This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Bone.c

1563 lines
51 KiB
C
Raw Normal View History

/*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Jordi Rovira i Bonet, Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Bone.h"
#include <BKE_main.h>
#include <BKE_global.h>
#include <BKE_object.h>
#include <BKE_armature.h>
#include <BKE_library.h>
#include <BLI_blenlib.h>
#include <DNA_action_types.h>
#include <DNA_armature_types.h>
#include <BIF_poseobject.h>
#include <BKE_action.h>
#include <BSE_editaction.h>
#include <BKE_constraint.h>
#include <MEM_guardedalloc.h>
#include "constant.h"
#include "gen_utils.h"
#include "modules.h"
#include "NLA.h"
#include "quat.h"
#include "matrix.h"
#include "vector.h"
//------------------------Python API function prototypes for the Bone module---------------------------
static PyObject *M_Bone_New (PyObject * self, PyObject * args);
//------------------------Python API Doc strings for the Bone module--------------------------------------
char M_Bone_doc[] = "The Blender Bone module\n\n\
This module provides control over **Bone Data** objects in Blender.\n\n\
Example::\n\n\
from Blender import Armature.Bone\n\
l = Armature.Bone.New()\n";
char M_Bone_New_doc[] = "(name) - return a new Bone of name 'name'.";
//--------------- Python method structure definition for Blender.Armature.Bone module------------
struct PyMethodDef M_Bone_methods[] = {
{"New", (PyCFunction) M_Bone_New, METH_VARARGS, M_Bone_New_doc},
{NULL, NULL, 0, NULL}
};
//--------------- Python BPy_Bone methods declarations:---------------------------------------------------
static PyObject *Bone_getName (BPy_Bone * self);
static PyObject *Bone_getRoll (BPy_Bone * self);
static PyObject *Bone_getHead (BPy_Bone * self);
static PyObject *Bone_getTail (BPy_Bone * self);
static PyObject *Bone_getLoc (BPy_Bone * self);
static PyObject *Bone_getSize (BPy_Bone * self);
static PyObject *Bone_getQuat (BPy_Bone * self);
static PyObject *Bone_getParent (BPy_Bone * self);
static PyObject *Bone_hasParent (BPy_Bone * self);
static PyObject *Bone_getWeight (BPy_Bone * self);
static PyObject *Bone_getBoneclass (BPy_Bone * self);
static PyObject *Bone_hasIK(BPy_Bone * self);
static PyObject *Bone_getChildren (BPy_Bone * self);
static PyObject *Bone_clearParent (BPy_Bone * self);
static PyObject *Bone_clearChildren (BPy_Bone * self);
static PyObject *Bone_hide (BPy_Bone * self);
static PyObject *Bone_unhide (BPy_Bone * self);
static PyObject *Bone_setName (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setRoll (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setHead (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setTail (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setLoc (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setSize (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setQuat (BPy_Bone * self, PyObject * args);
static PyObject *Bone_setParent(BPy_Bone *self, PyObject *args);
static PyObject *Bone_setWeight(BPy_Bone *self, PyObject *args);
static PyObject *Bone_setPose (BPy_Bone *self, PyObject *args);
static PyObject *Bone_setBoneclass (BPy_Bone *self, PyObject *args);
static PyObject *Bone_getRestMatrix(BPy_Bone * self, PyObject *args);
//--------------- Python BPy_Bone methods table:-----------------------------------------------------------------
static PyMethodDef BPy_Bone_methods[] = {
{"getName", (PyCFunction) Bone_getName, METH_NOARGS,
"() - return Bone name"},
{"getRoll", (PyCFunction) Bone_getRoll, METH_NOARGS,
"() - return Bone roll"},
{"getHead", (PyCFunction) Bone_getHead, METH_NOARGS,
"() - return Bone head"},
{"getTail", (PyCFunction) Bone_getTail, METH_NOARGS,
"() - return Bone tail"},
{"getLoc", (PyCFunction) Bone_getLoc, METH_NOARGS, "() - return Bone loc"},
{"getSize", (PyCFunction) Bone_getSize, METH_NOARGS,
"() - return Bone size"},
{"getQuat", (PyCFunction) Bone_getQuat, METH_NOARGS,
"() - return Bone quat"},
{"hide", (PyCFunction) Bone_hide, METH_NOARGS,
"() - hides the bone"},
{"unhide", (PyCFunction) Bone_unhide, METH_NOARGS,
"() - unhides the bone"},
{"getWeight", (PyCFunction) Bone_getWeight, METH_NOARGS,
"() - return Bone weight"},
{"getBoneclass", (PyCFunction) Bone_getBoneclass, METH_NOARGS,
"() - return Bone boneclass"},
{"hasIK", (PyCFunction)Bone_hasIK, METH_VARARGS,
"() - get the Bone IKToParent flag."},
{"getParent", (PyCFunction) Bone_getParent, METH_NOARGS,
"() - return the parent bone of this one if it exists."
" None if not found. You can check this condition with the "
"hasParent() method."},
{"hasParent", (PyCFunction) Bone_hasParent, METH_NOARGS,
"() - return true if bone has a parent"},
{"getChildren", (PyCFunction) Bone_getChildren, METH_NOARGS,
"() - return Bone children list"},
{"clearParent", (PyCFunction) Bone_clearParent, METH_NOARGS,
"() - clears the bone's parent in the armature and makes it root"},
{"clearChildren", (PyCFunction) Bone_clearChildren, METH_NOARGS,
"() - remove the children associated with this bone"},
{"setName", (PyCFunction) Bone_setName, METH_VARARGS,
"(str) - rename Bone"},
{"setRoll", (PyCFunction) Bone_setRoll, METH_VARARGS,
"(float) - set Bone roll"},
{"setHead", (PyCFunction) Bone_setHead, METH_VARARGS,
"(float,float,float) - set Bone head pos"},
{"setTail", (PyCFunction) Bone_setTail, METH_VARARGS,
"(float,float,float) - set Bone tail pos"},
{"setLoc", (PyCFunction) Bone_setLoc, METH_VARARGS,
"(float,float,float) - set Bone loc"},
{"setSize", (PyCFunction) Bone_setSize, METH_VARARGS,
"(float,float,float) - set Bone size"},
{"setQuat", (PyCFunction) Bone_setQuat, METH_VARARGS,
"(float,float,float,float) - set Bone quat"},
{"setParent", (PyCFunction)Bone_setParent, METH_VARARGS,
"() - set the Bone parent of this one."},
{"setWeight", (PyCFunction)Bone_setWeight, METH_VARARGS,
"() - set the Bone weight."},
{"setPose", (PyCFunction)Bone_setPose, METH_VARARGS,
"() - set a pose for this bone at a frame."},
{"setBoneclass", (PyCFunction)Bone_setBoneclass, METH_VARARGS,
"() - set the Bone boneclass."},
{"getRestMatrix", (PyCFunction)Bone_getRestMatrix, METH_VARARGS,
"() - return the rest matrix for this bone"},
{NULL, NULL, 0, NULL}
};
//--------------- Python TypeBone callback function prototypes----------------------------------------
static void Bone_dealloc (BPy_Bone * bone);
static PyObject *Bone_getAttr (BPy_Bone * bone, char *name);
static int Bone_setAttr (BPy_Bone * bone, char *name, PyObject * v);
static int Bone_compare (BPy_Bone * a1, BPy_Bone * a2);
static PyObject *Bone_repr (BPy_Bone * bone);
//--------------- Python TypeBone structure definition------------------------------------------------------
PyTypeObject Bone_Type = {
PyObject_HEAD_INIT (NULL) 0, /* ob_size */
"Blender Bone", /* tp_name */
sizeof (BPy_Bone), /* tp_basicsize */
0, /* tp_itemsize */
/* methods */
(destructor) Bone_dealloc, /* tp_dealloc */
0, /* tp_print */
(getattrfunc) Bone_getAttr, /* tp_getattr */
(setattrfunc) Bone_setAttr, /* tp_setattr */
(cmpfunc) Bone_compare, /* tp_compare */
(reprfunc) Bone_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_as_hash */
0, 0, 0, 0, 0, 0,
0, /* tp_doc */
0, 0, 0, 0, 0, 0,
BPy_Bone_methods, /* tp_methods */
0, /* tp_members */
};
//--------------- Bone Module Init----------------------------------------------------------------------------------------
PyObject *
Bone_Init (void)
{
PyObject *submodule;
Bone_Type.ob_type = &PyType_Type;
submodule = Py_InitModule3 ("Blender.Armature.Bone",
M_Bone_methods, M_Bone_doc);
PyModule_AddIntConstant(submodule, "ROT", POSE_ROT);
PyModule_AddIntConstant(submodule, "LOC", POSE_LOC);
PyModule_AddIntConstant(submodule, "SIZE", POSE_SIZE);
PyModule_AddIntConstant(submodule, "SKINNABLE", 0);
PyModule_AddIntConstant(submodule, "UNSKINNABLE", 1);
PyModule_AddIntConstant(submodule, "HEAD", 2);
PyModule_AddIntConstant(submodule, "NECK", 3);
PyModule_AddIntConstant(submodule, "BACK", 4);
PyModule_AddIntConstant(submodule, "SHOULDER", 5);
PyModule_AddIntConstant(submodule, "ARM", 6);
PyModule_AddIntConstant(submodule, "HAND", 7);
PyModule_AddIntConstant(submodule, "FINGER", 8);
PyModule_AddIntConstant(submodule, "THUMB", 9);
PyModule_AddIntConstant(submodule, "PELVIS", 10);
PyModule_AddIntConstant(submodule, "LEG", 11);
PyModule_AddIntConstant(submodule, "FOOT", 12);
PyModule_AddIntConstant(submodule, "TOE", 13);
PyModule_AddIntConstant(submodule, "TENTACLE", 14);
return (submodule);
}
//--------------- Bone module internal callbacks-------------------------------------------------------------
//--------------- updatePyBone-------------------------------------------------------------------------------------
int
updatePyBone(BPy_Bone *self)
{
int x,y;
char *parent_str = "";
if(!self->bone){
//nothing to update - not linked
return 0;
}else{
BLI_strncpy(self->name, self->bone->name, strlen(self->bone->name) + 1);
self->roll = self->bone->roll;
self->flag = self->bone->flag;
self->boneclass = self->bone->boneclass;
self->dist = self->bone->dist;
self->weight = self->bone->weight;
if(self->bone->parent){
self->parent = BLI_strncpy(self->parent, self->bone->parent->name, strlen(self->bone->parent->name) + 1);
}else{
self->parent = BLI_strncpy(self->parent, parent_str, strlen(parent_str) + 1);
}
for(x = 0; x < 3; x++){
self->head->vec[x] = self->bone->head[x];
self->tail->vec[x] = self->bone->tail[x];
self->loc->vec[x] = self->bone->loc[x];
self->dloc->vec[x] = self->bone->dloc[x];
self->size->vec[x] = self->bone->size[x];
self->dsize->vec[x] = self->bone->dsize[x];
}
for(x = 0; x < 4; x++){
self->quat->quat[x] = self->bone->quat[x];
self->dquat->quat[x] = self->bone->dquat[x];
}
for(x = 0; x < 4; x++){
for(y = 0; y < 4; y++){
self->obmat->matrix[x][y] = self->bone->obmat[x][y];
self->parmat->matrix[x][y] = self->bone->parmat[x][y];
self->defmat->matrix[x][y] = self->bone->defmat[x][y];
self->irestmat->matrix[x][y] = self->bone->irestmat[x][y];
self->posemat->matrix[x][y] = self->bone->posemat[x][y];
}
}
return 1;
}
}
//--------------- updateBoneData-------------------------------------------------------------------------------------
int
updateBoneData(BPy_Bone *self, Bone *parent)
{
//called from Armature.addBone()
int x,y;
//called in Armature.addBone() to update the Bone * data
if(!self->bone){
//nothing to update - not linked
return 0;
}else{
BLI_strncpy(self->bone->name, self->name, strlen(self->name) + 1);
self->bone->roll = self->roll;
self->bone->flag = self->flag;
self->bone->boneclass = self->boneclass;
self->bone->dist = self->dist;
self->bone->weight = self->weight;
self->bone->parent = parent; //parent will be checked from self->parent string in addBone()
for(x = 0; x < 3; x++){
self->bone->head[x] = self->head->vec[x];
self->bone->tail[x] = self->tail->vec[x];
self->bone->loc[x] = self->loc->vec[x];
self->bone->dloc[x] = self->dloc->vec[x];
self->bone->size[x] = self->size->vec[x];
self->bone->dsize[x] = self->dsize->vec[x];
}
for(x = 0; x < 4; x++){
self->bone->quat[x] = self->quat->quat[x];
self->bone->dquat[x] = self->dquat->quat[x];
}
for(x = 0; x < 4; x++){
for(y = 0; y < 4; y++){
self->bone->obmat[x][y] = self->obmat->matrix[x][y];
self->bone->parmat[x][y] = self->parmat->matrix[x][y];
self->bone->defmat[x][y] = self->defmat->matrix[x][y];
self->bone->irestmat[x][y] = self->irestmat->matrix[x][y];
self->bone->posemat[x][y] = self->posemat->matrix[x][y];
}
}
return 1;
}
}
//--------------- testChildbase--------------------------------------------------------------------------------
static int
testChildbase(Bone *bone, Bone *test)
{
Bone *child;
for(child = bone->childbase.first; child; child = child->next){
if(child == test){
return 1;
}
if(child->childbase.first != NULL)
testChildbase(child, test);
}
return 0;
}
//--------------- returnBoneclassEnum---------------------------------------------------------------------
static PyObject *
returnBoneclassEnum(int value)
{
char *str;
str = PyMem_Malloc(32 + 1);
switch(value){
case 0:
BLI_strncpy(str,"SKINNABLE",32); break;
case 1:
BLI_strncpy(str,"UNSKINNABLE",32); break;
case 2:
BLI_strncpy(str,"HEAD",32); break;
case 3:
BLI_strncpy(str,"NECK",32); break;
case 4:
BLI_strncpy(str,"BACK",32); break;
case 5:
BLI_strncpy(str,"SHOULDER",32); break;
case 6:
BLI_strncpy(str,"ARM",32); break;
case 7:
BLI_strncpy(str,"HAND",32); break;
case 8:
BLI_strncpy(str,"FINGER",32); break;
case 9:
BLI_strncpy(str,"THUMB",32); break;
case 10:
BLI_strncpy(str,"PELVIS",32); break;
case 11:
BLI_strncpy(str,"LEG",32); break;
case 12:
BLI_strncpy(str,"FOOT",32); break;
case 13:
BLI_strncpy(str,"TOE",32); break;
case 14:
BLI_strncpy(str,"TENTACLE",32); break;
default:
BLI_strncpy(str, "SKINNABLE",32); break;
}
return (PyObject*)PyString_FromString(str);
}
//---------------BPy_Bone internal callbacks/methods---------------------------------------------
//--------------- dealloc---------------------------------------------------------------------------------------
static void
Bone_dealloc (BPy_Bone * self)
{
PyMem_Free (self->name);
PyMem_Free (self->parent);
PyObject_DEL (self);
}
//---------------getattr---------------------------------------------------------------------------------------
static PyObject *
Bone_getAttr (BPy_Bone * self, char *name)
{
PyObject *attr = Py_None;
if (strcmp (name, "name") == 0)
attr = Bone_getName (self);
else if (strcmp (name, "roll") == 0)
attr = Bone_getRoll (self);
else if (strcmp (name, "head") == 0)
attr = Bone_getHead (self);
else if (strcmp (name, "tail") == 0)
attr = Bone_getTail (self);
else if (strcmp (name, "size") == 0)
attr = Bone_getSize (self);
else if (strcmp (name, "loc") == 0)
attr = Bone_getLoc (self);
else if (strcmp (name, "quat") == 0)
attr = Bone_getQuat (self);
else if (strcmp (name, "parent") == 0)
/* Skip the checks for Py_None as its a valid result to this call. */
return Bone_getParent (self);
else if (strcmp (name, "children") == 0)
attr = Bone_getChildren (self);
else if (strcmp (name, "weight") == 0)
attr = Bone_getWeight (self);
else if (strcmp (name, "boneclass") == 0)
attr = Bone_getBoneclass (self);
else if (strcmp (name, "ik") == 0)
attr = Bone_hasIK (self);
else if (strcmp (name, "__members__") == 0)
{
/* 9 entries */
attr = Py_BuildValue ("[s,s,s,s,s,s,s,s,s,s,s]",
"name", "roll", "head", "tail", "loc", "size",
"quat", "parent", "children", "weight", "boneclass", "ik");
}
if (!attr)
return (EXPP_ReturnPyObjError (PyExc_MemoryError,
"couldn't create PyObject"));
if (attr != Py_None)
return attr; /* member attribute found, return it */
/* not an attribute, search the methods table */
return Py_FindMethod (BPy_Bone_methods, (PyObject *) self, name);
}
//--------------- setattr---------------------------------------------------------------------------------------
static int
Bone_setAttr (BPy_Bone * self, char *name, PyObject * value)
{
PyObject *valtuple;
PyObject *error = NULL;
valtuple = Py_BuildValue ("(O)", value); /* the set* functions expect a tuple */
if (!valtuple)
return EXPP_ReturnIntError (PyExc_MemoryError,
"BoneSetAttr: couldn't create tuple");
if (strcmp (name, "name") == 0)
error = Bone_setName (self, valtuple);
else
{ /* Error */
Py_DECREF (valtuple);
/* ... member with the given name was found */
return (EXPP_ReturnIntError (PyExc_KeyError, "attribute not found"));
}
Py_DECREF (valtuple);
if (error != Py_None)
return -1;
Py_DECREF (Py_None); /* was incref'ed by the called Bone_set* function */
return 0; /* normal exit */
}
//--------------- repr---------------------------------------------------------------------------------------
static PyObject *
Bone_repr (BPy_Bone * self)
{
if (self->bone)
return PyString_FromFormat ("[Bone \"%s\"]", self->bone->name);
else
return PyString_FromString ("NULL");
}
//--------------- compare---------------------------------------------------------------------------------------
static int
Bone_compare (BPy_Bone * a, BPy_Bone * b)
{
Bone *pa = a->bone, *pb = b->bone;
return (pa == pb) ? 0 : -1;
}
//--------------- Bone_CreatePyObject--------------------------------------------------------------------
PyObject *
Bone_CreatePyObject (struct Bone * bone)
{
BPy_Bone *blen_bone;
blen_bone = (BPy_Bone *) PyObject_NEW (BPy_Bone, &Bone_Type);
//set the all important Bone flag
blen_bone->bone = bone;
//allocate space for python vars
blen_bone->name= PyMem_Malloc (32 + 1);
blen_bone->parent =PyMem_Malloc (32 + 1);
blen_bone->head = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->tail = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->loc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->dloc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->size = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->dsize = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
blen_bone->quat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float)));
blen_bone->dquat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float)));
blen_bone->obmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
blen_bone->parmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
blen_bone->defmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
blen_bone->irestmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
blen_bone->posemat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
if(!updatePyBone(blen_bone))
return EXPP_ReturnPyObjError (PyExc_AttributeError , "bone struct empty");
return ((PyObject *) blen_bone);
}
//--------------- Bone_CheckPyObject--------------------------------------------------------------------
int
Bone_CheckPyObject (PyObject * py_obj)
{
return (py_obj->ob_type == &Bone_Type);
}
//--------------- Bone_FromPyObject--------------------------------------------------------------------
struct Bone *
Bone_FromPyObject (PyObject * py_obj)
{
BPy_Bone *blen_obj;
blen_obj = (BPy_Bone *) py_obj;
if (!((BPy_Bone*)py_obj)->bone) { //test to see if linked to armature
//use python vars
return NULL;
}else{
//use bone datastruct
return (blen_obj->bone);
}
}
//--------------- Python Bone Module methods------------------------------------------------------------------
//--------------- Blender.Armature.Bone.New()-----------------------------------------------------------------
static PyObject *
M_Bone_New (PyObject * self, PyObject * args)
{
char *name_str = "BoneName";
char *parent_str = "";
BPy_Bone *py_bone = NULL; /* for Bone Data object wrapper in Python */
if (!PyArg_ParseTuple (args, "|s", &name_str))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected string or empty argument"));
//create python bone
py_bone = (BPy_Bone *) PyObject_NEW (BPy_Bone, &Bone_Type);
//allocate space for python vars
py_bone->name= PyMem_Malloc (32 + 1);
py_bone->parent =PyMem_Malloc (32 + 1);
py_bone->head = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->tail = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->loc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->dloc = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->size = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->dsize = (VectorObject*)newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
py_bone->quat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float)));
py_bone->dquat = (QuaternionObject*)newQuaternionObject(PyMem_Malloc (4*sizeof (float)));
py_bone->obmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
py_bone->parmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
py_bone->defmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
py_bone->irestmat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
py_bone->posemat = (MatrixObject*)newMatrixObject(PyMem_Malloc(16*sizeof(float)),4,4);
//default py values
BLI_strncpy(py_bone->name, name_str, strlen(name_str) + 1);
BLI_strncpy(py_bone->parent, parent_str, strlen(parent_str) + 1);
py_bone->roll = 0.0f;
py_bone->flag = 32;
py_bone->boneclass = BONE_SKINNABLE;
py_bone->dist = 1.0f;
py_bone->weight = 1.0f;
Vector_Zero(py_bone->head);
Vector_Zero(py_bone->loc);
Vector_Zero(py_bone->dloc);
Vector_Zero(py_bone->size);
Vector_Zero(py_bone->dsize);
Quaternion_Identity(py_bone->quat);
Quaternion_Identity(py_bone->dquat);
Matrix_Identity(py_bone->obmat);
Matrix_Identity(py_bone->parmat);
Matrix_Identity(py_bone->defmat);
Matrix_Identity(py_bone->irestmat);
Matrix_Identity(py_bone->posemat);
//default tail of 2,0,0
py_bone->tail->vec[0] = 2.0f;
py_bone->tail->vec[1] = 0.0f;
py_bone->tail->vec[2] = 0.0f;
//set the datapointer to null (unlinked)
py_bone->bone = NULL;
return (PyObject *) py_bone;
}
//--------------- Python BPy_Bone methods------------------------------------------------------------------
//--------------- BPy_Bone.getName()--------------------------------------------------------------------------
static PyObject *
Bone_getName (BPy_Bone * self)
{
PyObject *attr = NULL;
if (!self->bone) { //test to see if linked to armature
//use python vars
attr = PyString_FromString (self->name);
}else{
//use bone datastruct
attr = PyString_FromString (self->bone->name);
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.name attribute"));
}
//--------------- BPy_Bone.getRoll()------------------------------------------------------------------------------
static PyObject *
Bone_getRoll (BPy_Bone * self)
{
PyObject *attr = NULL;
if (!self->bone) { //test to see if linked to armature
//use python vars
attr = Py_BuildValue ("f", self->roll);
}else{
//use bone datastruct
attr = Py_BuildValue ("f", self->bone->roll);
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.roll attribute"));
}
//--------------- BPy_Bone.getWeight()----------------------------------------------------------------------------
static PyObject *
Bone_getWeight (BPy_Bone * self)
{
PyObject *attr = NULL;
if (!self->bone) { //test to see if linked to armature
//use python vars
attr = Py_BuildValue ("f", self->weight);
}else{
//use bone datastruct
attr = Py_BuildValue ("f", self->bone->weight);
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.weight attribute"));
}
//--------------- BPy_Bone.getHead()--------------------------------------------------------------------------
static PyObject *
Bone_getHead (BPy_Bone * self)
{
PyObject *attr = NULL;
float *vec;
int x;
if (!self->bone) { //test to see if linked to armature
//use python vars
vec = PyMem_Malloc(3 * sizeof(float));
for(x = 0; x < 3; x++)
vec[x] = self->head->vec[x];
attr = (PyObject *)newVectorObject(vec, 3);
}else{
//use bone datastruct
attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
((VectorObject*)attr)->vec[0] = self->bone->head[0];
((VectorObject*)attr)->vec[1] = self->bone->head[1];
((VectorObject*)attr)->vec[2] = self->bone->head[2];
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.head attribute"));
}
//--------------- BPy_Bone.getTail()--------------------------------------------------------------------------
static PyObject *
Bone_getTail (BPy_Bone * self)
{
PyObject *attr = NULL;
float *vec;
int x;
if (!self->bone) { //test to see if linked to armature
//use python vars
vec = PyMem_Malloc(3 * sizeof(float));
for(x = 0; x < 3; x++)
vec[x] = self->tail->vec[x];
attr = (PyObject *)newVectorObject(vec, 3);
}else{
//use bone datastruct
attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
((VectorObject*)attr)->vec[0] = self->bone->tail[0];
((VectorObject*)attr)->vec[1] = self->bone->tail[1];
((VectorObject*)attr)->vec[2] = self->bone->tail[2];
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.tail attribute"));
}
//--------------- BPy_Bone.getLoc()----------------------------------------------------------------------------
static PyObject *
Bone_getLoc (BPy_Bone * self)
{
PyObject *attr = NULL;
float *vec;
int x;
if (!self->bone) { //test to see if linked to armature
//use python vars
vec = PyMem_Malloc(3 * sizeof(float));
for(x = 0; x < 3; x++)
vec[x] = self->loc->vec[x];
attr = (PyObject *)newVectorObject(vec, 3);
}else{
//use bone datastruct
attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
((VectorObject*)attr)->vec[0] = self->bone->loc[0];
((VectorObject*)attr)->vec[1] = self->bone->loc[1];
((VectorObject*)attr)->vec[2] = self->bone->loc[2];
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.loc attribute"));
}
//--------------- BPy_Bone.getSize()----------------------------------------------------------------------------
static PyObject *
Bone_getSize (BPy_Bone * self)
{
PyObject *attr = NULL;
float *vec;
int x;
if (!self->bone) { //test to see if linked to armature
//use python vars
vec = PyMem_Malloc(3 * sizeof(float));
for(x = 0; x < 3; x++)
vec[x] = self->size->vec[x];
attr = (PyObject *)newVectorObject(vec, 3);
}else{
//use bone datastruct
attr = newVectorObject(PyMem_Malloc (3*sizeof (float)), 3);
((VectorObject*)attr)->vec[0] = self->bone->size[0];
((VectorObject*)attr)->vec[1] = self->bone->size[1];
((VectorObject*)attr)->vec[2] = self->bone->size[2];
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.size attribute"));
}
//--------------- BPy_Bone.getQuat()----------------------------------------------------------------------------
static PyObject *
Bone_getQuat (BPy_Bone * self)
{
PyObject *attr = NULL;
float *quat;
int x;
if (!self->bone) { //test to see if linked to armature
//use python vars - p.s. - you must return a copy or else
//python will trash the internal var
quat = PyMem_Malloc(4 * sizeof(float));
for(x = 0; x < 4; x++)
quat[x] = self->quat->quat[x];
attr = (PyObject *)newQuaternionObject(quat);
}else{
//use bone datastruct
attr = newQuaternionObject(PyMem_Malloc (4*sizeof (float)));
((QuaternionObject*)attr)->quat[0] = self->bone->quat[0];
((QuaternionObject*)attr)->quat[1] = self->bone->quat[1];
((QuaternionObject*)attr)->quat[2] = self->bone->quat[2];
((QuaternionObject*)attr)->quat[3] = self->bone->quat[3];
}
return attr;
}
//--------------- BPy_Bone.hasParent()--------------------------------------------------------------------------
static PyObject *
Bone_hasParent (BPy_Bone * self)
{
char * parent_str = "";
if (!self->bone) { //test to see if linked to armature
//use python vars
if (BLI_streq(self->parent, parent_str)) {
Py_INCREF (Py_False);
return Py_False;
}else{
Py_INCREF (Py_True);
return Py_True;
}
}else{
//use bone datastruct
if (self->bone->parent) {
Py_INCREF (Py_True);
return Py_True;
}else{
Py_INCREF (Py_False);
return Py_False;
}
}
}
//--------------- BPy_Bone.getParent()--------------------------------------------------------------------------
static PyObject *
Bone_getParent (BPy_Bone * self)
{
char * parent_str = "";
if (!self->bone) { //test to see if linked to armature
//use python vars
if (BLI_streq(self->parent, parent_str)) {
return EXPP_incr_ret (Py_None);
}else{
return PyString_FromString(self->parent);
}
}else{
//use bone datastruct
if (self->bone->parent) {
return Bone_CreatePyObject (self->bone->parent);
}else{
return EXPP_incr_ret (Py_None);
}
}
}
//--------------- BPy_Bone.getChildren()--------------------------------------------------------------------------
static PyObject *
Bone_getChildren (BPy_Bone * self)
{
int totbones = 0;
Bone *current = NULL;
PyObject *listbones = NULL;
int i;
if (!self->bone) { //test to see if linked to armature
//use python vars
return EXPP_incr_ret (Py_None);
}else{
//use bone datastruct
current = self->bone->childbase.first;
for (; current; current = current->next)
totbones++;
/* Create a list with a bone wrapper for each bone */
current = self->bone->childbase.first;
listbones = PyList_New (totbones);
for (i = 0; i < totbones; i++){
assert (current);
PyList_SetItem (listbones, i, Bone_CreatePyObject (current));
current = current->next;
}
return listbones;
}
}
//--------------- BPy_Bone.setName()--------------------------------------------------------------------------
static PyObject *
Bone_setName (BPy_Bone * self, PyObject * args)
{
char *name;
if (!PyArg_ParseTuple (args, "s", &name))
return (EXPP_ReturnPyObjError (PyExc_AttributeError, "expected string argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
BLI_strncpy(self->name, name, strlen(name) + 1);
}else{
//use bone datastruct
BLI_strncpy(self->bone->name, name, strlen(name) + 1);
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setRoll()--------------------------------------------------------------------------
PyObject *
Bone_setRoll (BPy_Bone * self, PyObject * args)
{
float roll;
if (!PyArg_ParseTuple (args, "f", &roll))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected float argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->roll = roll;
}else{
//use bone datastruct
self->bone->roll = roll;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setHead()--------------------------------------------------------------------------
static PyObject *
Bone_setHead (BPy_Bone * self, PyObject * args)
{
float f1, f2, f3;
int status;
if (PyObject_Length (args) == 3)
status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3);
else
status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3);
if (!status)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected 3 (or a list of 3) float arguments"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->head->vec[0] = f1;
self->head->vec[1] = f2;
self->head->vec[2] = f3;
}else{
//use bone datastruct
self->bone->head[0] = f1;
self->bone->head[1] = f2;
self->bone->head[2] = f3;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setTail()--------------------------------------------------------------------------
static PyObject *
Bone_setTail (BPy_Bone * self, PyObject * args)
{
float f1, f2, f3;
int status;
if (PyObject_Length (args) == 3)
status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3);
else
status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3);
if (!status)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected 3 (or a list of 3) float arguments"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->tail->vec[0] = f1;
self->tail->vec[1] = f2;
self->tail->vec[2] = f3;
}else{
//use bone datastruct
self->bone->tail[0] = f1;
self->bone->tail[1] = f2;
self->bone->tail[2] = f3;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setLoc()--------------------------------------------------------------------------
static PyObject *
Bone_setLoc (BPy_Bone * self, PyObject * args)
{
float f1, f2, f3;
int status;
if (PyObject_Length (args) == 3)
status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3);
else
status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3);
if (!status)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected 3 (or a list of 3) float arguments"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->loc->vec[0] = f1;
self->loc->vec[1] = f2;
self->loc->vec[2] = f3;
}else{
//use bone datastruct
self->bone->loc[0] = f1;
self->bone->loc[1] = f2;
self->bone->loc[2] = f3;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setSize()--------------------------------------------------------------------------
static PyObject *
Bone_setSize (BPy_Bone * self, PyObject * args)
{
float f1, f2, f3;
int status;
if (PyObject_Length (args) == 3)
status = PyArg_ParseTuple (args, "fff", &f1, &f2, &f3);
else
status = PyArg_ParseTuple (args, "(fff)", &f1, &f2, &f3);
if (!status)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected 3 (or a list of 3) float arguments"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->size->vec[0] = f1;
self->size->vec[1] = f2;
self->size->vec[2] = f3;
}else{
//use bone datastruct
self->bone->size[0] = f1;
self->bone->size[1] = f2;
self->bone->size[2] = f3;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setQuat()--------------------------------------------------------------------------
static PyObject *
Bone_setQuat (BPy_Bone * self, PyObject * args)
{
float f1, f2, f3, f4;
PyObject *argument;
QuaternionObject *quatOb;
int status;
if (!PyArg_ParseTuple(args, "O", &argument))
return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected quaternion or float list"));
if(QuaternionObject_Check(argument)){
status = PyArg_ParseTuple(args, "O!", &quaternion_Type, &quatOb);
f1 = quatOb->quat[0];
f2 = quatOb->quat[1];
f3 = quatOb->quat[2];
f4 = quatOb->quat[3];
}else{
status = PyArg_ParseTuple (args, "(ffff)", &f1, &f2, &f3, &f4);
}
if (!status)
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"unable to parse argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->quat->quat[0] = f1;
self->quat->quat[1] = f2;
self->quat->quat[2] = f3;
self->quat->quat[3] = f4;
}else{
//use bone datastruct
self->bone->quat[0] = f1;
self->bone->quat[1] = f2;
self->bone->quat[2] = f3;
self->bone->quat[3] = f4;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setParent()-------------------------------------------------------------------------
static PyObject *
Bone_setParent(BPy_Bone *self, PyObject *args)
{
BPy_Bone* py_bone;
float M_boneObjectspace[4][4];
float iM_parentRest[4][4];
if (!PyArg_ParseTuple(args, "O", &py_bone))
return (EXPP_ReturnPyObjError (PyExc_TypeError, "expected bone object argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
BLI_strncpy(self->parent, py_bone->name, strlen(py_bone->name) + 1);
}else{
//use bone datastruct
if(!py_bone->bone)
return (EXPP_ReturnPyObjError (PyExc_TypeError, "Parent bone must be linked to armature first!"));
if(py_bone->bone == self->bone)
return (EXPP_ReturnPyObjError (PyExc_AttributeError, "Cannot parent to self"));
//test to see if were creating an illegal loop by parenting to child
if(testChildbase(self->bone, py_bone->bone))
return (EXPP_ReturnPyObjError (PyExc_AttributeError, "Cannot parent to child"));
//set the parent of self - in this case we are changing the parenting after this bone
//has been linked in it's armature
if(self->bone->parent){ //we are parenting something previously parented
//remove the childbase link from the parent bone
BLI_remlink(&self->bone->parent->childbase, self->bone);
//now get rid of the parent transformation
get_objectspace_bone_matrix(self->bone->parent, M_boneObjectspace, 0,0);
Mat4MulVecfl(M_boneObjectspace, self->bone->head);
Mat4MulVecfl(M_boneObjectspace, self->bone->tail);
//add to the childbase of new parent
BLI_addtail (&py_bone->bone->childbase, self->bone);
//transform bone according to new parent
get_objectspace_bone_matrix(py_bone->bone, M_boneObjectspace, 0,0);
Mat4Invert (iM_parentRest, M_boneObjectspace);
Mat4MulVecfl(iM_parentRest, self->bone->head);
Mat4MulVecfl(iM_parentRest, self->bone->tail);
//set parent
self->bone->parent = py_bone->bone;
}else{ //not previously parented
//add to the childbase of new parent
BLI_addtail (&py_bone->bone->childbase, self->bone);
//transform bone according to new parent
get_objectspace_bone_matrix(py_bone->bone, M_boneObjectspace, 0,0);
Mat4Invert (iM_parentRest, M_boneObjectspace);
Mat4MulVecfl(iM_parentRest, self->bone->head);
Mat4MulVecfl(iM_parentRest, self->bone->tail);
self->bone->parent = py_bone->bone;
}
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setWeight()-------------------------------------------------------------------------
static PyObject *
Bone_setWeight(BPy_Bone *self, PyObject *args)
{
float weight;
if (!PyArg_ParseTuple (args, "f", &weight))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected float argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->weight = weight;
}else{
//use bone datastruct
self->bone->weight = weight;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.clearParent()-------------------------------------------------------------------------
static PyObject *
Bone_clearParent(BPy_Bone *self)
{
bArmature *arm = NULL;
Bone *bone = NULL;
Bone *parent = NULL;
Bone *child = NULL;
Bone *childPrev = NULL;
int firstChild;
float M_boneObjectspace[4][4];
char *parent_str = "";
if (!self->bone) { //test to see if linked to armature
//use python vars
BLI_strncpy(self->parent, parent_str, strlen(parent_str) + 1);
}else{
//use bone datastruct
if(self->bone->parent == NULL)
return EXPP_incr_ret(Py_None);
//get parent and remove link
parent = self->bone->parent;
self->bone->parent = NULL;
//remove the childbase link from the parent bone
firstChild = 1;
for(child = parent->childbase.first; child; child = child->next){
if(child == self->bone && firstChild){
parent->childbase.first = child->next;
child->next = NULL;
break;
}
if(child == self->bone && !firstChild){
childPrev->next = child->next;
child->next = NULL;
break;
}
firstChild = 0;
childPrev = child;
}
//now get rid of the parent transformation
get_objectspace_bone_matrix(parent, M_boneObjectspace, 0,0);
//transformation of local bone
Mat4MulVecfl(M_boneObjectspace, self->bone->head);
Mat4MulVecfl(M_boneObjectspace, self->bone->tail);
//get the root bone
while(parent->parent != NULL){
parent = parent->parent;
}
//add unlinked bone to the bonebase of the armature
for (arm = G.main->armature.first; arm; arm= arm->id.next) {
for(bone = arm->bonebase.first; bone; bone = bone->next){
if(parent == bone){
//we found the correct armature - now add it as root bone
BLI_addtail (&arm->bonebase, self->bone);
break;
}
}
}
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.clearChildren()-------------------------------------------------------------------------
static PyObject *
Bone_clearChildren(BPy_Bone *self)
{
Bone *root = NULL;
Bone *child = NULL;
bArmature *arm = NULL;
Bone *bone = NULL;
Bone *prev = NULL;
Bone *next = NULL;
float M_boneObjectspace[4][4];
int first;
if (!self->bone) { //test to see if linked to armature
//use python vars
return EXPP_incr_ret (Py_None);
}else{
//use bone datastruct
if(self->bone->childbase.first == NULL)
return EXPP_incr_ret(Py_None);
//is this bone a part of an armature....
//get root bone for testing
root = self->bone->parent;
if(root != NULL){
while (root->parent != NULL){
root = root->parent;
}
}else{
root = self->bone;
}
//test armatures for root bone
for(arm= G.main->armature.first; arm; arm = arm->id.next){
for(bone = arm->bonebase.first; bone; bone = bone->next){
if(bone == root)
break;
}
if(bone == root)
break;
}
if(arm == NULL)
return (EXPP_ReturnPyObjError (PyExc_RuntimeError, "couldn't find armature that contains this bone"));
//now get rid of the parent transformation
get_objectspace_bone_matrix(self->bone, M_boneObjectspace, 0,0);
//set children as root
first = 1;
for(child = self->bone->childbase.first; child; child = next){
//undo transformation of local bone
Mat4MulVecfl(M_boneObjectspace, child->head);
Mat4MulVecfl(M_boneObjectspace, child->tail);
//set next pointers to NULL
if(first){
prev = child;
first = 0;
}else{
prev->next = NULL;
prev = child;
}
next = child->next;
//remove parenting and linking
child->parent = NULL;
BLI_remlink(&self->bone->childbase, child);
//add as root
BLI_addtail (&arm->bonebase, child);
}
}
Py_INCREF(Py_None);
return Py_None;
}
//--------------- BPy_Bone.hide()---------------------------------------------------------------------------------
static PyObject *
Bone_hide(BPy_Bone *self)
{
if (!self->bone) { //test to see if linked to armature
//use python vars
return EXPP_ReturnPyObjError (PyExc_TypeError, "link bone to armature before attempting to hide/unhide");
}else{
//use bone datastruct
if(!(self->bone->flag & BONE_HIDDEN))
self->bone->flag |= BONE_HIDDEN;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.unhide()---------------------------------------------------------------------------------
static PyObject *
Bone_unhide(BPy_Bone *self)
{
if (!self->bone) { //test to see if linked to armature
//use python vars
return EXPP_ReturnPyObjError (PyExc_TypeError, "link bone to armature before attempting to hide/unhide");
}else{
//use bone datastruct
if(self->bone->flag & BONE_HIDDEN)
self->bone->flag &= ~BONE_HIDDEN;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.setPose()-----------------------------------------------------------------------------------
static PyObject *
Bone_setPose (BPy_Bone *self, PyObject *args)
{
Bone *root = NULL;
bPoseChannel *chan = NULL;
bPoseChannel *setChan = NULL;
bPoseChannel *test = NULL;
Object *object =NULL;
bArmature *arm = NULL;
Bone *bone = NULL;
PyObject *flaglist = NULL;
PyObject *item = NULL;
BPy_Action *py_action = NULL;
int x;
int flagValue = 0;
int makeCurve = 1;
if (!self->bone) { //test to see if linked to armature
//use python vars
return EXPP_ReturnPyObjError (PyExc_TypeError, "cannot set pose unless bone is linked to armature");
}else{
//use bone datastruct
if (!PyArg_ParseTuple (args, "O!|O!", &PyList_Type, &flaglist, &Action_Type, &py_action))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected list of flags and optional action"));
for(x = 0; x < PyList_Size(flaglist); x++){
item = PyList_GetItem(flaglist, x);
if(PyInt_Check(item)){
flagValue |= PyInt_AsLong(item);
}else{
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected list of flags (ints)"));
}
}
//is this bone a part of an armature....
//get root bone for testing
root = self->bone->parent;
if(root != NULL){
while (root->parent != NULL){
root = root->parent;
}
}else{
root = self->bone;
}
//test armatures for root bone
for(arm= G.main->armature.first; arm; arm = arm->id.next){
for(bone = arm->bonebase.first; bone; bone = bone->next){
if(bone == root)
break;
}
if(bone == root)
break;
}
if(arm == NULL)
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"bone must belong to an armature to set it's pose!"));
//find if armature is object linked....
for(object = G.main->object.first; object; object = object->id.next){
if(object->data == arm){
break;
}
}
if(object == NULL)
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"armature must be linked to an object to set a pose!"));
//set the active action as this one
if(py_action !=NULL){
if(py_action->action != NULL){
object->action = py_action->action;
}
}
//if object doesn't have a pose create one
if (!object->pose)
object->pose = MEM_callocN(sizeof(bPose), "Pose");
//if bone does have a channel create one
verify_pose_channel(object->pose, self->bone->name);
//create temp Pose Channel
chan = MEM_callocN(sizeof(bPoseChannel), "PoseChannel");
//set the variables for this pose
memcpy (chan->loc, self->bone->loc, sizeof (chan->loc));
memcpy (chan->quat, self->bone->quat, sizeof (chan->quat));
memcpy (chan->size, self->bone->size, sizeof (chan->size));
strcpy (chan->name, self->bone->name);
chan->flag |= flagValue;
//set it to the channel
setChan = set_pose_channel(object->pose, chan);
//frees unlinked pose/bone channels from object
collect_pose_garbage(object);
//create an action if one not already assigned to object
if (!py_action && !object->action){
object->action = (bAction*)add_empty_action();
object->ipowin= ID_AC;
}else{
//test if posechannel is already in action
for(test = object->action->chanbase.first; test; test = test->next){
if(test == setChan)
makeCurve = 0; //already there
}
}
//set action keys
if (setChan->flag & POSE_ROT){
set_action_key(object->action, setChan, AC_QUAT_X, makeCurve);
set_action_key(object->action, setChan, AC_QUAT_Y, makeCurve);
set_action_key(object->action, setChan, AC_QUAT_Z, makeCurve);
set_action_key(object->action, setChan, AC_QUAT_W, makeCurve);
}
if (setChan->flag & POSE_SIZE){
set_action_key(object->action, setChan, AC_SIZE_X, makeCurve);
set_action_key(object->action, setChan, AC_SIZE_Y, makeCurve);
set_action_key(object->action, setChan, AC_SIZE_Z, makeCurve);
}
if (setChan->flag & POSE_LOC){
set_action_key(object->action, setChan, AC_LOC_X, makeCurve);
set_action_key(object->action, setChan, AC_LOC_Y, makeCurve);
set_action_key(object->action, setChan, AC_LOC_Z, makeCurve);
}
//rebuild ipos
remake_action_ipos(object->action);
//rebuild displists
rebuild_all_armature_displists();
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.getBoneclass()----------------------------------------------------------------------------
static PyObject *
Bone_getBoneclass (BPy_Bone * self)
{
PyObject *attr = NULL;
if (!self->bone) { //test to see if linked to armature
//use python vars
attr = returnBoneclassEnum(self->boneclass);
}else{
//use bone datastruct
attr = returnBoneclassEnum(self->bone->boneclass);
}
if (attr)
return attr;
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.Boneclass attribute"));
}
//--------------- BPy_Bone.setBoneclass()-------------------------------------------------------------------------
static PyObject *
Bone_setBoneclass(BPy_Bone *self, PyObject *args)
{
int boneclass;
if (!PyArg_ParseTuple (args, "i", &boneclass))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected enum argument"));
if (!self->bone) { //test to see if linked to armature
//use python vars
self->boneclass = boneclass;
}else{
//use bone datastruct
self->bone->boneclass = boneclass;
}
return EXPP_incr_ret (Py_None);
}
//--------------- BPy_Bone.hasIK()----------------------------------------------------------------------------
static PyObject *
Bone_hasIK (BPy_Bone * self)
{
if (!self->bone) { //test to see if linked to armature
//use python vars
if(self->flag & BONE_IK_TOPARENT){
Py_INCREF (Py_True);
return Py_True;
}else{
Py_INCREF (Py_False);
return Py_False;
}
}else{
//use bone datastruct
if(self->bone->flag & BONE_IK_TOPARENT){
Py_INCREF (Py_True);
return Py_True;
}else{
Py_INCREF (Py_False);
return Py_False;
}
}
return (EXPP_ReturnPyObjError (PyExc_RuntimeError,
"couldn't get Bone.Boneclass attribute"));
}
//--------------- BPy_Bone.getRestMatrix()----------------------------------------------------------------------------
static PyObject *
Bone_getRestMatrix(BPy_Bone * self, PyObject *args)
{
char *local = "worldspace";
char *bonespace = "bonespace";
char *worldspace = "worldspace";
PyObject *matrix;
float delta[3];
float root[3];
float p_root[3];
if (!PyArg_ParseTuple (args, "|s", &local))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected string"));
if(!BLI_streq(local, bonespace) && !BLI_streq(local, worldspace))
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"expected 'bonespace' or 'worldspace'"));
matrix = newMatrixObject(PyMem_Malloc(16 * sizeof(float)),4,4);
if (!self->bone) { //test to see if linked to armature
//use python vars
if(BLI_streq(local, worldspace)){
VecSubf (delta, self->tail->vec, self->head->vec);
make_boneMatrixvr( *((MatrixObject*)matrix)->matrix, delta, self->roll);
}else if(BLI_streq(local, bonespace)){
return (EXPP_ReturnPyObjError (PyExc_AttributeError,
"bone not yet linked to an armature....'"));
}
}else{
//use bone datastruct
if(BLI_streq(local, worldspace)){
get_objectspace_bone_matrix (self->bone, *((MatrixObject*)matrix)->matrix, 1, 1);
}else if(BLI_streq(local, bonespace)){
VecSubf (delta, self->bone->tail, self->bone->head);
make_boneMatrixvr( *((MatrixObject*)matrix)->matrix, delta, self->bone->roll);
if(self->bone->parent){
get_bone_root_pos(self->bone,root,1);
get_bone_root_pos(self->bone->parent,p_root,1);
VecSubf(delta,root,p_root);
VECCOPY(((MatrixObject*)matrix)->matrix[3], delta);
}
}
}
return matrix;
}