_malloc_arrayN(qrd->out_totfaces, sizeof(int[4]), __func__);
for (int i = 0; i < qrd->out_totverts; i++) {
auto t = field.O_compact[i] * field.normalize_scale + field.normalize_offset;
qrd->out_verts[i * 3] = t[0];
qrd->out_verts[i * 3 + 1] = t[1];
qrd->out_verts[i * 3 + 2] = t[2];
}
for (int i = 0; i < qrd->out_totfaces; i++) {
qrd->out_faces[i * 4] = field.F_compact[i][0];
qrd->out_faces[i * 4 + 1] = field.F_compact[i][1];
qrd->out_faces[i * 4 + 2] = field.F_compact[i][2];
qrd->out_faces[i * 4 + 3] = field.F_compact[i][3];
}
}