This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_base_inline.c

678 lines
17 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*
* */
/** \file
* \ingroup bli
2011-02-27 20:37:56 +00:00
*/
#ifndef __MATH_BASE_INLINE_C__
#define __MATH_BASE_INLINE_C__
2011-02-27 20:37:56 +00:00
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#ifdef __SSE2__
# include <emmintrin.h>
#endif
#include "BLI_math_base.h"
/* copied from BLI_utildefines.h */
#ifdef __GNUC__
# define UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
# define UNLIKELY(x) (x)
#endif
/* powf is really slow for raising to integer powers. */
MINLINE float pow2f(float x)
{
return x * x;
}
MINLINE float pow3f(float x)
{
return pow2f(x) * x;
}
MINLINE float pow4f(float x)
{
return pow2f(pow2f(x));
}
MINLINE float pow7f(float x)
{
return pow2f(pow3f(x)) * x;
}
MINLINE float sqrt3f(float f)
{
if (UNLIKELY(f == 0.0f)) {
return 0.0f;
}
else if (UNLIKELY(f < 0.0f)) {
return -(float)(exp(log(-f) / 3.0));
}
else {
return (float)(exp(log(f) / 3.0));
}
}
MINLINE double sqrt3d(double d)
{
if (UNLIKELY(d == 0.0)) {
return 0.0;
}
else if (UNLIKELY(d < 0.0)) {
return -exp(log(-d) / 3.0);
}
else {
return exp(log(d) / 3.0);
}
}
MINLINE float sqrtf_signed(float f)
{
return (f >= 0.0f) ? sqrtf(f) : -sqrtf(-f);
}
MINLINE float saacos(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)M_PI;
}
else if (UNLIKELY(fac >= 1.0f)) {
return 0.0f;
}
else {
return acosf(fac);
}
}
MINLINE float saasin(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)-M_PI / 2.0f;
}
else if (UNLIKELY(fac >= 1.0f)) {
return (float)M_PI / 2.0f;
}
else {
return asinf(fac);
}
}
MINLINE float sasqrt(float fac)
{
if (UNLIKELY(fac <= 0.0f)) {
return 0.0f;
}
else {
return sqrtf(fac);
}
}
MINLINE float saacosf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)M_PI;
}
else if (UNLIKELY(fac >= 1.0f)) {
return 0.0f;
}
else {
return acosf(fac);
}
}
MINLINE float saasinf(float fac)
{
if (UNLIKELY(fac <= -1.0f)) {
return (float)-M_PI / 2.0f;
}
else if (UNLIKELY(fac >= 1.0f)) {
return (float)M_PI / 2.0f;
}
else {
return asinf(fac);
}
}
MINLINE float sasqrtf(float fac)
{
if (UNLIKELY(fac <= 0.0f)) {
return 0.0f;
}
else {
return sqrtf(fac);
}
}
MINLINE float interpf(float target, float origin, float fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
MINLINE double interpd(double target, double origin, double fac)
{
return (fac * target) + (1.0f - fac) * origin;
}
/* used for zoom values*/
MINLINE float power_of_2(float val)
{
return (float)pow(2.0, ceil(log((double)val) / M_LN2));
}
MINLINE int is_power_of_2_i(int n)
{
return (n & (n - 1)) == 0;
}
MINLINE int power_of_2_max_i(int n)
{
if (is_power_of_2_i(n)) {
return n;
}
do {
n = n & (n - 1);
} while (!is_power_of_2_i(n));
return n * 2;
}
MINLINE int power_of_2_min_i(int n)
{
while (!is_power_of_2_i(n)) {
n = n & (n - 1);
}
return n;
}
MINLINE unsigned int power_of_2_max_u(unsigned int x)
{
x -= 1;
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x + 1;
}
MINLINE unsigned power_of_2_min_u(unsigned x)
{
x |= (x >> 1);
x |= (x >> 2);
x |= (x >> 4);
x |= (x >> 8);
x |= (x >> 16);
return x - (x >> 1);
}
MINLINE unsigned int log2_floor_u(unsigned int x)
{
return x <= 1 ? 0 : 1 + log2_floor_u(x >> 1);
}
MINLINE unsigned int log2_ceil_u(unsigned int x)
{
if (is_power_of_2_i((int)x)) {
return log2_floor_u(x);
}
else {
return log2_floor_u(x) + 1;
}
}
/* rounding and clamping */
#define _round_clamp_fl_impl(arg, ty, min, max) \
{ \
float r = floorf(arg + 0.5f); \
if (UNLIKELY(r <= (float)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (float)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_clamp_db_impl(arg, ty, min, max) \
{ \
double r = floor(arg + 0.5); \
if (UNLIKELY(r <= (double)min)) { \
return (ty)min; \
} \
else if (UNLIKELY(r >= (double)max)) { \
return (ty)max; \
} \
else { \
return (ty)r; \
} \
}
#define _round_fl_impl(arg, ty) \
{ \
return (ty)floorf(arg + 0.5f); \
}
#define _round_db_impl(arg, ty) \
{ \
return (ty)floor(arg + 0.5); \
}
MINLINE signed char round_fl_to_char(float a){_round_fl_impl(a, signed char)} MINLINE
unsigned char round_fl_to_uchar(float a){_round_fl_impl(a, unsigned char)} MINLINE
short round_fl_to_short(float a){_round_fl_impl(a, short)} MINLINE
unsigned short round_fl_to_ushort(float a){_round_fl_impl(a, unsigned short)} MINLINE
int round_fl_to_int(float a){_round_fl_impl(a, int)} MINLINE
unsigned int round_fl_to_uint(float a){_round_fl_impl(a, unsigned int)}
MINLINE signed char round_db_to_char(double a){_round_db_impl(a, signed char)} MINLINE
unsigned char round_db_to_uchar(double a){_round_db_impl(a, unsigned char)} MINLINE
short round_db_to_short(double a){_round_db_impl(a, short)} MINLINE
unsigned short round_db_to_ushort(double a){_round_db_impl(a, unsigned short)} MINLINE
int round_db_to_int(double a){_round_db_impl(a, int)} MINLINE
unsigned int round_db_to_uint(double a)
{
_round_db_impl(a, unsigned int)
}
#undef _round_fl_impl
#undef _round_db_impl
MINLINE signed char round_fl_to_char_clamp(float a){
_round_clamp_fl_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_fl_to_uchar_clamp(float a){
_round_clamp_fl_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_fl_to_short_clamp(float a){
_round_clamp_fl_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_fl_to_ushort_clamp(float a){
_round_clamp_fl_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_fl_to_int_clamp(float a){_round_clamp_fl_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_fl_to_uint_clamp(float a){
_round_clamp_fl_impl(a, unsigned int, 0, UINT_MAX)}
MINLINE signed char round_db_to_char_clamp(double a){
_round_clamp_db_impl(a, signed char, SCHAR_MIN, SCHAR_MAX)} MINLINE
unsigned char round_db_to_uchar_clamp(double a){
_round_clamp_db_impl(a, unsigned char, 0, UCHAR_MAX)} MINLINE
short round_db_to_short_clamp(double a){
_round_clamp_db_impl(a, short, SHRT_MIN, SHRT_MAX)} MINLINE
unsigned short round_db_to_ushort_clamp(double a){
_round_clamp_db_impl(a, unsigned short, 0, USHRT_MAX)} MINLINE
int round_db_to_int_clamp(double a){_round_clamp_db_impl(a, int, INT_MIN, INT_MAX)} MINLINE
unsigned int round_db_to_uint_clamp(double a)
{
_round_clamp_db_impl(a, unsigned int, 0, UINT_MAX)
}
#undef _round_clamp_fl_impl
#undef _round_clamp_db_impl
/* integer division that rounds 0.5 up, particularly useful for color blending
* with integers, to avoid gradual darkening when rounding down */
MINLINE int divide_round_i(int a, int b)
{
return (2 * a + b) / (2 * b);
}
/**
* Integer division that floors negative result.
* \note This works like Python's int division.
*/
MINLINE int divide_floor_i(int a, int b)
{
int d = a / b;
int r = a % b; /* Optimizes into a single division. */
return r ? d - ((a < 0) ^ (b < 0)) : d;
}
/**
* modulo that handles negative numbers, works the same as Python's.
*/
MINLINE int mod_i(int i, int n)
2013-09-05 10:12:00 +00:00
{
return (i % n + n) % n;
2013-09-05 10:12:00 +00:00
}
MINLINE float min_ff(float a, float b)
{
return (a < b) ? a : b;
}
MINLINE float max_ff(float a, float b)
{
return (a > b) ? a : b;
}
MINLINE double min_dd(double a, double b)
{
return (a < b) ? a : b;
}
MINLINE double max_dd(double a, double b)
{
return (a > b) ? a : b;
}
MINLINE int min_ii(int a, int b)
{
return (a < b) ? a : b;
}
MINLINE int max_ii(int a, int b)
{
return (b < a) ? a : b;
}
MINLINE float min_fff(float a, float b, float c)
{
return min_ff(min_ff(a, b), c);
}
MINLINE float max_fff(float a, float b, float c)
{
return max_ff(max_ff(a, b), c);
}
MINLINE int min_iii(int a, int b, int c)
{
return min_ii(min_ii(a, b), c);
}
MINLINE int max_iii(int a, int b, int c)
{
return max_ii(max_ii(a, b), c);
}
MINLINE float min_ffff(float a, float b, float c, float d)
{
return min_ff(min_fff(a, b, c), d);
}
MINLINE float max_ffff(float a, float b, float c, float d)
{
return max_ff(max_fff(a, b, c), d);
}
MINLINE int min_iiii(int a, int b, int c, int d)
{
return min_ii(min_iii(a, b, c), d);
}
MINLINE int max_iiii(int a, int b, int c, int d)
{
return max_ii(max_iii(a, b, c), d);
}
MINLINE size_t min_zz(size_t a, size_t b)
{
return (a < b) ? a : b;
}
MINLINE size_t max_zz(size_t a, size_t b)
{
return (b < a) ? a : b;
}
2018-02-14 11:21:27 +01:00
MINLINE int clamp_i(int value, int min, int max)
{
return min_ii(max_ii(value, min), max);
2018-02-14 11:21:27 +01:00
}
MINLINE float clamp_f(float value, float min, float max)
{
if (value > max) {
return max;
}
else if (value < min) {
return min;
}
return value;
2018-02-14 11:21:27 +01:00
}
MINLINE size_t clamp_z(size_t value, size_t min, size_t max)
{
return min_zz(max_zz(value, min), max);
2018-02-14 11:21:27 +01:00
}
/**
* Almost-equal for IEEE floats, using absolute difference method.
*
* \param max_diff: the maximum absolute difference.
*/
MINLINE int compare_ff(float a, float b, const float max_diff)
{
return fabsf(a - b) <= max_diff;
}
/**
* Almost-equal for IEEE floats, using their integer representation
* (mixing ULP and absolute difference methods).
*
* \param max_diff: is the maximum absolute difference (allows to take care of the near-zero area,
* where relative difference methods cannot really work).
* \param max_ulps: is the 'maximum number of floats + 1'
* allowed between \a a and \a b to consider them equal.
*
* \see https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
*/
MINLINE int compare_ff_relative(float a, float b, const float max_diff, const int max_ulps)
{
union {
float f;
int i;
} ua, ub;
BLI_assert(sizeof(float) == sizeof(int));
BLI_assert(max_ulps < (1 << 22));
if (fabsf(a - b) <= max_diff) {
return 1;
}
ua.f = a;
ub.f = b;
/* Important to compare sign from integers, since (-0.0f < 0) is false
* (though this shall not be an issue in common cases)... */
return ((ua.i < 0) != (ub.i < 0)) ? 0 : (abs(ua.i - ub.i) <= max_ulps) ? 1 : 0;
}
MINLINE float signf(float f)
{
return (f < 0.f) ? -1.f : 1.f;
}
MINLINE int signum_i_ex(float a, float eps)
{
if (a > eps) {
return 1;
}
if (a < -eps) {
return -1;
}
else {
return 0;
}
}
MINLINE int signum_i(float a)
{
if (a > 0.0f) {
return 1;
}
if (a < 0.0f) {
return -1;
}
else {
return 0;
}
}
/** Returns number of (base ten) *significant* digits of integer part of given float
* (negative in case of decimal-only floats, 0.01 returns -1 e.g.). */
MINLINE int integer_digits_f(const float f)
{
return (f == 0.0f) ? 0 : (int)floor(log10(fabs(f))) + 1;
}
/** Returns number of (base ten) *significant* digits of integer part of given double
* (negative in case of decimal-only floats, 0.01 returns -1 e.g.). */
MINLINE int integer_digits_d(const double d)
{
return (d == 0.0) ? 0 : (int)floor(log10(fabs(d))) + 1;
}
MINLINE int integer_digits_i(const int i)
{
return (int)log10((double)i) + 1;
}
/* Internal helpers for SSE2 implementation.
*
* NOTE: Are to be called ONLY from inside `#ifdef __SSE2__` !!!
*/
#ifdef __SSE2__
/* Calculate initial guess for arg^exp based on float representation
* This method gives a constant bias, which can be easily compensated by
* multiplicating with bias_coeff.
* Gives better results for exponents near 1 (e. g. 4/5).
* exp = exponent, encoded as uint32_t
* e2coeff = 2^(127/exponent - 127) * bias_coeff^(1/exponent), encoded as
* uint32_t
*
* We hope that exp and e2coeff gets properly inlined
*/
MALWAYS_INLINE __m128 _bli_math_fastpow(const int exp, const int e2coeff, const __m128 arg)
{
__m128 ret;
ret = _mm_mul_ps(arg, _mm_castsi128_ps(_mm_set1_epi32(e2coeff)));
ret = _mm_cvtepi32_ps(_mm_castps_si128(ret));
ret = _mm_mul_ps(ret, _mm_castsi128_ps(_mm_set1_epi32(exp)));
ret = _mm_castsi128_ps(_mm_cvtps_epi32(ret));
return ret;
}
/* Improve x ^ 1.0f/5.0f solution with Newton-Raphson method */
MALWAYS_INLINE __m128 _bli_math_improve_5throot_solution(const __m128 old_result, const __m128 x)
{
__m128 approx2 = _mm_mul_ps(old_result, old_result);
__m128 approx4 = _mm_mul_ps(approx2, approx2);
__m128 t = _mm_div_ps(x, approx4);
__m128 summ = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(4.0f), old_result), t); /* fma */
return _mm_mul_ps(summ, _mm_set1_ps(1.0f / 5.0f));
}
/* Calculate powf(x, 2.4). Working domain: 1e-10 < x < 1e+10 */
MALWAYS_INLINE __m128 _bli_math_fastpow24(const __m128 arg)
{
/* max, avg and |avg| errors were calculated in gcc without FMA instructions
* The final precision should be better than powf in glibc */
/* Calculate x^4/5, coefficient 0.994 was constructed manually to minimize
* avg error.
*/
/* 0x3F4CCCCD = 4/5 */
/* 0x4F55A7FB = 2^(127/(4/5) - 127) * 0.994^(1/(4/5)) */
/* error max = 0.17, avg = 0.0018, |avg| = 0.05 */
__m128 x = _bli_math_fastpow(0x3F4CCCCD, 0x4F55A7FB, arg);
__m128 arg2 = _mm_mul_ps(arg, arg);
__m128 arg4 = _mm_mul_ps(arg2, arg2);
/* error max = 0.018 avg = 0.0031 |avg| = 0.0031 */
x = _bli_math_improve_5throot_solution(x, arg4);
/* error max = 0.00021 avg = 1.6e-05 |avg| = 1.6e-05 */
x = _bli_math_improve_5throot_solution(x, arg4);
/* error max = 6.1e-07 avg = 5.2e-08 |avg| = 1.1e-07 */
x = _bli_math_improve_5throot_solution(x, arg4);
return _mm_mul_ps(x, _mm_mul_ps(x, x));
}
/* Calculate powf(x, 1.0f / 2.4) */
MALWAYS_INLINE __m128 _bli_math_fastpow512(const __m128 arg)
{
/* 5/12 is too small, so compute the 4th root of 20/12 instead.
* 20/12 = 5/3 = 1 + 2/3 = 2 - 1/3. 2/3 is a suitable argument for fastpow.
* weighting coefficient: a^-1/2 = 2 a; a = 2^-2/3
*/
__m128 xf = _bli_math_fastpow(0x3f2aaaab, 0x5eb504f3, arg);
__m128 xover = _mm_mul_ps(arg, xf);
__m128 xfm1 = _mm_rsqrt_ps(xf);
__m128 x2 = _mm_mul_ps(arg, arg);
__m128 xunder = _mm_mul_ps(x2, xfm1);
/* sqrt2 * over + 2 * sqrt2 * under */
__m128 xavg = _mm_mul_ps(_mm_set1_ps(1.0f / (3.0f * 0.629960524947437f) * 0.999852f),
_mm_add_ps(xover, xunder));
xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
xavg = _mm_mul_ps(xavg, _mm_rsqrt_ps(xavg));
return xavg;
}
MALWAYS_INLINE __m128 _bli_math_blend_sse(const __m128 mask, const __m128 a, const __m128 b)
{
return _mm_or_ps(_mm_and_ps(mask, a), _mm_andnot_ps(mask, b));
}
#endif /* __SSE2__ */
/* Low level conversion functions */
MINLINE unsigned char unit_float_to_uchar_clamp(float val)
{
return (unsigned char)((
(val <= 0.0f) ? 0 : ((val > (1.0f - 0.5f / 255.0f)) ? 255 : ((255.0f * val) + 0.5f))));
}
#define unit_float_to_uchar_clamp(val) \
((CHECK_TYPE_INLINE(val, float)), unit_float_to_uchar_clamp(val))
MINLINE unsigned short unit_float_to_ushort_clamp(float val)
{
return (unsigned short)((val >= 1.0f - 0.5f / 65535) ?
65535 :
(val <= 0.0f) ? 0 : (val * 65535.0f + 0.5f));
}
#define unit_float_to_ushort_clamp(val) \
((CHECK_TYPE_INLINE(val, float)), unit_float_to_ushort_clamp(val))
MINLINE unsigned char unit_ushort_to_uchar(unsigned short val)
{
return (unsigned char)(((val) >= 65535 - 128) ? 255 : ((val) + 128) >> 8);
}
#define unit_ushort_to_uchar(val) \
((CHECK_TYPE_INLINE(val, unsigned short)), unit_ushort_to_uchar(val))
#define unit_float_to_uchar_clamp_v3(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
} \
((void)0)
#define unit_float_to_uchar_clamp_v4(v1, v2) \
{ \
(v1)[0] = unit_float_to_uchar_clamp((v2[0])); \
(v1)[1] = unit_float_to_uchar_clamp((v2[1])); \
(v1)[2] = unit_float_to_uchar_clamp((v2[2])); \
(v1)[3] = unit_float_to_uchar_clamp((v2[3])); \
} \
((void)0)
#endif /* __MATH_BASE_INLINE_C__ */