2021-03-21 19:31:24 +01:00
|
|
|
/*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
/** \file
|
|
|
|
* \ingroup bli
|
|
|
|
*
|
|
|
|
* A virtual array is a data structure that behaves similar to an array, but its elements are
|
|
|
|
* accessed through virtual methods. This improves the decoupling of a function from its callers,
|
2021-03-22 14:44:05 +11:00
|
|
|
* because it does not have to know exactly how the data is laid out in memory, or if it is stored
|
2021-03-21 19:31:24 +01:00
|
|
|
* in memory at all. It could just as well be computed on the fly.
|
|
|
|
*
|
|
|
|
* Taking a virtual array as parameter instead of a more specific non-virtual type has some
|
|
|
|
* tradeoffs. Access to individual elements of the individual elements is higher due to function
|
|
|
|
* call overhead. On the other hand, potential callers don't have to convert the data into the
|
|
|
|
* specific format required for the function. This can be a costly conversion if only few of the
|
|
|
|
* elements are accessed in the end.
|
|
|
|
*
|
|
|
|
* Functions taking a virtual array as input can still optimize for different data layouts. For
|
|
|
|
* example, they can check if the array is stored as an array internally or if it is the same
|
|
|
|
* element for all indices. Whether it is worth to optimize for different data layouts in a
|
|
|
|
* function has to be decided on a case by case basis. One should always do some benchmarking to
|
|
|
|
* see of the increased compile time and binary size is worth it.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "BLI_span.hh"
|
|
|
|
|
|
|
|
namespace blender {
|
|
|
|
|
|
|
|
/* An immutable virtual array. */
|
|
|
|
template<typename T> class VArray {
|
|
|
|
protected:
|
|
|
|
int64_t size_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
VArray(const int64_t size) : size_(size)
|
|
|
|
{
|
|
|
|
BLI_assert(size_ >= 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual ~VArray() = default;
|
|
|
|
|
|
|
|
T get(const int64_t index) const
|
|
|
|
{
|
|
|
|
BLI_assert(index >= 0);
|
|
|
|
BLI_assert(index < size_);
|
|
|
|
return this->get_impl(index);
|
|
|
|
}
|
|
|
|
|
|
|
|
int64_t size() const
|
|
|
|
{
|
|
|
|
return size_;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_empty() const
|
|
|
|
{
|
|
|
|
return size_ == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns true when the virtual array is stored as a span internally. */
|
|
|
|
bool is_span() const
|
|
|
|
{
|
|
|
|
if (size_ == 0) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return this->is_span_impl();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns the internally used span of the virtual array. This invokes undefined behavior is the
|
|
|
|
* virtual array is not stored as a span internally. */
|
|
|
|
Span<T> get_span() const
|
|
|
|
{
|
|
|
|
BLI_assert(this->is_span());
|
|
|
|
if (size_ == 0) {
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
return this->get_span_impl();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns true when the virtual array returns the same value for every index. */
|
|
|
|
bool is_single() const
|
|
|
|
{
|
|
|
|
if (size_ == 1) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return this->is_single_impl();
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Returns the value that is returned for every index. This invokes undefined behavior if the
|
|
|
|
* virtual array would not return the same value for every index. */
|
|
|
|
T get_single() const
|
|
|
|
{
|
|
|
|
BLI_assert(this->is_single());
|
|
|
|
if (size_ == 1) {
|
|
|
|
return this->get(0);
|
|
|
|
}
|
|
|
|
return this->get_single_impl();
|
|
|
|
}
|
|
|
|
|
|
|
|
T operator[](const int64_t index) const
|
|
|
|
{
|
|
|
|
return this->get(index);
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
virtual T get_impl(const int64_t index) const = 0;
|
|
|
|
|
|
|
|
virtual bool is_span_impl() const
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual Span<T> get_span_impl() const
|
|
|
|
{
|
|
|
|
BLI_assert(false);
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool is_single_impl() const
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual T get_single_impl() const
|
|
|
|
{
|
|
|
|
/* Provide a default implementation, so that subclasses don't have to provide it. This method
|
|
|
|
* should never be called because `is_single_impl` returns false by default. */
|
|
|
|
BLI_assert(false);
|
|
|
|
return T();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-03-22 17:06:02 +01:00
|
|
|
/**
|
|
|
|
* A virtual array implementation for a span. This class is final so that it can be devirtualized
|
|
|
|
* by the compiler in some cases (e.g. when #devirtualize_varray is used).
|
|
|
|
*/
|
|
|
|
template<typename T> class VArrayForSpan final : public VArray<T> {
|
2021-03-21 19:31:24 +01:00
|
|
|
private:
|
|
|
|
const T *data_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
VArrayForSpan(const Span<T> data) : VArray<T>(data.size()), data_(data.data())
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
T get_impl(const int64_t index) const override
|
|
|
|
{
|
|
|
|
return data_[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_span_impl() const override
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
Span<T> get_span_impl() const override
|
|
|
|
{
|
|
|
|
return Span<T>(data_, this->size_);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-03-22 17:06:02 +01:00
|
|
|
/**
|
|
|
|
* A virtual array implementation that returns the same value for every index. This class is final
|
|
|
|
* so that it can be devirtualized by the compiler in some cases (e.g. when #devirtualize_varray is
|
|
|
|
* used).
|
|
|
|
*/
|
|
|
|
template<typename T> class VArrayForSingle final : public VArray<T> {
|
2021-03-21 19:31:24 +01:00
|
|
|
private:
|
|
|
|
T value_;
|
|
|
|
|
|
|
|
public:
|
|
|
|
VArrayForSingle(T value, const int64_t size) : VArray<T>(size), value_(std::move(value))
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
T get_impl(const int64_t UNUSED(index)) const override
|
|
|
|
{
|
|
|
|
return value_;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_span_impl() const override
|
|
|
|
{
|
|
|
|
return this->size_ == 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Span<T> get_span_impl() const override
|
|
|
|
{
|
|
|
|
return Span<T>(&value_, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool is_single_impl() const override
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
T get_single_impl() const override
|
|
|
|
{
|
|
|
|
return value_;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2021-03-22 17:06:02 +01:00
|
|
|
/**
|
|
|
|
* Generate multiple versions of the given function optimized for different virtual arrays.
|
|
|
|
* One has to be careful with nesting multiple devirtualizations, because that results in an
|
|
|
|
* exponential number of function instantiations (increasing compile time and binary size).
|
|
|
|
*
|
|
|
|
* Generally, this function should only be used when the virtual method call overhead to get an
|
|
|
|
* element from a virtual array is signifant.
|
|
|
|
*/
|
|
|
|
template<typename T, typename Func>
|
|
|
|
inline void devirtualize_varray(const VArray<T> &varray, const Func &func, bool enable = true)
|
|
|
|
{
|
|
|
|
/* Support disabling the devirtualization to simplify benchmarking. */
|
|
|
|
if (enable) {
|
|
|
|
if (varray.is_single()) {
|
|
|
|
/* `VArrayForSingle` can be used for devirtualization, because it is declared `final`. */
|
|
|
|
const VArrayForSingle<T> varray_single{varray.get_single(), varray.size()};
|
|
|
|
func(varray_single);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (varray.is_span()) {
|
|
|
|
/* `VArrayForSpan` can be used for devirtualization, because it is declared `final`. */
|
|
|
|
const VArrayForSpan<T> varray_span{varray.get_span()};
|
|
|
|
func(varray_span);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
func(varray);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Same as `devirtualize_varray`, but devirtualizes two virtual arrays at the same time.
|
|
|
|
* This is better than nesting two calls to `devirtualize_varray`, because it instantiates fewer
|
|
|
|
* cases.
|
|
|
|
*/
|
|
|
|
template<typename T1, typename T2, typename Func>
|
|
|
|
inline void devirtualize_varray2(const VArray<T1> &varray1,
|
|
|
|
const VArray<T2> &varray2,
|
|
|
|
const Func &func,
|
|
|
|
bool enable = true)
|
|
|
|
{
|
|
|
|
/* Support disabling the devirtualization to simplify benchmarking. */
|
|
|
|
if (enable) {
|
|
|
|
const bool is_span1 = varray1.is_span();
|
|
|
|
const bool is_span2 = varray2.is_span();
|
|
|
|
const bool is_single1 = varray1.is_single();
|
|
|
|
const bool is_single2 = varray2.is_single();
|
|
|
|
if (is_span1 && is_span2) {
|
|
|
|
const VArrayForSpan<T1> varray1_span{varray1.get_span()};
|
|
|
|
const VArrayForSpan<T2> varray2_span{varray2.get_span()};
|
|
|
|
func(varray1_span, varray2_span);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (is_span1 && is_single2) {
|
|
|
|
const VArrayForSpan<T1> varray1_span{varray1.get_span()};
|
|
|
|
const VArrayForSingle<T2> varray2_single{varray2.get_single(), varray2.size()};
|
|
|
|
func(varray1_span, varray2_single);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (is_single1 && is_span2) {
|
|
|
|
const VArrayForSingle<T1> varray1_single{varray1.get_single(), varray1.size()};
|
|
|
|
const VArrayForSpan<T2> varray2_span{varray2.get_span()};
|
|
|
|
func(varray1_single, varray2_span);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (is_single1 && is_single2) {
|
|
|
|
const VArrayForSingle<T1> varray1_single{varray1.get_single(), varray1.size()};
|
|
|
|
const VArrayForSingle<T2> varray2_single{varray2.get_single(), varray2.size()};
|
|
|
|
func(varray1_single, varray2_single);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* This fallback is used even when one of the inputs could be optimized. It's probably not worth
|
|
|
|
* it to optimize just one of the inputs, because then the compiler still has to call into
|
|
|
|
* unknown code, which inhibits many compiler optimizations. */
|
|
|
|
func(varray1, varray2);
|
|
|
|
}
|
|
|
|
|
2021-03-21 19:31:24 +01:00
|
|
|
} // namespace blender
|