2011-02-23 10:52:22 +00:00
|
|
|
/*
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
2010-02-12 13:34:04 +00:00
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
*
|
|
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* The Original Code is: all of this file.
|
|
|
|
*
|
|
|
|
* Contributor(s): none yet.
|
|
|
|
*
|
|
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
|
|
*/
|
|
|
|
|
2011-02-27 20:29:51 +00:00
|
|
|
/** \file blender/editors/interface/interface_intern.h
|
|
|
|
* \ingroup edinterface
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
2012-02-17 18:59:41 +00:00
|
|
|
#ifndef __INTERFACE_INTERN_H__
|
|
|
|
#define __INTERFACE_INTERN_H__
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
#include "UI_resources.h"
|
|
|
|
#include "RNA_types.h"
|
|
|
|
|
|
|
|
struct ARegion;
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
struct bContext;
|
2008-12-16 20:03:28 +00:00
|
|
|
struct IDProperty;
|
2008-12-16 07:55:43 +00:00
|
|
|
struct uiHandleButtonData;
|
2008-12-26 13:11:04 +00:00
|
|
|
struct wmEvent;
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
struct wmOperatorType;
|
2008-12-16 07:55:43 +00:00
|
|
|
struct wmWindow;
|
Code holiday commit:
- fix: user pref, window title was reset to 'Blender' on tab usage
- Undo history menu back:
- name "Undo History"
- hotkey alt+ctrl+z (alt+apple+z for mac)
- works like 2.4x, only for global undo, editmode and particle edit.
- Menu scroll
- for small windows or screens, popup menus now allow to display
all items, using internal scrolling
- works with a timer, scrolling 10 items per second when mouse
is over the top or bottom arrow
- if menu is too big to display, it now draws to top or bottom,
based on largest available space.
- also works for hotkey driven pop up menus.
- User pref "DPI" follows widget/layout size
- widgets & headers now become bigger and smaller, to match
'dpi' font sizes. Works well to match UI to monitor size.
- note that icons can get fuzzy, we need better mipmaps for it
2011-06-04 17:03:46 +00:00
|
|
|
struct wmTimer;
|
2009-04-10 14:06:24 +00:00
|
|
|
struct uiStyle;
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
struct uiWidgetColors;
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
struct uiLayout;
|
2009-05-28 23:13:42 +00:00
|
|
|
struct bContextStore;
|
2009-06-25 15:41:27 +00:00
|
|
|
struct Scene;
|
|
|
|
struct ID;
|
Drag and drop 2.5 integration! Finally, slashdot regulars can use
Blender too now! :)
** Drag works as follows:
- drag-able items are defined by the standard interface ui toolkit
- each button can get this feature, via uiButSetDragXXX(but, ...).
There are calls to define drag-able images, ID blocks, RNA paths,
file paths, and so on. By default you drag an icon, exceptionally
an ImBuf
- Drag items are registered centrally in the WM, it allows more drag
items simultaneous too, but not implemented
** Drop works as follows:
- On mouse release, and if drag items exist in the WM, it converts
the mouse event to an EVT_DROP type. This event then gets the full
drag info as customdata
- drop regions are defined with WM_dropbox_add(), similar to keymaps
you can make a "drop map" this way, which become 'drop map handlers'
in the queues.
- next to that the UI kit handles some common button types (like
accepting ID or names) to be catching a drop event too.
- Every "drop box" has two callbacks:
- poll() = check if the event drag data is relevant for this box
- copy() = fill in custom properties in the dropbox to initialize
an operator
- The dropbox handler then calls its standard Operator with its
dropbox properties.
** Currently implemented
Drag items:
- ID icons in browse buttons
- ID icons in context menu of properties region
- ID icons in outliner and rna viewer
- FileBrowser icons
- FileBrowser preview images
Drag-able icons are subtly visualized by making them brighter a bit
on mouse-over. In case the icon is a button or UI element too (most
cases), the drag-able feature will make the item react to
mouse-release instead of mouse-press.
Drop options:
- UI buttons: ID and text buttons (paste name)
- View3d: Object ID drop copies object
- View3d: Material ID drop assigns to object under cursor
- View3d: Image ID drop assigns to object UV texture under cursor
- Sequencer: Path drop will add either Image or Movie strip
- Image window: Path drop will open image
** Drag and drop Notes:
- Dropping into another Blender window (from same application) works
too. I've added code that passes on mousemoves and clicks to other
windows, without activating them though. This does make using multi-window
Blender a bit friendler.
- Dropping a file path to an image, is not the same as dropping an
Image ID... keep this in mind. Sequencer for example wants paths to
be dropped, textures in 3d window wants an Image ID.
- Although drop boxes could be defined via Python, I suggest they're
part of the UI and editor design (= how we want an editor to work), and
not default offered configurable like keymaps.
- At the moment only one item can be dragged at a time. This is for
several reasons.... For one, Blender doesn't have a well defined
uniform way to define "what is selected" (files, outliner items, etc).
Secondly there's potential conflicts on what todo when you drop mixed
drag sets on spots. All undefined stuff... nice for later.
- Example to bypass the above: a collection of images that form a strip,
should be represented in filewindow as a single sequence anyway.
This then will fit well and gets handled neatly by design.
- Another option to check is to allow multiple options per drop... it
could show the operator as a sort of menu, allowing arrow or scrollwheel
to choose. For time being I'd prefer to try to design a singular drop
though, just offer only one drop action per data type on given spots.
- What does work already, but a tad slow, is to use a function that
detects an object (type) under cursor, so a drag item's option can be
further refined (like drop object on object = parent). (disabled)
** More notes
- Added saving for Region layouts (like split points for toolbar)
- Label buttons now handle mouse over
- File list: added full path entry for drop feature.
- Filesel bugfix: wm_operator_exec() got called there and fully handled,
while WM event code tried same. Added new OPERATOR_HANDLED flag for this.
Maybe python needs it too?
- Cocoa: added window move event, so multi-win setups work OK (didnt save).
- Interface_handlers.c: removed win->active
- Severe area copy bug: area handlers were not set to NULL
- Filesel bugfix: next/prev folder list was not copied on area copies
** Leftover todos
- Cocoa windows seem to hang on cases still... needs check
- Cocoa 'draw overlap' swap doesn't work
- Cocoa window loses focus permanently on using Spotlight
(for these reasons, makefile building has Carbon as default atm)
- ListView templates in UI cannot become dragged yet, needs review...
it consists of two overlapping UI elements, preventing handling icon clicks.
- There's already Ghost library code to handle dropping from OS
into Blender window. I've noticed this code is unfinished for Macs, but
seems to be complete for Windows. Needs test... currently, an external
drop event will print in console when succesfully delivered to Blender's WM.
2010-01-26 18:18:21 +00:00
|
|
|
struct ImBuf;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
/* ****************** general defines ************** */
|
|
|
|
|
|
|
|
/* visual types for drawing */
|
|
|
|
/* for time being separated from functional types */
|
|
|
|
typedef enum {
|
2009-06-24 14:16:56 +00:00
|
|
|
/* default */
|
|
|
|
UI_WTYPE_REGULAR,
|
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
/* standard set */
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
UI_WTYPE_LABEL,
|
2009-04-07 17:08:26 +00:00
|
|
|
UI_WTYPE_TOGGLE,
|
|
|
|
UI_WTYPE_OPTION,
|
|
|
|
UI_WTYPE_RADIO,
|
|
|
|
UI_WTYPE_NUMBER,
|
|
|
|
UI_WTYPE_SLIDER,
|
|
|
|
UI_WTYPE_EXEC,
|
2012-03-19 22:29:16 +00:00
|
|
|
UI_WTYPE_TOOLTIP,
|
2009-04-07 17:08:26 +00:00
|
|
|
|
|
|
|
/* strings */
|
|
|
|
UI_WTYPE_NAME,
|
|
|
|
UI_WTYPE_NAME_LINK,
|
|
|
|
UI_WTYPE_POINTER_LINK,
|
|
|
|
UI_WTYPE_FILENAME,
|
|
|
|
|
|
|
|
/* menus */
|
|
|
|
UI_WTYPE_MENU_RADIO,
|
2009-09-28 15:59:09 +00:00
|
|
|
UI_WTYPE_MENU_ICON_RADIO,
|
2009-04-07 17:08:26 +00:00
|
|
|
UI_WTYPE_MENU_POINTER_LINK,
|
2011-11-07 22:28:49 +00:00
|
|
|
UI_WTYPE_MENU_NODE_LINK,
|
2009-04-07 17:08:26 +00:00
|
|
|
|
|
|
|
UI_WTYPE_PULLDOWN,
|
|
|
|
UI_WTYPE_MENU_ITEM,
|
|
|
|
UI_WTYPE_MENU_BACK,
|
2012-03-19 22:29:16 +00:00
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
/* specials */
|
|
|
|
UI_WTYPE_ICON,
|
|
|
|
UI_WTYPE_SWATCH,
|
|
|
|
UI_WTYPE_RGB_PICKER,
|
2009-06-01 11:31:06 +00:00
|
|
|
UI_WTYPE_NORMAL,
|
2009-06-24 14:16:56 +00:00
|
|
|
UI_WTYPE_BOX,
|
2009-07-21 01:26:17 +00:00
|
|
|
UI_WTYPE_SCROLL,
|
2010-05-27 08:22:16 +00:00
|
|
|
UI_WTYPE_LISTITEM,
|
|
|
|
UI_WTYPE_PROGRESSBAR,
|
2009-04-07 17:08:26 +00:00
|
|
|
|
|
|
|
} uiWidgetTypeEnum;
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* panel limits */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define UI_PANEL_MINX 100
|
|
|
|
#define UI_PANEL_MINY 70
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* uiBut->flag */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define UI_SELECT 1 /* use when the button is pressed */
|
|
|
|
#define UI_SCROLLED 2 /* temp hidden, scrolled away */
|
|
|
|
#define UI_ACTIVE 4
|
|
|
|
#define UI_HAS_ICON 8
|
|
|
|
#define UI_TEXTINPUT 16
|
|
|
|
#define UI_HIDDEN 32
|
2009-03-25 16:58:42 +00:00
|
|
|
/* warn: rest of uiBut->flag in UI_interface.h */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* internal panel drawing defines */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define PNL_GRID (UI_UNIT_Y / 5) /* 4 default */
|
|
|
|
#define PNL_HEADER (UI_UNIT_Y + 4) /* 24 default */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* panel->flag */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define PNL_SELECT 1
|
|
|
|
#define PNL_CLOSEDX 2
|
|
|
|
#define PNL_CLOSEDY 4
|
|
|
|
#define PNL_CLOSED 6
|
2011-01-15 16:14:57 +00:00
|
|
|
/*#define PNL_TABBED 8*/ /*UNUSED*/
|
2012-05-08 18:29:02 +00:00
|
|
|
#define PNL_OVERLAP 16
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* Button text selection:
|
|
|
|
* extension direction, selextend, inside ui_do_but_TEX */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define EXTEND_LEFT 1
|
|
|
|
#define EXTEND_RIGHT 2
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2010-04-04 02:37:22 +00:00
|
|
|
/* for scope resize zone */
|
2012-05-08 18:29:02 +00:00
|
|
|
#define SCOPE_RESIZE_PAD 9
|
2010-04-04 02:37:22 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
typedef struct uiLinkLine { /* only for draw/edit */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
struct uiLinkLine *next, *prev;
|
2011-10-03 01:36:25 +00:00
|
|
|
struct uiBut *from, *to;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
short flag, pad;
|
|
|
|
} uiLinkLine;
|
|
|
|
|
|
|
|
typedef struct {
|
2012-05-08 18:29:02 +00:00
|
|
|
void **poin; /* pointer to original pointer */
|
|
|
|
void ***ppoin; /* pointer to original pointer-array */
|
|
|
|
short *totlink; /* if pointer-array, here is the total */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
short maxlink, pad;
|
|
|
|
short fromcode, tocode;
|
|
|
|
|
|
|
|
ListBase lines;
|
|
|
|
} uiLink;
|
|
|
|
|
|
|
|
struct uiBut {
|
|
|
|
struct uiBut *next, *prev;
|
|
|
|
int flag;
|
2011-10-03 01:36:25 +00:00
|
|
|
short type, pointype, bit, bitnr, retval, strwidth, ofs, pos, selsta, selend, alignnr;
|
|
|
|
short pad1;
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
char *str;
|
|
|
|
char strdata[UI_MAX_NAME_STR];
|
|
|
|
char drawstr[UI_MAX_DRAW_STR];
|
|
|
|
|
|
|
|
float x1, y1, x2, y2;
|
|
|
|
|
|
|
|
char *poin;
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
float hardmin, hardmax, softmin, softmax;
|
2010-10-13 13:53:49 +00:00
|
|
|
float a1, a2;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
float aspect;
|
2012-01-19 10:04:51 +00:00
|
|
|
unsigned char col[4];
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiButHandleFunc func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
void *func_arg1;
|
|
|
|
void *func_arg2;
|
2009-06-03 18:31:37 +00:00
|
|
|
void *func_arg3;
|
2008-12-10 19:22:10 +00:00
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
uiButHandleNFunc funcN;
|
|
|
|
void *func_argN;
|
|
|
|
|
2009-05-28 23:13:42 +00:00
|
|
|
struct bContextStore *context;
|
|
|
|
|
2010-07-04 20:59:10 +00:00
|
|
|
/* not ysed yet, was used in 2.4x for ui_draw_pulldown_round & friends */
|
2012-03-03 16:31:46 +00:00
|
|
|
#if 0
|
2012-05-08 18:29:02 +00:00
|
|
|
void (*embossfunc)(int, int, float, float, float, float, float, int);
|
|
|
|
void (*sliderfunc)(int, float, float, float, float, float, float, int);
|
2012-03-03 16:31:46 +00:00
|
|
|
#endif
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiButCompleteFunc autocomplete_func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
void *autofunc_arg;
|
|
|
|
|
2009-06-02 18:10:06 +00:00
|
|
|
uiButSearchFunc search_func;
|
|
|
|
void *search_arg;
|
2009-07-25 13:40:59 +00:00
|
|
|
|
|
|
|
uiButHandleRenameFunc rename_func;
|
|
|
|
void *rename_arg1;
|
|
|
|
void *rename_orig;
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
uiLink *link;
|
2009-06-17 11:01:05 +00:00
|
|
|
short linkto[2];
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2010-11-17 09:45:45 +00:00
|
|
|
const char *tip, *lockstr;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
BIFIconID icon;
|
2010-10-07 00:14:21 +00:00
|
|
|
char lock;
|
2011-08-14 11:38:17 +00:00
|
|
|
char dt; /* drawtype: UI_EMBOSS, UI_EMBOSSN ... etc, copied from the block */
|
2010-12-10 04:10:21 +00:00
|
|
|
char changed; /* could be made into a single flag */
|
|
|
|
unsigned char unit_type; /* so buttons can support unit systems which are not RNA */
|
2009-12-24 09:26:06 +00:00
|
|
|
short modifier_key;
|
2010-10-07 00:14:21 +00:00
|
|
|
short iconadd;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* IDPOIN data */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
uiIDPoinFuncFP idpoin_func;
|
|
|
|
ID **idpoin_idpp;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* BLOCK data */
|
|
|
|
uiBlockCreateFunc block_create_func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-05-21 15:34:09 +00:00
|
|
|
/* PULLDOWN/MENU data */
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiMenuCreateFunc menu_create_func;
|
|
|
|
|
|
|
|
/* RNA data */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
struct PointerRNA rnapoin;
|
|
|
|
struct PropertyRNA *rnaprop;
|
|
|
|
int rnaindex;
|
|
|
|
|
2009-06-27 01:15:31 +00:00
|
|
|
struct PointerRNA rnasearchpoin;
|
|
|
|
struct PropertyRNA *rnasearchprop;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* Operator data */
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
struct wmOperatorType *optype;
|
2008-12-16 20:03:28 +00:00
|
|
|
struct IDProperty *opproperties;
|
|
|
|
struct PointerRNA *opptr;
|
2010-07-04 20:59:10 +00:00
|
|
|
short opcontext;
|
2010-12-14 02:38:29 +00:00
|
|
|
unsigned char menu_key; /* 'a'-'z', always lower case */
|
|
|
|
|
Drag and drop 2.5 integration! Finally, slashdot regulars can use
Blender too now! :)
** Drag works as follows:
- drag-able items are defined by the standard interface ui toolkit
- each button can get this feature, via uiButSetDragXXX(but, ...).
There are calls to define drag-able images, ID blocks, RNA paths,
file paths, and so on. By default you drag an icon, exceptionally
an ImBuf
- Drag items are registered centrally in the WM, it allows more drag
items simultaneous too, but not implemented
** Drop works as follows:
- On mouse release, and if drag items exist in the WM, it converts
the mouse event to an EVT_DROP type. This event then gets the full
drag info as customdata
- drop regions are defined with WM_dropbox_add(), similar to keymaps
you can make a "drop map" this way, which become 'drop map handlers'
in the queues.
- next to that the UI kit handles some common button types (like
accepting ID or names) to be catching a drop event too.
- Every "drop box" has two callbacks:
- poll() = check if the event drag data is relevant for this box
- copy() = fill in custom properties in the dropbox to initialize
an operator
- The dropbox handler then calls its standard Operator with its
dropbox properties.
** Currently implemented
Drag items:
- ID icons in browse buttons
- ID icons in context menu of properties region
- ID icons in outliner and rna viewer
- FileBrowser icons
- FileBrowser preview images
Drag-able icons are subtly visualized by making them brighter a bit
on mouse-over. In case the icon is a button or UI element too (most
cases), the drag-able feature will make the item react to
mouse-release instead of mouse-press.
Drop options:
- UI buttons: ID and text buttons (paste name)
- View3d: Object ID drop copies object
- View3d: Material ID drop assigns to object under cursor
- View3d: Image ID drop assigns to object UV texture under cursor
- Sequencer: Path drop will add either Image or Movie strip
- Image window: Path drop will open image
** Drag and drop Notes:
- Dropping into another Blender window (from same application) works
too. I've added code that passes on mousemoves and clicks to other
windows, without activating them though. This does make using multi-window
Blender a bit friendler.
- Dropping a file path to an image, is not the same as dropping an
Image ID... keep this in mind. Sequencer for example wants paths to
be dropped, textures in 3d window wants an Image ID.
- Although drop boxes could be defined via Python, I suggest they're
part of the UI and editor design (= how we want an editor to work), and
not default offered configurable like keymaps.
- At the moment only one item can be dragged at a time. This is for
several reasons.... For one, Blender doesn't have a well defined
uniform way to define "what is selected" (files, outliner items, etc).
Secondly there's potential conflicts on what todo when you drop mixed
drag sets on spots. All undefined stuff... nice for later.
- Example to bypass the above: a collection of images that form a strip,
should be represented in filewindow as a single sequence anyway.
This then will fit well and gets handled neatly by design.
- Another option to check is to allow multiple options per drop... it
could show the operator as a sort of menu, allowing arrow or scrollwheel
to choose. For time being I'd prefer to try to design a singular drop
though, just offer only one drop action per data type on given spots.
- What does work already, but a tad slow, is to use a function that
detects an object (type) under cursor, so a drag item's option can be
further refined (like drop object on object = parent). (disabled)
** More notes
- Added saving for Region layouts (like split points for toolbar)
- Label buttons now handle mouse over
- File list: added full path entry for drop feature.
- Filesel bugfix: wm_operator_exec() got called there and fully handled,
while WM event code tried same. Added new OPERATOR_HANDLED flag for this.
Maybe python needs it too?
- Cocoa: added window move event, so multi-win setups work OK (didnt save).
- Interface_handlers.c: removed win->active
- Severe area copy bug: area handlers were not set to NULL
- Filesel bugfix: next/prev folder list was not copied on area copies
** Leftover todos
- Cocoa windows seem to hang on cases still... needs check
- Cocoa 'draw overlap' swap doesn't work
- Cocoa window loses focus permanently on using Spotlight
(for these reasons, makefile building has Carbon as default atm)
- ListView templates in UI cannot become dragged yet, needs review...
it consists of two overlapping UI elements, preventing handling icon clicks.
- There's already Ghost library code to handle dropping from OS
into Blender window. I've noticed this code is unfinished for Macs, but
seems to be complete for Windows. Needs test... currently, an external
drop event will print in console when succesfully delivered to Blender's WM.
2010-01-26 18:18:21 +00:00
|
|
|
/* Draggable data, type is WM_DRAG_... */
|
2010-12-14 02:38:29 +00:00
|
|
|
char dragtype;
|
Drag and drop 2.5 integration! Finally, slashdot regulars can use
Blender too now! :)
** Drag works as follows:
- drag-able items are defined by the standard interface ui toolkit
- each button can get this feature, via uiButSetDragXXX(but, ...).
There are calls to define drag-able images, ID blocks, RNA paths,
file paths, and so on. By default you drag an icon, exceptionally
an ImBuf
- Drag items are registered centrally in the WM, it allows more drag
items simultaneous too, but not implemented
** Drop works as follows:
- On mouse release, and if drag items exist in the WM, it converts
the mouse event to an EVT_DROP type. This event then gets the full
drag info as customdata
- drop regions are defined with WM_dropbox_add(), similar to keymaps
you can make a "drop map" this way, which become 'drop map handlers'
in the queues.
- next to that the UI kit handles some common button types (like
accepting ID or names) to be catching a drop event too.
- Every "drop box" has two callbacks:
- poll() = check if the event drag data is relevant for this box
- copy() = fill in custom properties in the dropbox to initialize
an operator
- The dropbox handler then calls its standard Operator with its
dropbox properties.
** Currently implemented
Drag items:
- ID icons in browse buttons
- ID icons in context menu of properties region
- ID icons in outliner and rna viewer
- FileBrowser icons
- FileBrowser preview images
Drag-able icons are subtly visualized by making them brighter a bit
on mouse-over. In case the icon is a button or UI element too (most
cases), the drag-able feature will make the item react to
mouse-release instead of mouse-press.
Drop options:
- UI buttons: ID and text buttons (paste name)
- View3d: Object ID drop copies object
- View3d: Material ID drop assigns to object under cursor
- View3d: Image ID drop assigns to object UV texture under cursor
- Sequencer: Path drop will add either Image or Movie strip
- Image window: Path drop will open image
** Drag and drop Notes:
- Dropping into another Blender window (from same application) works
too. I've added code that passes on mousemoves and clicks to other
windows, without activating them though. This does make using multi-window
Blender a bit friendler.
- Dropping a file path to an image, is not the same as dropping an
Image ID... keep this in mind. Sequencer for example wants paths to
be dropped, textures in 3d window wants an Image ID.
- Although drop boxes could be defined via Python, I suggest they're
part of the UI and editor design (= how we want an editor to work), and
not default offered configurable like keymaps.
- At the moment only one item can be dragged at a time. This is for
several reasons.... For one, Blender doesn't have a well defined
uniform way to define "what is selected" (files, outliner items, etc).
Secondly there's potential conflicts on what todo when you drop mixed
drag sets on spots. All undefined stuff... nice for later.
- Example to bypass the above: a collection of images that form a strip,
should be represented in filewindow as a single sequence anyway.
This then will fit well and gets handled neatly by design.
- Another option to check is to allow multiple options per drop... it
could show the operator as a sort of menu, allowing arrow or scrollwheel
to choose. For time being I'd prefer to try to design a singular drop
though, just offer only one drop action per data type on given spots.
- What does work already, but a tad slow, is to use a function that
detects an object (type) under cursor, so a drag item's option can be
further refined (like drop object on object = parent). (disabled)
** More notes
- Added saving for Region layouts (like split points for toolbar)
- Label buttons now handle mouse over
- File list: added full path entry for drop feature.
- Filesel bugfix: wm_operator_exec() got called there and fully handled,
while WM event code tried same. Added new OPERATOR_HANDLED flag for this.
Maybe python needs it too?
- Cocoa: added window move event, so multi-win setups work OK (didnt save).
- Interface_handlers.c: removed win->active
- Severe area copy bug: area handlers were not set to NULL
- Filesel bugfix: next/prev folder list was not copied on area copies
** Leftover todos
- Cocoa windows seem to hang on cases still... needs check
- Cocoa 'draw overlap' swap doesn't work
- Cocoa window loses focus permanently on using Spotlight
(for these reasons, makefile building has Carbon as default atm)
- ListView templates in UI cannot become dragged yet, needs review...
it consists of two overlapping UI elements, preventing handling icon clicks.
- There's already Ghost library code to handle dropping from OS
into Blender window. I've noticed this code is unfinished for Macs, but
seems to be complete for Windows. Needs test... currently, an external
drop event will print in console when succesfully delivered to Blender's WM.
2010-01-26 18:18:21 +00:00
|
|
|
void *dragpoin;
|
|
|
|
struct ImBuf *imb;
|
|
|
|
float imb_scale;
|
2008-12-16 07:55:43 +00:00
|
|
|
|
Drag and drop 2.5 integration! Finally, slashdot regulars can use
Blender too now! :)
** Drag works as follows:
- drag-able items are defined by the standard interface ui toolkit
- each button can get this feature, via uiButSetDragXXX(but, ...).
There are calls to define drag-able images, ID blocks, RNA paths,
file paths, and so on. By default you drag an icon, exceptionally
an ImBuf
- Drag items are registered centrally in the WM, it allows more drag
items simultaneous too, but not implemented
** Drop works as follows:
- On mouse release, and if drag items exist in the WM, it converts
the mouse event to an EVT_DROP type. This event then gets the full
drag info as customdata
- drop regions are defined with WM_dropbox_add(), similar to keymaps
you can make a "drop map" this way, which become 'drop map handlers'
in the queues.
- next to that the UI kit handles some common button types (like
accepting ID or names) to be catching a drop event too.
- Every "drop box" has two callbacks:
- poll() = check if the event drag data is relevant for this box
- copy() = fill in custom properties in the dropbox to initialize
an operator
- The dropbox handler then calls its standard Operator with its
dropbox properties.
** Currently implemented
Drag items:
- ID icons in browse buttons
- ID icons in context menu of properties region
- ID icons in outliner and rna viewer
- FileBrowser icons
- FileBrowser preview images
Drag-able icons are subtly visualized by making them brighter a bit
on mouse-over. In case the icon is a button or UI element too (most
cases), the drag-able feature will make the item react to
mouse-release instead of mouse-press.
Drop options:
- UI buttons: ID and text buttons (paste name)
- View3d: Object ID drop copies object
- View3d: Material ID drop assigns to object under cursor
- View3d: Image ID drop assigns to object UV texture under cursor
- Sequencer: Path drop will add either Image or Movie strip
- Image window: Path drop will open image
** Drag and drop Notes:
- Dropping into another Blender window (from same application) works
too. I've added code that passes on mousemoves and clicks to other
windows, without activating them though. This does make using multi-window
Blender a bit friendler.
- Dropping a file path to an image, is not the same as dropping an
Image ID... keep this in mind. Sequencer for example wants paths to
be dropped, textures in 3d window wants an Image ID.
- Although drop boxes could be defined via Python, I suggest they're
part of the UI and editor design (= how we want an editor to work), and
not default offered configurable like keymaps.
- At the moment only one item can be dragged at a time. This is for
several reasons.... For one, Blender doesn't have a well defined
uniform way to define "what is selected" (files, outliner items, etc).
Secondly there's potential conflicts on what todo when you drop mixed
drag sets on spots. All undefined stuff... nice for later.
- Example to bypass the above: a collection of images that form a strip,
should be represented in filewindow as a single sequence anyway.
This then will fit well and gets handled neatly by design.
- Another option to check is to allow multiple options per drop... it
could show the operator as a sort of menu, allowing arrow or scrollwheel
to choose. For time being I'd prefer to try to design a singular drop
though, just offer only one drop action per data type on given spots.
- What does work already, but a tad slow, is to use a function that
detects an object (type) under cursor, so a drag item's option can be
further refined (like drop object on object = parent). (disabled)
** More notes
- Added saving for Region layouts (like split points for toolbar)
- Label buttons now handle mouse over
- File list: added full path entry for drop feature.
- Filesel bugfix: wm_operator_exec() got called there and fully handled,
while WM event code tried same. Added new OPERATOR_HANDLED flag for this.
Maybe python needs it too?
- Cocoa: added window move event, so multi-win setups work OK (didnt save).
- Interface_handlers.c: removed win->active
- Severe area copy bug: area handlers were not set to NULL
- Filesel bugfix: next/prev folder list was not copied on area copies
** Leftover todos
- Cocoa windows seem to hang on cases still... needs check
- Cocoa 'draw overlap' swap doesn't work
- Cocoa window loses focus permanently on using Spotlight
(for these reasons, makefile building has Carbon as default atm)
- ListView templates in UI cannot become dragged yet, needs review...
it consists of two overlapping UI elements, preventing handling icon clicks.
- There's already Ghost library code to handle dropping from OS
into Blender window. I've noticed this code is unfinished for Macs, but
seems to be complete for Windows. Needs test... currently, an external
drop event will print in console when succesfully delivered to Blender's WM.
2010-01-26 18:18:21 +00:00
|
|
|
/* active button data */
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
struct uiHandleButtonData *active;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
char *editstr;
|
|
|
|
double *editval;
|
|
|
|
float *editvec;
|
|
|
|
void *editcoba;
|
|
|
|
void *editcumap;
|
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
/* pointer back */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
uiBlock *block;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct uiBlock {
|
|
|
|
uiBlock *next, *prev;
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ListBase buttons;
|
|
|
|
Panel *panel;
|
|
|
|
uiBlock *oldblock;
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
|
2009-05-19 17:13:33 +00:00
|
|
|
ListBase layouts;
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
struct uiLayout *curlayout;
|
2009-05-28 23:13:42 +00:00
|
|
|
|
|
|
|
ListBase contexts;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
char name[UI_MAX_NAME_STR];
|
|
|
|
|
|
|
|
float winmat[4][4];
|
|
|
|
|
|
|
|
float minx, miny, maxx, maxy;
|
|
|
|
float aspect;
|
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
int puphash; /* popup menu hash for memory */
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiButHandleFunc func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
void *func_arg1;
|
|
|
|
void *func_arg2;
|
2008-12-10 19:22:10 +00:00
|
|
|
|
2009-09-16 18:47:42 +00:00
|
|
|
uiButHandleNFunc funcN;
|
|
|
|
void *func_argN;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiMenuHandleFunc butm_func;
|
2008-12-10 19:22:10 +00:00
|
|
|
void *butm_func_arg;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBlockHandleFunc handle_func;
|
2008-12-10 19:22:10 +00:00
|
|
|
void *handle_func_arg;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-06-12 14:22:27 +00:00
|
|
|
/* custom extra handling */
|
|
|
|
int (*block_event_func)(const struct bContext *C, struct uiBlock *, struct wmEvent *);
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* extra draw function for custom blocks */
|
2009-08-18 19:58:27 +00:00
|
|
|
void (*drawextra)(const struct bContext *C, void *idv, void *arg1, void *arg2, rcti *rect);
|
|
|
|
void *drawextra_arg1;
|
|
|
|
void *drawextra_arg2;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2010-10-07 00:14:21 +00:00
|
|
|
int flag;
|
2011-10-03 01:36:25 +00:00
|
|
|
short alignnr;
|
|
|
|
|
2011-08-14 11:38:17 +00:00
|
|
|
char direction;
|
|
|
|
char dt; /* drawtype: UI_EMBOSS, UI_EMBOSSN ... etc, copied to buttons */
|
2011-10-03 01:01:01 +00:00
|
|
|
char auto_open;
|
2011-10-03 01:36:25 +00:00
|
|
|
char _pad[7];
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
double auto_open_last;
|
|
|
|
|
2010-12-03 17:05:21 +00:00
|
|
|
const char *lockstr;
|
2010-10-14 11:33:51 +00:00
|
|
|
|
|
|
|
char lock;
|
2012-05-08 18:29:02 +00:00
|
|
|
char active; // to keep blocks while drawing and free them afterwards
|
|
|
|
char tooltipdisabled; // to avoid tooltip after click
|
|
|
|
char endblock; // uiEndBlock done?
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
float xofs, yofs; // offset to parent button
|
|
|
|
int dobounds, mx, my; // for doing delayed
|
|
|
|
int bounds, minbounds; // for doing delayed
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
rctf safety; // pulldowns, to detect outside, can differ per case how it is created
|
|
|
|
ListBase saferct; // uiSafetyRct list
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
uiPopupBlockHandle *handle; // handle
|
2011-11-10 03:44:50 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
struct wmOperator *ui_operator; // use so presets can find the operator,
|
|
|
|
// across menus and from nested popups which fail for operator context.
|
2011-11-10 03:44:50 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
void *evil_C; // XXX hack for dynamic operator enums
|
2010-10-14 11:33:51 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
struct UnitSettings *unit; // unit system, used a lot for numeric buttons so include here rather then fetching through the scene every time.
|
|
|
|
float _hsv[3]; // XXX, only access via ui_block_hsv_get()
|
|
|
|
char color_profile; // color profile for correcting linear colors for display
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
typedef struct uiSafetyRct {
|
|
|
|
struct uiSafetyRct *next, *prev;
|
|
|
|
rctf parent;
|
|
|
|
rctf safety;
|
|
|
|
} uiSafetyRct;
|
|
|
|
|
|
|
|
/* interface.c */
|
|
|
|
|
2010-01-19 11:24:42 +00:00
|
|
|
extern void ui_delete_linkline(uiLinkLine *line, uiBut *but);
|
|
|
|
|
2009-04-15 14:43:54 +00:00
|
|
|
void ui_fontscale(short *points, float aspect);
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
extern void ui_block_to_window_fl(const struct ARegion *ar, uiBlock *block, float *x, float *y);
|
|
|
|
extern void ui_block_to_window(const struct ARegion *ar, uiBlock *block, int *x, int *y);
|
|
|
|
extern void ui_block_to_window_rct(const struct ARegion *ar, uiBlock *block, rctf *graph, rcti *winr);
|
|
|
|
extern void ui_window_to_block_fl(const struct ARegion *ar, uiBlock *block, float *x, float *y);
|
|
|
|
extern void ui_window_to_block(const struct ARegion *ar, uiBlock *block, int *x, int *y);
|
2008-12-03 20:57:23 +00:00
|
|
|
extern void ui_window_to_region(const ARegion *ar, int *x, int *y);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
extern double ui_get_but_val(uiBut *but);
|
|
|
|
extern void ui_set_but_val(uiBut *but, double value);
|
|
|
|
extern void ui_set_but_hsv(uiBut *but);
|
2011-10-15 09:43:42 +00:00
|
|
|
extern void ui_get_but_vectorf(uiBut *but, float vec[3]);
|
|
|
|
extern void ui_set_but_vectorf(uiBut *but, const float vec[3]);
|
2009-03-30 17:31:37 +00:00
|
|
|
|
2009-06-12 14:22:27 +00:00
|
|
|
extern void ui_hsvcircle_vals_from_pos(float *valrad, float *valdist, rcti *rect, float mx, float my);
|
|
|
|
|
2011-09-26 17:30:56 +00:00
|
|
|
extern void ui_get_but_string(uiBut *but, char *str, size_t maxlen);
|
|
|
|
extern void ui_convert_to_unit_alt_name(uiBut *but, char *str, size_t maxlen);
|
2009-03-30 17:31:37 +00:00
|
|
|
extern int ui_set_but_string(struct bContext *C, uiBut *but, const char *str);
|
|
|
|
extern int ui_get_but_string_max_length(uiBut *but);
|
2012-01-20 22:32:47 +00:00
|
|
|
extern int ui_set_but_string_eval_num(struct bContext *C, uiBut *but, const char *str, double *value);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2011-06-02 14:18:51 +00:00
|
|
|
extern void ui_set_but_default(struct bContext *C, short all);
|
2010-01-20 04:19:55 +00:00
|
|
|
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
extern void ui_set_but_soft_range(uiBut *but, double value);
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
extern void ui_check_but(uiBut *but);
|
|
|
|
extern int ui_is_but_float(uiBut *but);
|
2009-08-12 08:16:10 +00:00
|
|
|
extern int ui_is_but_unit(uiBut *but);
|
2011-03-24 09:27:41 +00:00
|
|
|
extern int ui_is_but_rna_valid(uiBut *but);
|
2011-10-20 07:12:14 +00:00
|
|
|
extern int ui_is_but_utf8(uiBut *but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
extern void ui_bounds_block(uiBlock *block);
|
2009-04-11 01:52:27 +00:00
|
|
|
extern void ui_block_translate(uiBlock *block, int x, int y);
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
extern void ui_block_do_align(uiBlock *block);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* interface_regions.c */
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
struct uiPopupBlockHandle {
|
|
|
|
/* internal */
|
|
|
|
struct ARegion *region;
|
|
|
|
int towardsx, towardsy;
|
|
|
|
double towardstime;
|
|
|
|
int dotowards;
|
|
|
|
|
|
|
|
int popup;
|
|
|
|
void (*popup_func)(struct bContext *C, void *arg, int event);
|
2009-02-08 19:15:59 +00:00
|
|
|
void (*cancel_func)(void *arg);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
void *popup_arg;
|
Code holiday commit:
- fix: user pref, window title was reset to 'Blender' on tab usage
- Undo history menu back:
- name "Undo History"
- hotkey alt+ctrl+z (alt+apple+z for mac)
- works like 2.4x, only for global undo, editmode and particle edit.
- Menu scroll
- for small windows or screens, popup menus now allow to display
all items, using internal scrolling
- works with a timer, scrolling 10 items per second when mouse
is over the top or bottom arrow
- if menu is too big to display, it now draws to top or bottom,
based on largest available space.
- also works for hotkey driven pop up menus.
- User pref "DPI" follows widget/layout size
- widgets & headers now become bigger and smaller, to match
'dpi' font sizes. Works well to match UI to monitor size.
- note that icons can get fuzzy, we need better mipmaps for it
2011-06-04 17:03:46 +00:00
|
|
|
|
|
|
|
struct wmTimer *scrolltimer;
|
2009-02-04 11:52:16 +00:00
|
|
|
|
|
|
|
/* for operator popups */
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
struct wmOperatorType *optype;
|
2009-02-07 16:43:55 +00:00
|
|
|
ScrArea *ctx_area;
|
|
|
|
ARegion *ctx_region;
|
2011-10-03 01:36:25 +00:00
|
|
|
int opcontext;
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
/* return values */
|
|
|
|
int butretval;
|
|
|
|
int menuretval;
|
|
|
|
float retvalue;
|
2010-10-14 11:33:51 +00:00
|
|
|
float retvec[4];
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
uiBlock *ui_block_func_COL(struct bContext *C, uiPopupBlockHandle *handle, void *arg_but);
|
2009-08-21 02:51:56 +00:00
|
|
|
void ui_block_func_ICONROW(struct bContext *C, uiLayout *layout, void *arg_but);
|
|
|
|
void ui_block_func_ICONTEXTROW(struct bContext *C, uiLayout *layout, void *arg_but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
struct ARegion *ui_tooltip_create(struct bContext *C, struct ARegion *butregion, uiBut *but);
|
|
|
|
void ui_tooltip_free(struct bContext *C, struct ARegion *ar);
|
|
|
|
|
Code holiday commit:
- fix: user pref, window title was reset to 'Blender' on tab usage
- Undo history menu back:
- name "Undo History"
- hotkey alt+ctrl+z (alt+apple+z for mac)
- works like 2.4x, only for global undo, editmode and particle edit.
- Menu scroll
- for small windows or screens, popup menus now allow to display
all items, using internal scrolling
- works with a timer, scrolling 10 items per second when mouse
is over the top or bottom arrow
- if menu is too big to display, it now draws to top or bottom,
based on largest available space.
- also works for hotkey driven pop up menus.
- User pref "DPI" follows widget/layout size
- widgets & headers now become bigger and smaller, to match
'dpi' font sizes. Works well to match UI to monitor size.
- note that icons can get fuzzy, we need better mipmaps for it
2011-06-04 17:03:46 +00:00
|
|
|
uiBut *ui_popup_menu_memory(struct uiBlock *block, struct uiBut *but);
|
|
|
|
|
|
|
|
float *ui_block_hsv_get(struct uiBlock *block);
|
|
|
|
void ui_popup_block_scrolltest(struct uiBlock *block);
|
2009-08-21 02:51:56 +00:00
|
|
|
|
2010-10-13 13:53:49 +00:00
|
|
|
|
2009-06-03 18:31:37 +00:00
|
|
|
/* searchbox for string button */
|
2009-06-02 18:10:06 +00:00
|
|
|
ARegion *ui_searchbox_create(struct bContext *C, struct ARegion *butregion, uiBut *but);
|
2009-06-11 17:21:27 +00:00
|
|
|
int ui_searchbox_inside(struct ARegion *ar, int x, int y);
|
2009-06-05 16:11:18 +00:00
|
|
|
void ui_searchbox_update(struct bContext *C, struct ARegion *ar, uiBut *but, int reset);
|
2009-06-27 01:15:31 +00:00
|
|
|
void ui_searchbox_autocomplete(struct bContext *C, struct ARegion *ar, uiBut *but, char *str);
|
2009-06-05 16:11:18 +00:00
|
|
|
void ui_searchbox_event(struct bContext *C, struct ARegion *ar, uiBut *but, struct wmEvent *event);
|
2009-06-03 18:31:37 +00:00
|
|
|
void ui_searchbox_apply(uiBut *but, struct ARegion *ar);
|
2009-06-02 18:10:06 +00:00
|
|
|
void ui_searchbox_free(struct bContext *C, struct ARegion *ar);
|
2010-11-29 15:25:06 +00:00
|
|
|
void ui_but_search_test(uiBut *but);
|
2009-06-02 18:10:06 +00:00
|
|
|
|
2012-05-08 18:29:02 +00:00
|
|
|
typedef uiBlock * (*uiBlockHandleCreateFunc)(struct bContext *C, struct uiPopupBlockHandle *handle, void *arg1);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
uiPopupBlockHandle *ui_popup_block_create(struct bContext *C, struct ARegion *butregion, uiBut *but,
|
2012-05-08 18:29:02 +00:00
|
|
|
uiBlockCreateFunc create_func, uiBlockHandleCreateFunc handle_create_func, void *arg);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiPopupBlockHandle *ui_popup_menu_create(struct bContext *C, struct ARegion *butregion, uiBut *but,
|
2012-05-08 18:29:02 +00:00
|
|
|
uiMenuCreateFunc create_func, void *arg, char *str);
|
2009-08-21 02:51:56 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
void ui_popup_block_free(struct bContext *C, uiPopupBlockHandle *handle);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
void ui_set_name_menu(uiBut *but, int value);
|
2009-06-06 13:35:04 +00:00
|
|
|
int ui_step_name_menu(uiBut *but, int step);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5
Smaller jobs, all in one commit!
- Moved object_do_update out of view3d drawing, into
the event system (currently after notifiers).
Depsgraph calls for setting update flags will have to
keep track of each Screen's needs, so a UI showing only
a Sequencer doesn't do objects.
- Added button in "Properties region" in 3D window to set
or disable 4-split, including the 3 options it has.
(lock, box, clip)
- Restored legacy code for UI, to make things work like
bone rename, autocomplete.
- Node editor now shows Curves widgets again
- Bugfix: composite job increased Viewer user id count
- Bugfix: Node editor, not "Enable nodes" still called
a Job, which didn't do anything
- Various code cleaning, unused vars and prototypes.
2009-02-11 16:54:55 +00:00
|
|
|
struct AutoComplete;
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* interface_panel.c */
|
2008-12-26 13:11:04 +00:00
|
|
|
extern int ui_handler_panel_region(struct bContext *C, struct wmEvent *event);
|
2010-10-16 02:40:31 +00:00
|
|
|
extern void ui_draw_aligned_panel(struct uiStyle *style, uiBlock *block, rcti *rect);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* interface_draw.c */
|
|
|
|
extern void ui_dropshadow(rctf *rct, float radius, float aspect, int select);
|
|
|
|
|
2012-01-14 07:46:21 +00:00
|
|
|
void ui_draw_gradient(rcti *rect, const float hsv[3], int type, float alpha);
|
2010-01-21 00:00:45 +00:00
|
|
|
|
2010-01-28 07:26:21 +00:00
|
|
|
void ui_draw_but_HISTOGRAM(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
2010-04-06 02:05:54 +00:00
|
|
|
void ui_draw_but_WAVEFORM(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
|
|
|
void ui_draw_but_VECTORSCOPE(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
void ui_draw_but_COLORBAND(uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
|
|
|
void ui_draw_but_NORMAL(uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
|
|
|
void ui_draw_but_CURVE(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
2009-11-23 13:58:55 +00:00
|
|
|
void ui_draw_but_IMAGE(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
2011-11-07 12:55:18 +00:00
|
|
|
void ui_draw_but_TRACKPREVIEW(ARegion *ar, uiBut *but, struct uiWidgetColors *wcol, rcti *rect);
|
2009-04-06 15:44:30 +00:00
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
/* interface_handlers.c */
|
2009-07-25 13:40:59 +00:00
|
|
|
extern void ui_button_activate_do(struct bContext *C, struct ARegion *ar, uiBut *but);
|
2010-08-25 09:33:48 +00:00
|
|
|
extern void ui_button_active_free(const struct bContext *C, uiBut *but);
|
2009-05-19 17:13:33 +00:00
|
|
|
extern int ui_button_is_active(struct ARegion *ar);
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
|
2009-04-02 15:01:11 +00:00
|
|
|
/* interface_widgets.c */
|
|
|
|
void ui_draw_anti_tria(float x1, float y1, float x2, float y2, float x3, float y3);
|
2011-12-16 22:00:53 +00:00
|
|
|
void ui_draw_anti_roundbox(int mode, float minx, float miny, float maxx, float maxy, float rad);
|
2009-04-10 14:06:24 +00:00
|
|
|
void ui_draw_menu_back(struct uiStyle *style, uiBlock *block, rcti *rect);
|
2012-05-08 18:29:02 +00:00
|
|
|
uiWidgetColors *ui_tooltip_get_theme(void);
|
|
|
|
void ui_draw_tooltip_background(uiStyle *UNUSED(style), uiBlock * block, rcti * rect);
|
2009-06-03 18:31:37 +00:00
|
|
|
void ui_draw_search_back(struct uiStyle *style, uiBlock *block, rcti *rect);
|
2012-05-08 18:29:02 +00:00
|
|
|
int ui_link_bezier_points(rcti * rect, float coord_array[][2], int resol);
|
2009-06-17 11:01:05 +00:00
|
|
|
void ui_draw_link_bezier(rcti *rect);
|
2009-06-03 18:31:37 +00:00
|
|
|
|
2009-06-08 10:00:14 +00:00
|
|
|
extern void ui_draw_but(const struct bContext *C, ARegion *ar, struct uiStyle *style, uiBut *but, rcti *rect);
|
2012-05-08 18:29:02 +00:00
|
|
|
/* theme color init */
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
struct ThemeUI;
|
|
|
|
void ui_widget_color_init(struct ThemeUI *tui);
|
2009-04-09 18:11:18 +00:00
|
|
|
|
2011-02-07 22:48:23 +00:00
|
|
|
void ui_draw_menu_item(struct uiFontStyle *fstyle, rcti *rect, const char *name, int iconid, int state);
|
|
|
|
void ui_draw_preview_item(struct uiFontStyle *fstyle, rcti *rect, const char *name, int iconid, int state);
|
2009-06-02 18:10:06 +00:00
|
|
|
|
2011-06-06 09:12:03 +00:00
|
|
|
extern unsigned char checker_stipple_sml[];
|
|
|
|
/* used for transp checkers */
|
|
|
|
#define UI_TRANSP_DARK 100
|
|
|
|
#define UI_TRANSP_LIGHT 160
|
|
|
|
|
2009-04-09 18:11:18 +00:00
|
|
|
/* interface_style.c */
|
|
|
|
void uiStyleInit(void);
|
2009-04-02 15:01:11 +00:00
|
|
|
|
2009-06-25 15:41:27 +00:00
|
|
|
/* interface_icons.c */
|
2010-01-03 08:37:18 +00:00
|
|
|
int ui_id_icon_get(struct bContext *C, struct ID *id, int preview);
|
2009-06-25 15:41:27 +00:00
|
|
|
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
/* resources.c */
|
|
|
|
void init_userdef_do_versions(void);
|
2010-03-30 04:27:13 +00:00
|
|
|
void ui_theme_init_default(void);
|
2.5
Summary of ain features:
- Themes and Styles are now editable.
- CTRL+U "Save user defaults" now goes to new .B25.blend, so you
can use 2.4x and 2.5x next to each other. If B25 doesn't exist, it
reads the regular .B.blend
- Press Tkey in 3d window for (unfinished) toolbar WIP. It now only
shows the last operator, if appropriate.
Nkey properties moved to the other side.
A lot of work was done on removing old themes for good and properly
getting it work with the 2.5 region system. Here's some notes;
- Buttons now all have a complete set of colors, based on button classifications
(See outliner -> user prefs -> Interface
- Theme colors have been extended with basic colors for region types.
Currently colors are defined for Window, Header, List/Channels and
for Button/Tool views.
The screen manager handles this btw, so a TH_BACK will always pick the
right backdrop color.
- Menu backdrops are in in Button theme colors. Floating Panels will be in
the per-space type Themes.
- Styles were added in RNA too, but only for the font settings now.
Only Panel font, widget font and widget-label work now. The 'group label'
will be for templates mostly.
Style settings will be expanded with spacing defaults, label conventions,
etc.
- Label text colors are stored in per-space Theme too, to make sure they fit.
Same goes for Panel title color.
Note that 'shadow' for fonts can conflict with text colors; shadow color is
currently stored in Style... shadow code needs a bit of work still.
2009-04-27 13:44:11 +00:00
|
|
|
void ui_resources_init(void);
|
|
|
|
void ui_resources_free(void);
|
|
|
|
|
UI: Layout Engine
* Buttons are now created first, and after that the layout is computed.
This means the layout engine now works at button level, and makes it
easier to write templates. Otherwise you had to store all info and
create the buttons later.
* Added interface_templates.c as a separate file to put templates in.
These can contain regular buttons, and can be put in a Free layout,
which means you can specify manual coordinates, but still get nested
correct inside other layouts.
* API was changed to allow better nesting. Previously items were added
in the last added layout specifier, i.e. one level up in the layout
hierarchy. This doesn't work well in always, so now when creating things
like rows or columns it always returns a layout which you have to add
the items in. All py scripts were updated to follow this.
* Computing the layout now goes in two passes, first estimating the
required width/height of all nested layouts, and then in the second
pass using the results of that to decide on the actual locations.
* Enum and array buttons now follow the direction of the layout, i.e.
they are vertical or horizontal depending if they are in a column or row.
* Color properties now get a color picker, and only get the additional
RGB sliders with Expand=True.
* File/directory string properties now get a button next to them for
opening the file browse, though this is not implemented yet.
* Layout items can now be aligned, set align=True when creating a column,
row, etc.
* Buttons now get a minimum width of one icon (avoids squashing icon
buttons).
* Moved some more space variables into Style.
2009-05-15 11:19:59 +00:00
|
|
|
/* interface_layout.c */
|
2009-06-27 01:15:31 +00:00
|
|
|
void ui_layout_add_but(uiLayout *layout, uiBut *but);
|
2009-05-19 17:13:33 +00:00
|
|
|
int ui_but_can_align(uiBut *but);
|
2009-06-27 01:15:31 +00:00
|
|
|
void ui_but_add_search(uiBut *but, PointerRNA *ptr, PropertyRNA *prop, PointerRNA *searchptr, PropertyRNA *searchprop);
|
2012-01-21 22:42:09 +00:00
|
|
|
void ui_but_add_shortcut(uiBut *but, const char *key_str, const short do_strip);
|
2009-04-10 14:06:24 +00:00
|
|
|
|
2009-04-03 23:30:32 +00:00
|
|
|
/* interface_anim.c */
|
|
|
|
void ui_but_anim_flag(uiBut *but, float cfra);
|
|
|
|
void ui_but_anim_insert_keyframe(struct bContext *C);
|
|
|
|
void ui_but_anim_delete_keyframe(struct bContext *C);
|
2009-04-10 13:08:12 +00:00
|
|
|
void ui_but_anim_add_driver(struct bContext *C);
|
|
|
|
void ui_but_anim_remove_driver(struct bContext *C);
|
2009-09-25 04:51:04 +00:00
|
|
|
void ui_but_anim_copy_driver(struct bContext *C);
|
|
|
|
void ui_but_anim_paste_driver(struct bContext *C);
|
2009-09-04 07:26:32 +00:00
|
|
|
void ui_but_anim_add_keyingset(struct bContext *C);
|
|
|
|
void ui_but_anim_remove_keyingset(struct bContext *C);
|
2011-09-26 17:30:56 +00:00
|
|
|
int ui_but_anim_expression_get(uiBut *but, char *str, size_t maxlen);
|
2009-07-12 02:06:15 +00:00
|
|
|
int ui_but_anim_expression_set(uiBut *but, const char *str);
|
First stages of easier "expressions" creation...
It is now possible to create "scripted expression" drivers by simply
clicking on some property, and typing some short Python expression
prefixed with a '#'. This will result in a scripted expression driver,
with the typed-in text being created.
For example, you can click on X-Location of the default cube, and
type:
#sin(frame)
and a new driver will be created for the x-location of the cube. This
will use the current frame value, and modulate this with a sine wave.
Do note though, that the current frame is a special case here. In the
current implementation, a special "frame" driver variable, which
references the current scene frame is created automatically, so that
this simple and (assumed) common case will work straight out of the
box.
Future improvements:
- Explore possibilities of semi-automated extraction of variables from
such expressions, resulting in automated variable extraction. (Doing
away with variables completely is definitely 100% off the agenda
though)
- Look into some ways of defining some shorthands for referencing
local data (possibly related to variable extraction?)
2011-07-04 03:12:28 +00:00
|
|
|
int ui_but_anim_expression_create(uiBut *but, const char *str);
|
2010-01-12 03:01:19 +00:00
|
|
|
void ui_but_anim_autokey(struct bContext *C, uiBut *but, struct Scene *scene, float cfra);
|
2009-04-03 23:30:32 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
#endif
|
|
|
|
|