Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/**
|
|
|
|
* $Id: interface.c 16882 2008-10-02 12:29:45Z ton $
|
|
|
|
*
|
|
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version 2
|
|
|
|
* of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
2008-12-16 13:19:02 +00:00
|
|
|
* Contributor(s): Blender Foundation 2002-2008, full recode.
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
*
|
|
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
|
|
*/
|
|
|
|
|
2008-11-14 18:46:57 +00:00
|
|
|
#include <float.h>
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
#include <math.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
|
|
|
|
#include "DNA_ID.h"
|
|
|
|
#include "DNA_listBase.h"
|
2009-04-03 23:30:32 +00:00
|
|
|
#include "DNA_scene_types.h"
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
#include "DNA_screen_types.h"
|
|
|
|
#include "DNA_texture_types.h"
|
|
|
|
#include "DNA_userdef_types.h"
|
|
|
|
|
|
|
|
#include "BLI_arithb.h"
|
|
|
|
#include "BLI_blenlib.h"
|
|
|
|
#include "BLI_dynstr.h"
|
|
|
|
|
2008-12-18 02:56:48 +00:00
|
|
|
#include "BKE_context.h"
|
2008-12-16 20:03:28 +00:00
|
|
|
#include "BKE_idprop.h"
|
2008-12-16 07:32:12 +00:00
|
|
|
#include "BKE_library.h"
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
#include "BKE_screen.h"
|
|
|
|
#include "BKE_texture.h"
|
|
|
|
#include "BKE_utildefines.h"
|
|
|
|
|
|
|
|
#include "BIF_gl.h"
|
|
|
|
#include "BIF_glutil.h"
|
|
|
|
|
|
|
|
#include "UI_interface.h"
|
|
|
|
#include "UI_text.h"
|
|
|
|
|
|
|
|
#include "BMF_Api.h"
|
|
|
|
#ifdef INTERNATIONAL
|
|
|
|
#include "FTF_Api.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "ED_screen.h"
|
|
|
|
|
|
|
|
#include "WM_api.h"
|
|
|
|
#include "WM_types.h"
|
|
|
|
#include "wm_subwindow.h"
|
|
|
|
#include "wm_window.h"
|
|
|
|
|
|
|
|
#include "RNA_access.h"
|
|
|
|
#include "RNA_types.h"
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
#include "interface_intern.h"
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
#define MENU_WIDTH 120
|
|
|
|
#define MENU_ITEM_HEIGHT 20
|
|
|
|
#define MENU_SEP_HEIGHT 6
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/*
|
|
|
|
* a full doc with API notes can be found in bf-blender/blender/doc/interface_API.txt
|
|
|
|
*
|
|
|
|
* uiBlahBlah() external function
|
|
|
|
* ui_blah_blah() internal function
|
|
|
|
*/
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
static void ui_free_but(const bContext *C, uiBut *but);
|
2009-03-30 17:31:37 +00:00
|
|
|
static void ui_rna_ID_autocomplete(bContext *C, char *str, void *arg_but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* ************ GLOBALS ************* */
|
|
|
|
|
|
|
|
static uiFont UIfont[UI_ARRAY]; // no init needed
|
|
|
|
|
|
|
|
/* ************* translation ************** */
|
|
|
|
|
|
|
|
int ui_translate_buttons()
|
|
|
|
{
|
|
|
|
return (U.transopts & USER_TR_BUTTONS);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ui_translate_menus()
|
|
|
|
{
|
|
|
|
return (U.transopts & USER_TR_MENUS);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ui_translate_tooltips()
|
|
|
|
{
|
|
|
|
return (U.transopts & USER_TR_TOOLTIPS);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************* window matrix ************** */
|
|
|
|
|
|
|
|
void ui_block_to_window_fl(const ARegion *ar, uiBlock *block, float *x, float *y)
|
|
|
|
{
|
|
|
|
float gx, gy;
|
|
|
|
int sx, sy, getsizex, getsizey;
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
getsizex= ar->winrct.xmax-ar->winrct.xmin+1;
|
|
|
|
getsizey= ar->winrct.ymax-ar->winrct.ymin+1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
sx= ar->winrct.xmin;
|
|
|
|
sy= ar->winrct.ymin;
|
|
|
|
|
|
|
|
gx= *x;
|
|
|
|
gy= *y;
|
2008-12-26 13:11:04 +00:00
|
|
|
|
|
|
|
if(block->panel) {
|
|
|
|
gx += block->panel->ofsx;
|
|
|
|
gy += block->panel->ofsy;
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
*x= ((float)sx) + ((float)getsizex)*(0.5+ 0.5*(gx*block->winmat[0][0]+ gy*block->winmat[1][0]+ block->winmat[3][0]));
|
|
|
|
*y= ((float)sy) + ((float)getsizey)*(0.5+ 0.5*(gx*block->winmat[0][1]+ gy*block->winmat[1][1]+ block->winmat[3][1]));
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_block_to_window(const ARegion *ar, uiBlock *block, int *x, int *y)
|
|
|
|
{
|
|
|
|
float fx, fy;
|
|
|
|
|
|
|
|
fx= *x;
|
|
|
|
fy= *y;
|
|
|
|
|
|
|
|
ui_block_to_window_fl(ar, block, &fx, &fy);
|
|
|
|
|
|
|
|
*x= (int)(fx+0.5f);
|
|
|
|
*y= (int)(fy+0.5f);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_block_to_window_rct(const ARegion *ar, uiBlock *block, rctf *graph, rcti *winr)
|
|
|
|
{
|
|
|
|
rctf tmpr;
|
|
|
|
|
|
|
|
tmpr= *graph;
|
|
|
|
ui_block_to_window_fl(ar, block, &tmpr.xmin, &tmpr.ymin);
|
|
|
|
ui_block_to_window_fl(ar, block, &tmpr.xmax, &tmpr.ymax);
|
|
|
|
|
|
|
|
winr->xmin= tmpr.xmin;
|
|
|
|
winr->ymin= tmpr.ymin;
|
|
|
|
winr->xmax= tmpr.xmax;
|
|
|
|
winr->ymax= tmpr.ymax;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_window_to_block_fl(const ARegion *ar, uiBlock *block, float *x, float *y) /* for mouse cursor */
|
|
|
|
{
|
|
|
|
float a, b, c, d, e, f, px, py;
|
|
|
|
int sx, sy, getsizex, getsizey;
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
getsizex= ar->winrct.xmax-ar->winrct.xmin+1;
|
|
|
|
getsizey= ar->winrct.ymax-ar->winrct.ymin+1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
sx= ar->winrct.xmin;
|
|
|
|
sy= ar->winrct.ymin;
|
|
|
|
|
|
|
|
a= .5*((float)getsizex)*block->winmat[0][0];
|
|
|
|
b= .5*((float)getsizex)*block->winmat[1][0];
|
|
|
|
c= .5*((float)getsizex)*(1.0+block->winmat[3][0]);
|
|
|
|
|
|
|
|
d= .5*((float)getsizey)*block->winmat[0][1];
|
|
|
|
e= .5*((float)getsizey)*block->winmat[1][1];
|
|
|
|
f= .5*((float)getsizey)*(1.0+block->winmat[3][1]);
|
|
|
|
|
|
|
|
px= *x - sx;
|
|
|
|
py= *y - sy;
|
|
|
|
|
|
|
|
*y= (a*(py-f) + d*(c-px))/(a*e-d*b);
|
|
|
|
*x= (px- b*(*y)- c)/a;
|
2008-12-26 13:11:04 +00:00
|
|
|
|
|
|
|
if(block->panel) {
|
|
|
|
*x -= block->panel->ofsx;
|
|
|
|
*y -= block->panel->ofsy;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void ui_window_to_block(const ARegion *ar, uiBlock *block, int *x, int *y)
|
|
|
|
{
|
|
|
|
float fx, fy;
|
|
|
|
|
|
|
|
fx= *x;
|
|
|
|
fy= *y;
|
|
|
|
|
|
|
|
ui_window_to_block_fl(ar, block, &fx, &fy);
|
|
|
|
|
|
|
|
*x= (int)(fx+0.5f);
|
|
|
|
*y= (int)(fy+0.5f);
|
|
|
|
}
|
|
|
|
|
2008-12-03 20:57:23 +00:00
|
|
|
void ui_window_to_region(const ARegion *ar, int *x, int *y)
|
|
|
|
{
|
|
|
|
*x-= ar->winrct.xmin;
|
|
|
|
*y-= ar->winrct.ymin;
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* ******************* block calc ************************* */
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
static void ui_block_translate(uiBlock *block, int x, int y)
|
2009-01-28 23:29:27 +00:00
|
|
|
{
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *bt;
|
|
|
|
|
|
|
|
for(bt= block->buttons.first; bt; bt=bt->next) {
|
|
|
|
bt->x1 += x;
|
|
|
|
bt->y1 += y;
|
|
|
|
bt->x2 += x;
|
|
|
|
bt->y2 += y;
|
|
|
|
}
|
|
|
|
|
|
|
|
block->minx += x;
|
|
|
|
block->miny += y;
|
|
|
|
block->maxx += x;
|
|
|
|
block->maxy += y;
|
2009-01-28 23:29:27 +00:00
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
static void ui_text_bounds_block(uiBlock *block, float offset)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *bt;
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
int i = 0, j, x1addval= offset, nextcol;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
bt= block->buttons.first;
|
|
|
|
while(bt) {
|
|
|
|
if(bt->type!=SEPR) {
|
|
|
|
int transopts= ui_translate_buttons();
|
|
|
|
if(bt->type==TEX || bt->type==IDPOIN) transopts= 0;
|
|
|
|
j= UI_GetStringWidth(bt->font, bt->drawstr, transopts);
|
|
|
|
|
|
|
|
if(j > i) i = j;
|
|
|
|
}
|
|
|
|
bt= bt->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cope with multi collumns */
|
|
|
|
bt= block->buttons.first;
|
|
|
|
while(bt) {
|
|
|
|
if(bt->next && bt->x1 < bt->next->x1)
|
|
|
|
nextcol= 1;
|
|
|
|
else nextcol= 0;
|
|
|
|
|
|
|
|
bt->x1 = x1addval;
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
bt->x2 = bt->x1 + i + block->bounds;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
ui_check_but(bt); // clips text again
|
|
|
|
|
|
|
|
if(nextcol)
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
x1addval+= i + block->bounds;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
bt= bt->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
void ui_bounds_block(uiBlock *block)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *bt;
|
|
|
|
int xof;
|
|
|
|
|
|
|
|
if(block->buttons.first==NULL) {
|
|
|
|
if(block->panel) {
|
|
|
|
block->minx= 0.0; block->maxx= block->panel->sizex;
|
|
|
|
block->miny= 0.0; block->maxy= block->panel->sizey;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
block->minx= block->miny= 10000;
|
|
|
|
block->maxx= block->maxy= -10000;
|
|
|
|
|
|
|
|
bt= block->buttons.first;
|
|
|
|
while(bt) {
|
|
|
|
if(bt->x1 < block->minx) block->minx= bt->x1;
|
|
|
|
if(bt->y1 < block->miny) block->miny= bt->y1;
|
|
|
|
|
|
|
|
if(bt->x2 > block->maxx) block->maxx= bt->x2;
|
|
|
|
if(bt->y2 > block->maxy) block->maxy= bt->y2;
|
|
|
|
|
|
|
|
bt= bt->next;
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
block->minx -= block->bounds;
|
|
|
|
block->miny -= block->bounds;
|
|
|
|
block->maxx += block->bounds;
|
|
|
|
block->maxy += block->bounds;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* hardcoded exception... but that one is annoying with larger safety */
|
|
|
|
bt= block->buttons.first;
|
|
|
|
if(bt && strncmp(bt->str, "ERROR", 5)==0) xof= 10;
|
|
|
|
else xof= 40;
|
|
|
|
|
|
|
|
block->safety.xmin= block->minx-xof;
|
|
|
|
block->safety.ymin= block->miny-xof;
|
|
|
|
block->safety.xmax= block->maxx+xof;
|
|
|
|
block->safety.ymax= block->maxy+xof;
|
|
|
|
}
|
|
|
|
|
2009-02-04 11:52:16 +00:00
|
|
|
static void ui_popup_bounds_block(const bContext *C, uiBlock *block, int menu)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2009-02-04 11:52:16 +00:00
|
|
|
wmWindow *window= CTX_wm_window(C);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
int startx, starty, endx, endy, width, height;
|
|
|
|
int oldbounds, mx, my, xmax, ymax;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
oldbounds= block->bounds;
|
|
|
|
|
2009-02-04 11:52:16 +00:00
|
|
|
/* compute mouse position with user defined offset */
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
ui_bounds_block(block);
|
2009-02-04 11:52:16 +00:00
|
|
|
mx= window->eventstate->x + block->minx + block->mx;
|
|
|
|
my= window->eventstate->y + block->miny + block->my;
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
2009-02-04 11:52:16 +00:00
|
|
|
wm_window_get_size(window, &xmax, &ymax);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
/* first we ensure wide enough text bounds */
|
2009-02-04 11:52:16 +00:00
|
|
|
if(menu) {
|
|
|
|
if(block->flag & UI_BLOCK_LOOP) {
|
|
|
|
block->bounds= 50;
|
|
|
|
ui_text_bounds_block(block, block->minx);
|
|
|
|
}
|
|
|
|
}
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
/* next we recompute bounds */
|
|
|
|
block->bounds= oldbounds;
|
|
|
|
ui_bounds_block(block);
|
|
|
|
|
|
|
|
/* and we adjust the position to fit within window */
|
|
|
|
width= block->maxx - block->minx;
|
|
|
|
height= block->maxy - block->miny;
|
|
|
|
|
|
|
|
startx= mx-(0.8*(width));
|
|
|
|
starty= my;
|
|
|
|
|
|
|
|
if(startx<10)
|
|
|
|
startx= 10;
|
|
|
|
if(starty<10)
|
|
|
|
starty= 10;
|
|
|
|
|
|
|
|
endx= startx+width;
|
|
|
|
endy= starty+height;
|
|
|
|
|
|
|
|
if(endx>xmax) {
|
|
|
|
endx= xmax-10;
|
|
|
|
startx= endx-width;
|
|
|
|
}
|
|
|
|
if(endy>ymax-20) {
|
|
|
|
endy= ymax-20;
|
|
|
|
starty= endy-height;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
ui_block_translate(block, startx - block->minx, starty - block->miny);
|
|
|
|
|
|
|
|
/* now recompute bounds and safety */
|
|
|
|
ui_bounds_block(block);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* used for various cases */
|
|
|
|
void uiBoundsBlock(uiBlock *block, int addval)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
if(block==NULL)
|
|
|
|
return;
|
|
|
|
|
|
|
|
block->bounds= addval;
|
|
|
|
block->dobounds= 1;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* used for pulldowns */
|
|
|
|
void uiTextBoundsBlock(uiBlock *block, int addval)
|
|
|
|
{
|
|
|
|
block->bounds= addval;
|
|
|
|
block->dobounds= 2;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-02-04 11:52:16 +00:00
|
|
|
/* used for block popups */
|
|
|
|
void uiPopupBoundsBlock(uiBlock *block, int addval, int mx, int my)
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
{
|
|
|
|
block->bounds= addval;
|
|
|
|
block->dobounds= 3;
|
2009-02-04 11:52:16 +00:00
|
|
|
block->mx= mx;
|
|
|
|
block->my= my;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* used for menu popups */
|
|
|
|
void uiMenuPopupBoundsBlock(uiBlock *block, int addval, int mx, int my)
|
|
|
|
{
|
|
|
|
block->bounds= addval;
|
|
|
|
block->dobounds= 4;
|
|
|
|
block->mx= mx;
|
|
|
|
block->my= my;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void ui_autofill(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
float *maxw, *maxh, startx = 0, starty, height = 0;
|
|
|
|
float totmaxh;
|
|
|
|
int rows=0, /* cols=0, */ i, lasti;
|
|
|
|
|
|
|
|
/* first count rows */
|
|
|
|
but= block->buttons.last;
|
|
|
|
rows= but->x1+1;
|
|
|
|
|
|
|
|
/* calculate max width / height for each row */
|
|
|
|
maxw= MEM_callocN(sizeof(float)*rows, "maxw");
|
|
|
|
maxh= MEM_callocN(sizeof(float)*rows, "maxh");
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
i= but->x1;
|
|
|
|
if( maxh[i] < but->y2) maxh[i]= but->y2;
|
|
|
|
maxw[i] += but->x2;
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
totmaxh= 0.0;
|
|
|
|
for(i=0; i<rows; i++) totmaxh+= maxh[i];
|
|
|
|
|
|
|
|
/* apply widths/heights */
|
|
|
|
starty= block->maxy;
|
|
|
|
but= block->buttons.first;
|
|
|
|
lasti= -1;
|
|
|
|
while(but) {
|
|
|
|
// signal for aligning code
|
|
|
|
but->flag |= UI_BUT_ALIGN_DOWN;
|
|
|
|
|
|
|
|
i= but->x1;
|
|
|
|
|
|
|
|
if(i!=lasti) {
|
|
|
|
startx= block->minx;
|
|
|
|
height= (maxh[i]*(block->maxy-block->miny))/totmaxh;
|
|
|
|
starty-= height;
|
|
|
|
lasti= i;
|
|
|
|
}
|
|
|
|
|
|
|
|
but->y1= starty+but->aspect;
|
|
|
|
but->y2= but->y1+height-but->aspect;
|
|
|
|
|
|
|
|
but->x2= (but->x2*(block->maxx-block->minx))/maxw[i];
|
|
|
|
but->x1= startx+but->aspect;
|
|
|
|
|
|
|
|
startx+= but->x2;
|
|
|
|
but->x2+= but->x1-but->aspect;
|
|
|
|
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBlockEndAlign(block);
|
|
|
|
|
|
|
|
MEM_freeN(maxw); MEM_freeN(maxh);
|
|
|
|
block->autofill= 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************** LINK LINE DRAWING ************* */
|
|
|
|
|
|
|
|
/* link line drawing is not part of buttons or theme.. so we stick with it here */
|
|
|
|
|
|
|
|
static void ui_draw_linkline(uiBut *but, uiLinkLine *line)
|
|
|
|
{
|
|
|
|
float vec1[2], vec2[2];
|
|
|
|
|
|
|
|
if(line->from==NULL || line->to==NULL) return;
|
|
|
|
|
|
|
|
vec1[0]= (line->from->x1+line->from->x2)/2.0;
|
|
|
|
vec1[1]= (line->from->y1+line->from->y2)/2.0;
|
|
|
|
vec2[0]= (line->to->x1+line->to->x2)/2.0;
|
|
|
|
vec2[1]= (line->to->y1+line->to->y2)/2.0;
|
|
|
|
|
|
|
|
if(line->flag & UI_SELECT) UI_ThemeColorShade(but->themecol, 80);
|
|
|
|
else glColor3ub(0,0,0);
|
|
|
|
fdrawline(vec1[0], vec1[1], vec2[0], vec2[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ui_draw_links(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
uiLinkLine *line;
|
|
|
|
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==LINK && but->link) {
|
|
|
|
line= but->link->lines.first;
|
|
|
|
while(line) {
|
|
|
|
ui_draw_linkline(but, line);
|
|
|
|
line= line->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************** BLOCK ENDING FUNCTION ************* */
|
|
|
|
|
|
|
|
static int ui_but_equals_old(uiBut *but, uiBut *oldbut)
|
|
|
|
{
|
|
|
|
/* various properties are being compared here, hopfully sufficient
|
|
|
|
* to catch all cases, but it is simple to add more checks later */
|
|
|
|
if(but->retval != oldbut->retval) return 0;
|
|
|
|
if(but->rnapoin.data != oldbut->rnapoin.data) return 0;
|
|
|
|
if(but->rnaprop != oldbut->rnaprop)
|
|
|
|
if(but->rnaindex != oldbut->rnaindex) return 0;
|
|
|
|
if(but->func != oldbut->func) return 0;
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
if(but->funcN != oldbut->funcN) return 0;
|
2009-01-28 19:42:49 +00:00
|
|
|
if(oldbut->func_arg1 != oldbut && but->func_arg1 != oldbut->func_arg1) return 0;
|
|
|
|
if(oldbut->func_arg2 != oldbut && but->func_arg2 != oldbut->func_arg2) return 0;
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
if(!but->funcN && (but->poin != oldbut->poin || but->pointype != oldbut->pointype)) return 0;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
static int ui_but_update_from_old_block(const bContext *C, uiBlock *block, uiBut *but)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBlock *oldblock;
|
|
|
|
uiBut *oldbut;
|
|
|
|
int found= 0;
|
|
|
|
|
|
|
|
oldblock= block->oldblock;
|
|
|
|
if(!oldblock)
|
|
|
|
return found;
|
|
|
|
|
|
|
|
for(oldbut=oldblock->buttons.first; oldbut; oldbut=oldbut->next) {
|
|
|
|
if(ui_but_equals_old(oldbut, but)) {
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
if(oldbut->active) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->flag= oldbut->flag;
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
but->active= oldbut->active;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->pos= oldbut->pos;
|
|
|
|
but->editstr= oldbut->editstr;
|
|
|
|
but->editval= oldbut->editval;
|
|
|
|
but->editvec= oldbut->editvec;
|
|
|
|
but->editcoba= oldbut->editcoba;
|
|
|
|
but->editcumap= oldbut->editcumap;
|
|
|
|
but->selsta= oldbut->selsta;
|
|
|
|
but->selend= oldbut->selend;
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
but->softmin= oldbut->softmin;
|
|
|
|
but->softmax= oldbut->softmax;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
found= 1;
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
|
|
|
|
oldbut->active= NULL;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* ensures one button can get activated, and in case the buttons
|
|
|
|
* draw are the same this gives O(1) lookup for each button */
|
|
|
|
BLI_remlink(&oldblock->buttons, oldbut);
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
ui_free_but(C, oldbut);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
void ui_menu_block_set_keymaps(const bContext *C, uiBlock *block)
|
2009-01-15 04:13:38 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
2009-01-28 23:29:27 +00:00
|
|
|
IDProperty *prop;
|
2009-01-15 04:13:38 +00:00
|
|
|
char buf[512], *butstr;
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
|
|
|
/* only do it before bounding */
|
|
|
|
if(block->minx != block->maxx)
|
|
|
|
return;
|
2009-01-15 04:13:38 +00:00
|
|
|
|
|
|
|
for(but=block->buttons.first; but; but=but->next) {
|
2009-01-28 23:29:27 +00:00
|
|
|
if(but->opname) {
|
|
|
|
prop= (but->opptr)? but->opptr->data: NULL;
|
|
|
|
|
|
|
|
if(WM_key_event_operator_string(C, but->opname, but->opcontext, prop, buf, sizeof(buf))) {
|
2009-01-15 04:13:38 +00:00
|
|
|
butstr= MEM_mallocN(strlen(but->str)+strlen(buf)+2, "menu_block_set_keymaps");
|
|
|
|
strcpy(butstr, but->str);
|
|
|
|
strcat(butstr, "|");
|
|
|
|
strcat(butstr, buf);
|
|
|
|
|
|
|
|
but->str= but->strdata;
|
|
|
|
BLI_strncpy(but->str, butstr, sizeof(but->strdata));
|
|
|
|
MEM_freeN(butstr);
|
|
|
|
|
|
|
|
ui_check_but(but);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
void uiEndBlock(const bContext *C, uiBlock *block)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
2009-04-03 23:30:32 +00:00
|
|
|
Scene *scene= CTX_data_scene(C);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* inherit flags from 'old' buttons that was drawn here previous, based
|
|
|
|
* on matching buttons, we need this to make button event handling non
|
|
|
|
* blocking, while still alowing buttons to be remade each redraw as it
|
|
|
|
* is expected by blender code */
|
2009-02-18 18:08:33 +00:00
|
|
|
for(but=block->buttons.first; but; but=but->next) {
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
if(ui_but_update_from_old_block(C, block, but))
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
2009-02-18 18:08:33 +00:00
|
|
|
|
|
|
|
/* temp? Proper check for greying out */
|
|
|
|
if(but->opname) {
|
|
|
|
wmOperatorType *ot= WM_operatortype_find(but->opname);
|
2009-03-19 19:03:38 +00:00
|
|
|
if(ot==NULL || (ot->poll && ot->poll((bContext *)C)==0)) {
|
2009-02-18 18:08:33 +00:00
|
|
|
but->flag |= UI_BUT_DISABLED;
|
|
|
|
but->lock = 1;
|
|
|
|
}
|
|
|
|
}
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
|
|
|
|
/* only update soft range while not editing */
|
|
|
|
if(but->rnaprop && !(but->editval || but->editstr || but->editvec))
|
|
|
|
ui_set_but_soft_range(but, ui_get_but_val(but));
|
2009-04-03 23:30:32 +00:00
|
|
|
|
|
|
|
ui_but_anim_flag(but, (scene)? scene->r.cfra: 0.0f);
|
2009-02-18 18:08:33 +00:00
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
if(block->oldblock) {
|
|
|
|
block->auto_open= block->oldblock->auto_open;
|
|
|
|
block->auto_open_last= block->oldblock->auto_open_last;
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
block->tooltipdisabled= block->oldblock->tooltipdisabled;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
block->oldblock= NULL;
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* handle pending stuff */
|
2009-01-15 04:13:38 +00:00
|
|
|
if(block->flag & UI_BLOCK_LOOP) ui_menu_block_set_keymaps(C, block);
|
2009-02-18 18:08:33 +00:00
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
/* after keymaps! */
|
|
|
|
if(block->dobounds == 1) ui_bounds_block(block);
|
|
|
|
else if(block->dobounds == 2) ui_text_bounds_block(block, 0.0f);
|
2009-02-04 11:52:16 +00:00
|
|
|
else if(block->dobounds) ui_popup_bounds_block(C, block, (block->dobounds == 4));
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
if(block->autofill) ui_autofill(block);
|
|
|
|
if(block->minx==0.0 && block->maxx==0.0) uiBoundsBlock(block, 0);
|
|
|
|
if(block->flag & UI_BUT_ALIGN) uiBlockEndAlign(block);
|
2009-01-28 23:29:27 +00:00
|
|
|
|
|
|
|
block->endblock= 1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* ************** BLOCK DRAWING FUNCTION ************* */
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
void uiDrawBlock(const bContext *C, uiBlock *block)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2009-03-25 20:49:15 +00:00
|
|
|
ARegion *ar;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
uiBut *but;
|
|
|
|
|
2009-03-25 20:49:15 +00:00
|
|
|
/* get menu region or area region */
|
|
|
|
ar= CTX_wm_menu(C);
|
|
|
|
if(!ar)
|
|
|
|
ar= CTX_wm_region(C);
|
|
|
|
|
2009-01-28 23:29:27 +00:00
|
|
|
if(!block->endblock)
|
|
|
|
uiEndBlock(C, block);
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* we set this only once */
|
|
|
|
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
if(block->flag & UI_BLOCK_LOOP)
|
2009-04-03 16:26:03 +00:00
|
|
|
ui_draw_menu_back(block);
|
2008-12-26 13:11:04 +00:00
|
|
|
else if(block->panel)
|
2009-03-25 20:49:15 +00:00
|
|
|
ui_draw_panel(ar, block);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
if(block->drawextra) block->drawextra(C, block);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
/* pixel space for AA widgets */
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
|
|
glPushMatrix();
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
|
|
glPushMatrix();
|
|
|
|
glLoadIdentity();
|
|
|
|
|
|
|
|
wmOrtho2(0.0f, ar->winx, 0.0f, ar->winy);
|
|
|
|
|
2009-03-25 20:49:15 +00:00
|
|
|
for(but= block->buttons.first; but; but= but->next)
|
2.5
Smaller jobs, all in one commit!
- Moved object_do_update out of view3d drawing, into
the event system (currently after notifiers).
Depsgraph calls for setting update flags will have to
keep track of each Screen's needs, so a UI showing only
a Sequencer doesn't do objects.
- Added button in "Properties region" in 3D window to set
or disable 4-split, including the 3 options it has.
(lock, box, clip)
- Restored legacy code for UI, to make things work like
bone rename, autocomplete.
- Node editor now shows Curves widgets again
- Bugfix: composite job increased Viewer user id count
- Bugfix: Node editor, not "Enable nodes" still called
a Job, which didn't do anything
- Various code cleaning, unused vars and prototypes.
2009-02-11 16:54:55 +00:00
|
|
|
ui_draw_but(ar, but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
/* restore matrix */
|
|
|
|
glMatrixMode(GL_PROJECTION);
|
|
|
|
glPopMatrix();
|
|
|
|
glMatrixMode(GL_MODELVIEW);
|
|
|
|
glPopMatrix();
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_draw_links(block);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ************* EVENTS ************* */
|
|
|
|
|
|
|
|
static void ui_is_but_sel(uiBut *but)
|
|
|
|
{
|
|
|
|
double value;
|
|
|
|
int lvalue;
|
|
|
|
short push=0, true=1;
|
|
|
|
|
|
|
|
value= ui_get_but_val(but);
|
|
|
|
|
|
|
|
if( but->type==TOGN || but->type==ICONTOGN) true= 0;
|
|
|
|
|
|
|
|
if( but->bit ) {
|
|
|
|
lvalue= (int)value;
|
|
|
|
if( BTST(lvalue, (but->bitnr)) ) push= true;
|
|
|
|
else push= !true;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
switch(but->type) {
|
|
|
|
case BUT:
|
|
|
|
push= 2;
|
|
|
|
break;
|
|
|
|
case KEYEVT:
|
|
|
|
if (value==-1) push= 1;
|
|
|
|
break;
|
|
|
|
case TOG:
|
|
|
|
case TOGR:
|
|
|
|
case TOG3:
|
|
|
|
case BUT_TOGDUAL:
|
|
|
|
case ICONTOG:
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if(value!=but->hardmin) push= 1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
case ICONTOGN:
|
|
|
|
case TOGN:
|
|
|
|
if(value==0.0) push= 1;
|
|
|
|
break;
|
|
|
|
case ROW:
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if(value == but->hardmax) push= 1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
case COL:
|
|
|
|
push= 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
push= 2;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(push==2);
|
|
|
|
else if(push==1) but->flag |= UI_SELECT;
|
|
|
|
else but->flag &= ~UI_SELECT;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* XXX 2.50 no links supported yet */
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
static uiBut *ui_get_valid_link_button(uiBlock *block, uiBut *but, short *mval)
|
|
|
|
{
|
|
|
|
uiBut *bt;
|
|
|
|
|
|
|
|
/* find button to link to */
|
|
|
|
for (bt= block->buttons.first; bt; bt= bt->next)
|
|
|
|
if(bt!=but && uibut_contains_pt(bt, mval))
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (bt) {
|
|
|
|
if (but->type==LINK && bt->type==INLINK) {
|
|
|
|
if( but->link->tocode == (int)bt->min ) {
|
|
|
|
return bt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->type==INLINK && bt->type==LINK) {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if( bt->link->tocode == (int)but->hardmin ) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
return bt;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ui_is_a_link(uiBut *from, uiBut *to)
|
|
|
|
{
|
|
|
|
uiLinkLine *line;
|
|
|
|
uiLink *link;
|
|
|
|
|
|
|
|
link= from->link;
|
|
|
|
if(link) {
|
|
|
|
line= link->lines.first;
|
|
|
|
while(line) {
|
|
|
|
if(line->from==from && line->to==to) return 1;
|
|
|
|
line= line->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uiBut *ui_find_inlink(uiBlock *block, void *poin)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==INLINK) {
|
|
|
|
if(but->poin == poin) return but;
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ui_add_link_line(ListBase *listb, uiBut *but, uiBut *bt)
|
|
|
|
{
|
|
|
|
uiLinkLine *line;
|
|
|
|
|
|
|
|
line= MEM_callocN(sizeof(uiLinkLine), "linkline");
|
|
|
|
BLI_addtail(listb, line);
|
|
|
|
line->from= but;
|
|
|
|
line->to= bt;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiFindInlink(uiBlock *block, void *poin)
|
|
|
|
{
|
|
|
|
return ui_find_inlink(block, poin);
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiComposeLinks(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but, *bt;
|
|
|
|
uiLink *link;
|
|
|
|
void ***ppoin;
|
|
|
|
int a;
|
|
|
|
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==LINK) {
|
|
|
|
link= but->link;
|
|
|
|
|
|
|
|
/* for all pointers in the array */
|
|
|
|
if(link) {
|
|
|
|
if(link->ppoin) {
|
|
|
|
ppoin= link->ppoin;
|
|
|
|
for(a=0; a < *(link->totlink); a++) {
|
|
|
|
bt= ui_find_inlink(block, (*ppoin)[a] );
|
|
|
|
if(bt) {
|
|
|
|
ui_add_link_line(&link->lines, but, bt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(link->poin) {
|
|
|
|
bt= ui_find_inlink(block, *(link->poin) );
|
|
|
|
if(bt) {
|
|
|
|
ui_add_link_line(&link->lines, but, bt);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ui_add_link(uiBut *from, uiBut *to)
|
|
|
|
{
|
|
|
|
/* in 'from' we have to add a link to 'to' */
|
|
|
|
uiLink *link;
|
|
|
|
void **oldppoin;
|
|
|
|
int a;
|
|
|
|
|
|
|
|
if(ui_is_a_link(from, to)) {
|
|
|
|
printf("already exists\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
link= from->link;
|
|
|
|
|
|
|
|
/* are there more pointers allowed? */
|
|
|
|
if(link->ppoin) {
|
|
|
|
oldppoin= *(link->ppoin);
|
|
|
|
|
|
|
|
(*(link->totlink))++;
|
|
|
|
*(link->ppoin)= MEM_callocN( *(link->totlink)*sizeof(void *), "new link");
|
|
|
|
|
|
|
|
for(a=0; a< (*(link->totlink))-1; a++) {
|
|
|
|
(*(link->ppoin))[a]= oldppoin[a];
|
|
|
|
}
|
|
|
|
(*(link->ppoin))[a]= to->poin;
|
|
|
|
|
|
|
|
if(oldppoin) MEM_freeN(oldppoin);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
*(link->poin)= to->poin;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ui_do_but_LINK(uiBlock *block, uiBut *but)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* This button only visualizes, the dobutton mode
|
|
|
|
* can add a new link, but then the whole system
|
|
|
|
* should be redrawn/initialized.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
uiBut *bt=0, *bto=NULL;
|
|
|
|
short sval[2], mval[2], mvalo[2], first= 1;
|
|
|
|
|
|
|
|
uiGetMouse(curarea->win, sval);
|
|
|
|
mvalo[0]= sval[0];
|
|
|
|
mvalo[1]= sval[1];
|
|
|
|
|
|
|
|
while (get_mbut() & L_MOUSE) {
|
|
|
|
uiGetMouse(curarea->win, mval);
|
|
|
|
|
|
|
|
if(mval[0]!=mvalo[0] || mval[1]!=mvalo[1] || first) {
|
|
|
|
/* clear completely, because of drawbuttons */
|
|
|
|
bt= ui_get_valid_link_button(block, but, mval);
|
|
|
|
if(bt) {
|
|
|
|
bt->flag |= UI_ACTIVE;
|
2.5
Smaller jobs, all in one commit!
- Moved object_do_update out of view3d drawing, into
the event system (currently after notifiers).
Depsgraph calls for setting update flags will have to
keep track of each Screen's needs, so a UI showing only
a Sequencer doesn't do objects.
- Added button in "Properties region" in 3D window to set
or disable 4-split, including the 3 options it has.
(lock, box, clip)
- Restored legacy code for UI, to make things work like
bone rename, autocomplete.
- Node editor now shows Curves widgets again
- Bugfix: composite job increased Viewer user id count
- Bugfix: Node editor, not "Enable nodes" still called
a Job, which didn't do anything
- Various code cleaning, unused vars and prototypes.
2009-02-11 16:54:55 +00:00
|
|
|
ui_draw_but(ar, bt);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
if(bto && bto!=bt) {
|
|
|
|
bto->flag &= ~UI_ACTIVE;
|
2.5
Smaller jobs, all in one commit!
- Moved object_do_update out of view3d drawing, into
the event system (currently after notifiers).
Depsgraph calls for setting update flags will have to
keep track of each Screen's needs, so a UI showing only
a Sequencer doesn't do objects.
- Added button in "Properties region" in 3D window to set
or disable 4-split, including the 3 options it has.
(lock, box, clip)
- Restored legacy code for UI, to make things work like
bone rename, autocomplete.
- Node editor now shows Curves widgets again
- Bugfix: composite job increased Viewer user id count
- Bugfix: Node editor, not "Enable nodes" still called
a Job, which didn't do anything
- Various code cleaning, unused vars and prototypes.
2009-02-11 16:54:55 +00:00
|
|
|
ui_draw_but(ar, bto);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
bto= bt;
|
|
|
|
|
|
|
|
if (!first) {
|
|
|
|
glutil_draw_front_xor_line(sval[0], sval[1], mvalo[0], mvalo[1]);
|
|
|
|
}
|
|
|
|
glutil_draw_front_xor_line(sval[0], sval[1], mval[0], mval[1]);
|
|
|
|
|
|
|
|
mvalo[0]= mval[0];
|
|
|
|
mvalo[1]= mval[1];
|
|
|
|
|
|
|
|
first= 0;
|
|
|
|
}
|
|
|
|
else UI_wait_for_statechange();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!first) {
|
|
|
|
glutil_draw_front_xor_line(sval[0], sval[1], mvalo[0], mvalo[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(bt) {
|
|
|
|
if(but->type==LINK) ui_add_link(but, bt);
|
|
|
|
else ui_add_link(bt, but);
|
|
|
|
|
|
|
|
scrarea_queue_winredraw(curarea);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* ************************************************ */
|
|
|
|
|
|
|
|
void uiBlockSetButLock(uiBlock *block, int val, char *lockstr)
|
|
|
|
{
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
if(val) {
|
|
|
|
block->lock |= val;
|
|
|
|
block->lockstr= lockstr;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void uiBlockClearButLock(uiBlock *block)
|
|
|
|
{
|
|
|
|
block->lock= 0;
|
|
|
|
block->lockstr= NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* *************************************************************** */
|
|
|
|
|
|
|
|
|
|
|
|
/* XXX 2.50 no links supported yet */
|
|
|
|
#if 0
|
|
|
|
static void ui_delete_active_linkline(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
uiLink *link;
|
|
|
|
uiLinkLine *line, *nline;
|
|
|
|
int a, b;
|
|
|
|
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==LINK && but->link) {
|
|
|
|
line= but->link->lines.first;
|
|
|
|
while(line) {
|
|
|
|
|
|
|
|
nline= line->next;
|
|
|
|
|
|
|
|
if(line->flag & UI_SELECT) {
|
|
|
|
BLI_remlink(&but->link->lines, line);
|
|
|
|
|
|
|
|
link= line->from->link;
|
|
|
|
|
|
|
|
/* are there more pointers allowed? */
|
|
|
|
if(link->ppoin) {
|
|
|
|
|
|
|
|
if(*(link->totlink)==1) {
|
|
|
|
*(link->totlink)= 0;
|
|
|
|
MEM_freeN(*(link->ppoin));
|
|
|
|
*(link->ppoin)= NULL;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
b= 0;
|
|
|
|
for(a=0; a< (*(link->totlink)); a++) {
|
|
|
|
|
|
|
|
if( (*(link->ppoin))[a] != line->to->poin ) {
|
|
|
|
(*(link->ppoin))[b]= (*(link->ppoin))[a];
|
|
|
|
b++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(*(link->totlink))--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
*(link->poin)= NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
MEM_freeN(line);
|
|
|
|
}
|
|
|
|
line= nline;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* temporal! these buttons can be everywhere... */
|
|
|
|
allqueue(REDRAWBUTSLOGIC, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void ui_do_active_linklines(uiBlock *block, short *mval)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
uiLinkLine *line, *act= NULL;
|
|
|
|
float mindist= 12.0, fac, v1[2], v2[2], v3[3];
|
|
|
|
int foundone= 0;
|
|
|
|
|
|
|
|
if(mval) {
|
|
|
|
v1[0]= mval[0];
|
|
|
|
v1[1]= mval[1];
|
|
|
|
|
|
|
|
/* find a line close to the mouse */
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==LINK && but->link) {
|
|
|
|
foundone= 1;
|
|
|
|
line= but->link->lines.first;
|
|
|
|
while(line) {
|
|
|
|
v2[0]= line->from->x2;
|
|
|
|
v2[1]= (line->from->y1+line->from->y2)/2.0;
|
|
|
|
v3[0]= line->to->x1;
|
|
|
|
v3[1]= (line->to->y1+line->to->y2)/2.0;
|
|
|
|
|
|
|
|
fac= PdistVL2Dfl(v1, v2, v3);
|
|
|
|
if(fac < mindist) {
|
|
|
|
mindist= fac;
|
|
|
|
act= line;
|
|
|
|
}
|
|
|
|
line= line->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check for a 'found one' to prevent going to 'frontbuffer' mode.
|
|
|
|
this slows done gfx quite some, and at OSX the 'finish' forces a swapbuffer */
|
|
|
|
if(foundone) {
|
|
|
|
glDrawBuffer(GL_FRONT);
|
|
|
|
|
|
|
|
/* draw */
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
if(but->type==LINK && but->link) {
|
|
|
|
line= but->link->lines.first;
|
|
|
|
while(line) {
|
|
|
|
if(line==act) {
|
|
|
|
if((line->flag & UI_SELECT)==0) {
|
|
|
|
line->flag |= UI_SELECT;
|
|
|
|
ui_draw_linkline(but, line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(line->flag & UI_SELECT) {
|
|
|
|
line->flag &= ~UI_SELECT;
|
|
|
|
ui_draw_linkline(but, line);
|
|
|
|
}
|
|
|
|
line= line->next;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
but= but->next;
|
|
|
|
}
|
|
|
|
bglFlush();
|
|
|
|
glDrawBuffer(GL_BACK);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* ******************************************************* */
|
|
|
|
|
|
|
|
/* XXX 2.50 no screendump supported yet */
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/* nasty but safe way to store screendump rect */
|
|
|
|
static int scr_x=0, scr_y=0, scr_sizex=0, scr_sizey=0;
|
|
|
|
|
|
|
|
static void ui_set_screendump_bbox(uiBlock *block)
|
|
|
|
{
|
|
|
|
if(block) {
|
|
|
|
scr_x= block->minx;
|
|
|
|
scr_y= block->miny;
|
|
|
|
scr_sizex= block->maxx - block->minx;
|
|
|
|
scr_sizey= block->maxy - block->miny;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
scr_sizex= scr_sizey= 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* used for making screenshots for menus, called in screendump.c */
|
|
|
|
int uiIsMenu(int *x, int *y, int *sizex, int *sizey)
|
|
|
|
{
|
|
|
|
if(scr_sizex!=0 && scr_sizey!=0) {
|
|
|
|
*x= scr_x;
|
|
|
|
*y= scr_y;
|
|
|
|
*sizex= scr_sizex;
|
|
|
|
*sizey= scr_sizey;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* *********************** data get/set ***********************
|
|
|
|
* this either works with the pointed to data, or can work with
|
|
|
|
* an edit override pointer while dragging for example */
|
|
|
|
|
|
|
|
/* for buttons pointing to color for example */
|
|
|
|
void ui_get_but_vectorf(uiBut *but, float *vec)
|
|
|
|
{
|
2008-12-30 21:28:27 +00:00
|
|
|
PropertyRNA *prop;
|
|
|
|
int a, tot;
|
|
|
|
|
|
|
|
if(but->editvec) {
|
|
|
|
VECCOPY(vec, but->editvec);
|
|
|
|
return;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2008-12-30 21:28:27 +00:00
|
|
|
if(but->rnaprop) {
|
|
|
|
prop= but->rnaprop;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2008-12-30 21:28:27 +00:00
|
|
|
vec[0]= vec[1]= vec[2]= 0.0f;
|
|
|
|
|
|
|
|
if(RNA_property_type(&but->rnapoin, prop) == PROP_FLOAT) {
|
|
|
|
tot= RNA_property_array_length(&but->rnapoin, prop);
|
|
|
|
tot= MIN2(tot, 3);
|
|
|
|
|
|
|
|
for(a=0; a<tot; a++)
|
2009-02-02 19:57:57 +00:00
|
|
|
vec[a]= RNA_property_float_get_index(&but->rnapoin, prop, a);
|
2008-12-30 21:28:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->pointype == CHA) {
|
|
|
|
char *cp= (char *)but->poin;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
vec[0]= ((float)cp[0])/255.0;
|
|
|
|
vec[1]= ((float)cp[1])/255.0;
|
|
|
|
vec[2]= ((float)cp[2])/255.0;
|
|
|
|
}
|
2008-12-30 21:28:27 +00:00
|
|
|
else if(but->pointype == FLO) {
|
|
|
|
float *fp= (float *)but->poin;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
VECCOPY(vec, fp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* for buttons pointing to color for example */
|
|
|
|
void ui_set_but_vectorf(uiBut *but, float *vec)
|
|
|
|
{
|
2008-12-30 21:28:27 +00:00
|
|
|
PropertyRNA *prop;
|
|
|
|
int a, tot;
|
|
|
|
|
|
|
|
if(but->editvec) {
|
|
|
|
VECCOPY(but->editvec, vec);
|
|
|
|
return;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2008-12-30 21:28:27 +00:00
|
|
|
if(but->rnaprop) {
|
|
|
|
prop= but->rnaprop;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2008-12-30 21:28:27 +00:00
|
|
|
if(RNA_property_type(&but->rnapoin, prop) == PROP_FLOAT) {
|
|
|
|
tot= RNA_property_array_length(&but->rnapoin, prop);
|
|
|
|
tot= MIN2(tot, 3);
|
|
|
|
|
|
|
|
for(a=0; a<tot; a++)
|
2009-02-02 19:57:57 +00:00
|
|
|
RNA_property_float_set_index(&but->rnapoin, prop, a, vec[a]);
|
2008-12-30 21:28:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->pointype == CHA) {
|
|
|
|
char *cp= (char *)but->poin;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
cp[0]= (char)(0.5 +vec[0]*255.0);
|
|
|
|
cp[1]= (char)(0.5 +vec[1]*255.0);
|
|
|
|
cp[2]= (char)(0.5 +vec[2]*255.0);
|
|
|
|
}
|
2008-12-30 21:28:27 +00:00
|
|
|
else if(but->pointype == FLO) {
|
|
|
|
float *fp= (float *)but->poin;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
VECCOPY(fp, vec);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int ui_is_but_float(uiBut *but)
|
|
|
|
{
|
|
|
|
if(but->pointype==FLO && but->poin)
|
|
|
|
return 1;
|
|
|
|
|
2008-11-24 15:51:55 +00:00
|
|
|
if(but->rnaprop && RNA_property_type(&but->rnapoin, but->rnaprop) == PROP_FLOAT)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
double ui_get_but_val(uiBut *but)
|
|
|
|
{
|
|
|
|
PropertyRNA *prop;
|
|
|
|
double value = 0.0;
|
|
|
|
|
|
|
|
if(but->editval) { return *(but->editval); }
|
|
|
|
if(but->poin==NULL && but->rnapoin.data==NULL) return 0.0;
|
|
|
|
|
|
|
|
if(but->rnaprop) {
|
|
|
|
prop= but->rnaprop;
|
|
|
|
|
2008-11-24 15:51:55 +00:00
|
|
|
switch(RNA_property_type(&but->rnapoin, prop)) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
case PROP_BOOLEAN:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
value= RNA_property_boolean_get_index(&but->rnapoin, prop, but->rnaindex);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
value= RNA_property_boolean_get(&but->rnapoin, prop);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
case PROP_INT:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
value= RNA_property_int_get_index(&but->rnapoin, prop, but->rnaindex);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
value= RNA_property_int_get(&but->rnapoin, prop);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
case PROP_FLOAT:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
value= RNA_property_float_get_index(&but->rnapoin, prop, but->rnaindex);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
value= RNA_property_float_get(&but->rnapoin, prop);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
case PROP_ENUM:
|
2008-11-24 15:51:55 +00:00
|
|
|
value= RNA_property_enum_get(&but->rnapoin, prop);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
value= 0.0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->type== HSVSLI) {
|
|
|
|
float h, s, v, *fp;
|
|
|
|
|
|
|
|
fp= (but->editvec)? but->editvec: (float *)but->poin;
|
|
|
|
rgb_to_hsv(fp[0], fp[1], fp[2], &h, &s, &v);
|
|
|
|
|
|
|
|
switch(but->str[0]) {
|
|
|
|
case 'H': value= h; break;
|
|
|
|
case 'S': value= s; break;
|
|
|
|
case 'V': value= v; break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if( but->pointype == CHA ) {
|
|
|
|
value= *(char *)but->poin;
|
|
|
|
}
|
|
|
|
else if( but->pointype == SHO ) {
|
|
|
|
value= *(short *)but->poin;
|
|
|
|
}
|
|
|
|
else if( but->pointype == INT ) {
|
|
|
|
value= *(int *)but->poin;
|
|
|
|
}
|
|
|
|
else if( but->pointype == FLO ) {
|
|
|
|
value= *(float *)but->poin;
|
|
|
|
}
|
|
|
|
|
|
|
|
return value;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_set_but_val(uiBut *but, double value)
|
|
|
|
{
|
|
|
|
PropertyRNA *prop;
|
|
|
|
|
|
|
|
/* value is a hsv value: convert to rgb */
|
|
|
|
if(but->rnaprop) {
|
|
|
|
prop= but->rnaprop;
|
|
|
|
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_editable(&but->rnapoin, prop)) {
|
|
|
|
switch(RNA_property_type(&but->rnapoin, prop)) {
|
2008-11-24 12:12:24 +00:00
|
|
|
case PROP_BOOLEAN:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
RNA_property_boolean_set_index(&but->rnapoin, prop, but->rnaindex, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
RNA_property_boolean_set(&but->rnapoin, prop, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
break;
|
|
|
|
case PROP_INT:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
RNA_property_int_set_index(&but->rnapoin, prop, but->rnaindex, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
RNA_property_int_set(&but->rnapoin, prop, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
break;
|
|
|
|
case PROP_FLOAT:
|
2008-11-24 15:51:55 +00:00
|
|
|
if(RNA_property_array_length(&but->rnapoin, prop))
|
2009-02-02 19:57:57 +00:00
|
|
|
RNA_property_float_set_index(&but->rnapoin, prop, but->rnaindex, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
else
|
2008-11-24 15:51:55 +00:00
|
|
|
RNA_property_float_set(&but->rnapoin, prop, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
break;
|
|
|
|
case PROP_ENUM:
|
2008-11-24 15:51:55 +00:00
|
|
|
RNA_property_enum_set(&but->rnapoin, prop, value);
|
2008-11-24 12:12:24 +00:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->pointype==0);
|
|
|
|
else if(but->type==HSVSLI ) {
|
|
|
|
float h, s, v, *fp;
|
|
|
|
|
|
|
|
fp= (but->editvec)? but->editvec: (float *)but->poin;
|
|
|
|
rgb_to_hsv(fp[0], fp[1], fp[2], &h, &s, &v);
|
|
|
|
|
|
|
|
switch(but->str[0]) {
|
|
|
|
case 'H': h= value; break;
|
|
|
|
case 'S': s= value; break;
|
|
|
|
case 'V': v= value; break;
|
|
|
|
}
|
|
|
|
|
|
|
|
hsv_to_rgb(h, s, v, fp, fp+1, fp+2);
|
|
|
|
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* first do rounding */
|
|
|
|
if(but->pointype==CHA)
|
|
|
|
value= (char)floor(value+0.5);
|
|
|
|
else if(but->pointype==SHO ) {
|
|
|
|
/* gcc 3.2.1 seems to have problems
|
|
|
|
* casting a double like 32772.0 to
|
|
|
|
* a short so we cast to an int, then
|
|
|
|
to a short */
|
|
|
|
int gcckludge;
|
|
|
|
gcckludge = (int) floor(value+0.5);
|
|
|
|
value= (short)gcckludge;
|
|
|
|
}
|
|
|
|
else if(but->pointype==INT )
|
|
|
|
value= (int)floor(value+0.5);
|
|
|
|
else if(but->pointype==FLO ) {
|
|
|
|
float fval= (float)value;
|
|
|
|
if(fval>= -0.00001f && fval<= 0.00001f) fval= 0.0f; /* prevent negative zero */
|
|
|
|
value= fval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* then set value with possible edit override */
|
|
|
|
if(but->editval)
|
|
|
|
*but->editval= value;
|
|
|
|
else if(but->pointype==CHA)
|
|
|
|
*((char *)but->poin)= (char)value;
|
|
|
|
else if(but->pointype==SHO)
|
|
|
|
*((short *)but->poin)= (short)value;
|
|
|
|
else if(but->pointype==INT)
|
|
|
|
*((int *)but->poin)= (int)value;
|
|
|
|
else if(but->pointype==FLO)
|
|
|
|
*((float *)but->poin)= (float)value;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* update select flag */
|
|
|
|
ui_is_but_sel(but);
|
|
|
|
}
|
|
|
|
|
2009-03-30 17:31:37 +00:00
|
|
|
int ui_get_but_string_max_length(uiBut *but)
|
|
|
|
{
|
|
|
|
if(but->type == TEX)
|
|
|
|
return but->hardmax;
|
|
|
|
else if(but->type == IDPOIN)
|
|
|
|
return sizeof(((ID*)NULL)->name)-2;
|
|
|
|
else
|
|
|
|
return UI_MAX_DRAW_STR;
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
void ui_get_but_string(uiBut *but, char *str, int maxlen)
|
|
|
|
{
|
2009-03-30 17:31:37 +00:00
|
|
|
if(but->rnaprop && ELEM(but->type, TEX, IDPOIN)) {
|
|
|
|
PropertyType type;
|
|
|
|
char *buf= NULL;
|
|
|
|
|
|
|
|
type= RNA_property_type(&but->rnapoin, but->rnaprop);
|
|
|
|
|
|
|
|
if(type == PROP_STRING) {
|
|
|
|
/* RNA string */
|
|
|
|
buf= RNA_property_string_get_alloc(&but->rnapoin, but->rnaprop, str, maxlen);
|
|
|
|
}
|
|
|
|
else if(type == PROP_POINTER) {
|
|
|
|
/* RNA pointer */
|
|
|
|
PointerRNA ptr= RNA_property_pointer_get(&but->rnapoin, but->rnaprop);
|
|
|
|
PropertyRNA *nameprop;
|
|
|
|
|
|
|
|
if(ptr.data && (nameprop = RNA_struct_name_property(&ptr)))
|
|
|
|
buf= RNA_property_string_get_alloc(&ptr, nameprop, str, maxlen);
|
|
|
|
else
|
|
|
|
BLI_strncpy(str, "", maxlen);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
BLI_strncpy(str, "", maxlen);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-03-30 17:31:37 +00:00
|
|
|
if(buf && buf != str) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* string was too long, we have to truncate */
|
|
|
|
BLI_strncpy(str, buf, maxlen);
|
|
|
|
MEM_freeN(buf);
|
|
|
|
}
|
|
|
|
}
|
2009-03-30 17:31:37 +00:00
|
|
|
else if(but->type == IDPOIN) {
|
|
|
|
/* ID pointer */
|
|
|
|
ID *id= *(but->idpoin_idpp);
|
|
|
|
|
|
|
|
if(id) BLI_strncpy(str, id->name+2, maxlen);
|
|
|
|
else BLI_strncpy(str, "", maxlen);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else if(but->type == TEX) {
|
|
|
|
/* string */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
BLI_strncpy(str, but->poin, maxlen);
|
2009-03-30 17:31:37 +00:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* number */
|
|
|
|
double value;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-03-30 17:31:37 +00:00
|
|
|
value= ui_get_but_val(but);
|
|
|
|
|
|
|
|
if(ui_is_but_float(but)) {
|
|
|
|
if(but->a2) { /* amount of digits defined */
|
|
|
|
if(but->a2==1) BLI_snprintf(str, maxlen, "%.1f", value);
|
|
|
|
else if(but->a2==2) BLI_snprintf(str, maxlen, "%.2f", value);
|
|
|
|
else if(but->a2==3) BLI_snprintf(str, maxlen, "%.3f", value);
|
|
|
|
else BLI_snprintf(str, maxlen, "%.4f", value);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
BLI_snprintf(str, maxlen, "%.3f", value);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
BLI_snprintf(str, maxlen, "%d", (int)value);
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
2009-03-30 17:31:37 +00:00
|
|
|
static void ui_rna_ID_collection(bContext *C, uiBut *but, PointerRNA *ptr, PropertyRNA **prop)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2009-03-30 17:31:37 +00:00
|
|
|
CollectionPropertyIterator iter;
|
|
|
|
PropertyRNA *iterprop, *iprop;
|
|
|
|
StructRNA *srna;
|
|
|
|
|
|
|
|
/* look for collection property in Main */
|
|
|
|
RNA_pointer_create(NULL, &RNA_Main, CTX_data_main(C), ptr);
|
|
|
|
|
|
|
|
iterprop= RNA_struct_iterator_property(ptr);
|
|
|
|
RNA_property_collection_begin(ptr, iterprop, &iter);
|
|
|
|
*prop= NULL;
|
|
|
|
|
|
|
|
for(; iter.valid; RNA_property_collection_next(&iter)) {
|
|
|
|
iprop= iter.ptr.data;
|
|
|
|
|
|
|
|
/* if it's a collection and has same pointer type, we've got it */
|
|
|
|
if(RNA_property_type(ptr, iprop) == PROP_COLLECTION) {
|
|
|
|
srna= RNA_property_pointer_type(ptr, iprop);
|
|
|
|
|
|
|
|
if(RNA_property_pointer_type(&but->rnapoin, but->rnaprop) == srna) {
|
|
|
|
*prop= iprop;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2008-11-29 19:08:46 +00:00
|
|
|
}
|
2009-03-30 17:31:37 +00:00
|
|
|
|
|
|
|
RNA_property_collection_end(&iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* autocomplete callback for RNA pointers */
|
|
|
|
static void ui_rna_ID_autocomplete(bContext *C, char *str, void *arg_but)
|
|
|
|
{
|
|
|
|
uiBut *but= arg_but;
|
|
|
|
AutoComplete *autocpl;
|
|
|
|
CollectionPropertyIterator iter;
|
|
|
|
PointerRNA ptr;
|
|
|
|
PropertyRNA *prop, *nameprop;
|
|
|
|
char *name;
|
|
|
|
|
|
|
|
if(str[0]==0) return;
|
|
|
|
|
|
|
|
/* get the collection */
|
|
|
|
ui_rna_ID_collection(C, but, &ptr, &prop);
|
|
|
|
if(prop==NULL) return;
|
|
|
|
|
|
|
|
autocpl= autocomplete_begin(str, ui_get_but_string_max_length(but));
|
|
|
|
RNA_property_collection_begin(&ptr, prop, &iter);
|
|
|
|
|
|
|
|
/* loop over items in collection */
|
|
|
|
for(; iter.valid; RNA_property_collection_next(&iter)) {
|
|
|
|
if(iter.ptr.data && (nameprop = RNA_struct_name_property(&iter.ptr))) {
|
|
|
|
name= RNA_property_string_get_alloc(&iter.ptr, nameprop, NULL, 0);
|
|
|
|
|
|
|
|
if(name) {
|
|
|
|
/* test item name */
|
|
|
|
autocomplete_do_name(autocpl, name);
|
|
|
|
MEM_freeN(name);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
RNA_property_collection_end(&iter);
|
|
|
|
autocomplete_end(autocpl, str);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ui_set_but_string(bContext *C, uiBut *but, const char *str)
|
|
|
|
{
|
|
|
|
if(but->rnaprop && ELEM(but->type, TEX, IDPOIN)) {
|
|
|
|
if(RNA_property_editable(&but->rnapoin, but->rnaprop)) {
|
|
|
|
PropertyType type;
|
|
|
|
|
|
|
|
type= RNA_property_type(&but->rnapoin, but->rnaprop);
|
|
|
|
|
|
|
|
if(type == PROP_STRING) {
|
|
|
|
/* RNA string */
|
|
|
|
RNA_property_string_set(&but->rnapoin, but->rnaprop, str);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else if(type == PROP_POINTER) {
|
|
|
|
/* RNA pointer */
|
|
|
|
PointerRNA ptr, rptr;
|
|
|
|
PropertyRNA *prop;
|
|
|
|
|
|
|
|
/* XXX only ID pointers at the moment, needs to support
|
|
|
|
* custom collection too for bones, vertex groups, .. */
|
|
|
|
ui_rna_ID_collection(C, but, &ptr, &prop);
|
|
|
|
|
|
|
|
if(prop && RNA_property_collection_lookup_string(&ptr, prop, str, &rptr)) {
|
|
|
|
RNA_property_pointer_set(&but->rnapoin, but->rnaprop, rptr);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(but->type == IDPOIN) {
|
|
|
|
/* ID pointer */
|
|
|
|
but->idpoin_func(C, (char*)str, but->idpoin_idpp);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else if(but->type == TEX) {
|
|
|
|
/* string */
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
BLI_strncpy(but->poin, str, but->hardmax);
|
2009-03-30 17:31:37 +00:00
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
double value;
|
|
|
|
|
|
|
|
/* XXX 2.50 missing python api */
|
|
|
|
#if 0
|
|
|
|
if(BPY_button_eval(str, &value)) {
|
|
|
|
BKE_report(CTX_reports(C), RPT_WARNING, "Invalid Python expression, check console");
|
|
|
|
value = 0.0f; /* Zero out value on error */
|
|
|
|
|
|
|
|
if(str[0])
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
value= atof(str);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if(!ui_is_but_float(but)) value= (int)value;
|
|
|
|
if(but->type==NUMABS) value= fabs(value);
|
|
|
|
|
|
|
|
/* not that we use hard limits here */
|
|
|
|
if(value<but->hardmin) value= but->hardmin;
|
|
|
|
if(value>but->hardmax) value= but->hardmax;
|
|
|
|
|
|
|
|
ui_set_but_val(but, value);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static double soft_range_round_up(double value, double max)
|
|
|
|
{
|
|
|
|
/* round up to .., 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, .. */
|
|
|
|
double newmax= pow(10.0, ceil(log(value)/log(10.0)));
|
|
|
|
|
|
|
|
if(newmax*0.2 >= max && newmax*0.2 >= value)
|
|
|
|
return newmax*0.2;
|
|
|
|
else if(newmax*0.5 >= max && newmax*0.5 >= value)
|
|
|
|
return newmax*0.5;
|
|
|
|
else
|
|
|
|
return newmax;
|
|
|
|
}
|
|
|
|
|
|
|
|
static double soft_range_round_down(double value, double max)
|
|
|
|
{
|
|
|
|
/* round down to .., 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, .. */
|
|
|
|
double newmax= pow(10.0, floor(log(value)/log(10.0)));
|
|
|
|
|
|
|
|
if(newmax*5.0 <= max && newmax*5.0 <= value)
|
|
|
|
return newmax*5.0;
|
|
|
|
else if(newmax*2.0 <= max && newmax*2.0 <= value)
|
|
|
|
return newmax*2.0;
|
|
|
|
else
|
|
|
|
return newmax;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_set_but_soft_range(uiBut *but, double value)
|
|
|
|
{
|
|
|
|
PropertyType type;
|
|
|
|
double softmin, softmax, step, precision;
|
|
|
|
|
|
|
|
if(but->rnaprop) {
|
|
|
|
type= RNA_property_type(&but->rnapoin, but->rnaprop);
|
|
|
|
|
|
|
|
if(type == PROP_INT) {
|
|
|
|
int imin, imax, istep;
|
|
|
|
|
|
|
|
RNA_property_int_ui_range(&but->rnapoin, but->rnaprop, &imin, &imax, &istep);
|
|
|
|
softmin= imin;
|
|
|
|
softmax= imax;
|
|
|
|
step= istep;
|
|
|
|
precision= 1;
|
|
|
|
}
|
|
|
|
else if(type == PROP_FLOAT) {
|
|
|
|
float fmin, fmax, fstep, fprecision;
|
|
|
|
|
|
|
|
RNA_property_float_ui_range(&but->rnapoin, but->rnaprop, &fmin, &fmax, &fstep, &fprecision);
|
|
|
|
softmin= fmin;
|
|
|
|
softmax= fmax;
|
|
|
|
step= fstep;
|
|
|
|
precision= fprecision;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* clamp button range to something reasonable in case
|
|
|
|
* we get -inf/inf from RNA properties */
|
|
|
|
softmin= MAX2(softmin, -1e4);
|
|
|
|
softmax= MIN2(softmax, 1e4);
|
|
|
|
|
|
|
|
/* if the value goes out of the soft/max range, adapt the range */
|
|
|
|
if(value+1e-10 < softmin) {
|
|
|
|
if(value < 0.0)
|
|
|
|
softmin= -soft_range_round_up(-value, -softmin);
|
|
|
|
else
|
|
|
|
softmin= soft_range_round_down(value, softmin);
|
|
|
|
|
|
|
|
if(softmin < but->hardmin)
|
|
|
|
softmin= but->hardmin;
|
|
|
|
}
|
|
|
|
else if(value-1e-10 > softmax) {
|
|
|
|
if(value < 0.0)
|
|
|
|
softmax= -soft_range_round_down(-value, -softmax);
|
|
|
|
else
|
|
|
|
softmax= soft_range_round_up(value, softmax);
|
|
|
|
|
|
|
|
if(softmax > but->hardmax)
|
|
|
|
softmax= but->hardmax;
|
|
|
|
}
|
|
|
|
|
|
|
|
but->softmin= softmin;
|
|
|
|
but->softmax= softmax;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************* Font ********************/
|
|
|
|
|
|
|
|
static void ui_set_ftf_font(float aspect)
|
|
|
|
{
|
|
|
|
#ifdef INTERNATIONAL
|
|
|
|
if(aspect<1.15) {
|
|
|
|
FTF_SetFontSize('l');
|
|
|
|
}
|
|
|
|
else if(aspect<1.59) {
|
|
|
|
FTF_SetFontSize('m');
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
FTF_SetFontSize('s');
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiSetCurFont(uiBlock *block, int index)
|
|
|
|
{
|
|
|
|
ui_set_ftf_font(block->aspect);
|
|
|
|
|
|
|
|
if(block->aspect<0.60) {
|
|
|
|
block->curfont= UIfont[index].xl;
|
|
|
|
}
|
|
|
|
else if(block->aspect<1.15) {
|
|
|
|
block->curfont= UIfont[index].large;
|
|
|
|
}
|
|
|
|
else if(block->aspect<1.59) {
|
|
|
|
block->curfont= UIfont[index].medium;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
block->curfont= UIfont[index].small;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(block->curfont==NULL) block->curfont= UIfont[index].large;
|
|
|
|
if(block->curfont==NULL) block->curfont= UIfont[index].medium;
|
|
|
|
if(block->curfont==NULL) printf("error block no font %s\n", block->name);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* called by node editor */
|
|
|
|
void *uiSetCurFont_ext(float aspect)
|
|
|
|
{
|
|
|
|
void *curfont;
|
|
|
|
|
|
|
|
ui_set_ftf_font(aspect);
|
|
|
|
|
|
|
|
if(aspect<0.60) {
|
|
|
|
curfont= UIfont[0].xl;
|
|
|
|
}
|
|
|
|
else if(aspect<1.15) {
|
|
|
|
curfont= UIfont[0].large;
|
|
|
|
}
|
|
|
|
else if(aspect<1.59) {
|
|
|
|
curfont= UIfont[0].medium;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
curfont= UIfont[0].small;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(curfont==NULL) curfont= UIfont[0].large;
|
|
|
|
if(curfont==NULL) curfont= UIfont[0].medium;
|
|
|
|
|
|
|
|
return curfont;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiDefFont(unsigned int index, void *xl, void *large, void *medium, void *small)
|
|
|
|
{
|
|
|
|
if(index>=UI_ARRAY) return;
|
|
|
|
|
|
|
|
UIfont[index].xl= xl;
|
|
|
|
UIfont[index].large= large;
|
|
|
|
UIfont[index].medium= medium;
|
|
|
|
UIfont[index].small= small;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* ******************* Free ********************/
|
|
|
|
|
|
|
|
static void ui_free_link(uiLink *link)
|
|
|
|
{
|
|
|
|
if(link) {
|
|
|
|
BLI_freelistN(&link->lines);
|
|
|
|
MEM_freeN(link);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2009-02-17 15:53:52 +00:00
|
|
|
/* can be called with C==NULL */
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
static void ui_free_but(const bContext *C, uiBut *but)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2009-01-01 20:44:40 +00:00
|
|
|
if(but->opptr) {
|
|
|
|
WM_operator_properties_free(but->opptr);
|
|
|
|
MEM_freeN(but->opptr);
|
2008-12-16 20:03:28 +00:00
|
|
|
}
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
if(but->func_argN) MEM_freeN(but->func_argN);
|
2009-02-17 15:53:52 +00:00
|
|
|
if(but->active) {
|
|
|
|
/* XXX solve later, buttons should be free-able without context? */
|
|
|
|
if(C)
|
|
|
|
ui_button_active_cancel(C, but);
|
|
|
|
else
|
|
|
|
if(but->active)
|
|
|
|
MEM_freeN(but->active);
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
if(but->str && but->str != but->strdata) MEM_freeN(but->str);
|
|
|
|
ui_free_link(but->link);
|
|
|
|
|
|
|
|
MEM_freeN(but);
|
|
|
|
}
|
|
|
|
|
2009-02-17 15:53:52 +00:00
|
|
|
/* can be called with C==NULL */
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
void uiFreeBlock(const bContext *C, uiBlock *block)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
|
|
|
while( (but= block->buttons.first) ) {
|
|
|
|
BLI_remlink(&block->buttons, but);
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
ui_free_but(C, but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
if(block->panel) {
|
|
|
|
block->panel->active= 0;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
BLI_freelistN(&block->saferct);
|
|
|
|
|
|
|
|
MEM_freeN(block);
|
|
|
|
}
|
|
|
|
|
2009-02-17 15:53:52 +00:00
|
|
|
/* can be called with C==NULL */
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
void uiFreeBlocks(const bContext *C, ListBase *lb)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBlock *block;
|
|
|
|
|
|
|
|
while( (block= lb->first) ) {
|
|
|
|
BLI_remlink(lb, block);
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
uiFreeBlock(C, block);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
void uiFreeInactiveBlocks(const bContext *C, ListBase *lb)
|
|
|
|
{
|
|
|
|
uiBlock *block, *nextblock;
|
|
|
|
|
|
|
|
for(block=lb->first; block; block=nextblock) {
|
|
|
|
nextblock= block->next;
|
|
|
|
|
|
|
|
if(!block->handle) {
|
|
|
|
if(!block->active) {
|
|
|
|
BLI_remlink(lb, block);
|
2008-12-26 20:25:02 +00:00
|
|
|
uiFreeBlock(C, block);
|
2008-12-26 13:11:04 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
block->active= 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
uiBlock *uiBeginBlock(const bContext *C, ARegion *region, char *name, short dt, short font)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
ListBase *lb;
|
|
|
|
uiBlock *block, *oldblock= NULL;
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
wmWindow *window;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
int getsizex, getsizey;
|
|
|
|
|
2008-12-18 02:56:48 +00:00
|
|
|
window= CTX_wm_window(C);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
lb= ®ion->uiblocks;
|
|
|
|
|
|
|
|
/* each listbase only has one block with this name, free block
|
|
|
|
* if is already there so it can be rebuilt from scratch */
|
|
|
|
if(lb) {
|
|
|
|
for (oldblock= lb->first; oldblock; oldblock= oldblock->next)
|
|
|
|
if (BLI_streq(oldblock->name, name))
|
|
|
|
break;
|
|
|
|
|
2008-12-26 13:11:04 +00:00
|
|
|
if (oldblock) {
|
|
|
|
oldblock->active= 0;
|
|
|
|
oldblock->panel= NULL;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
block= MEM_callocN(sizeof(uiBlock), "uiBlock");
|
|
|
|
block->oldblock= oldblock;
|
2008-12-26 13:11:04 +00:00
|
|
|
block->active= 1;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* at the beginning of the list! for dynamical menus/blocks */
|
|
|
|
if(lb)
|
|
|
|
BLI_addhead(lb, block);
|
|
|
|
|
|
|
|
BLI_strncpy(block->name, name, sizeof(block->name));
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/* draw win */
|
|
|
|
block->win= win;
|
|
|
|
/* window where queue event should be added, pretty weak this way!
|
|
|
|
this is because the 'mainwin' pup menu's */
|
|
|
|
block->winq= mywinget();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
block->dt= dt;
|
|
|
|
block->themecol= TH_AUTO;
|
|
|
|
|
|
|
|
/* window matrix and aspect */
|
|
|
|
if(region->swinid) {
|
|
|
|
wm_subwindow_getmatrix(window, region->swinid, block->winmat);
|
|
|
|
wm_subwindow_getsize(window, region->swinid, &getsizex, &getsizey);
|
|
|
|
|
|
|
|
/* TODO - investigate why block->winmat[0][0] is negative
|
|
|
|
* in the image view when viewRedrawForce is called */
|
|
|
|
block->aspect= 2.0/fabs( (getsizex)*block->winmat[0][0]);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* no subwindow created yet, for menus for example, so we
|
|
|
|
* use the main window instead, since buttons are created
|
|
|
|
* there anyway */
|
2009-02-13 13:55:57 +00:00
|
|
|
wm_subwindow_getmatrix(window, window->screen->mainwin, block->winmat);
|
|
|
|
wm_subwindow_getsize(window, window->screen->mainwin, &getsizex, &getsizey);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
block->aspect= 2.0/fabs(getsizex*block->winmat[0][0]);
|
|
|
|
block->auto_open= 2;
|
2009-01-15 04:13:38 +00:00
|
|
|
block->flag |= UI_BLOCK_LOOP; /* tag as menu */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
uiSetCurFont(block, font);
|
|
|
|
|
|
|
|
return block;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBlock *uiGetBlock(char *name, ARegion *ar)
|
|
|
|
{
|
|
|
|
uiBlock *block= ar->uiblocks.first;
|
|
|
|
|
|
|
|
while(block) {
|
|
|
|
if( strcmp(name, block->name)==0 ) return block;
|
|
|
|
block= block->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ui_check_but(uiBut *but)
|
|
|
|
{
|
|
|
|
/* if something changed in the button */
|
|
|
|
double value;
|
|
|
|
float okwidth;
|
|
|
|
int transopts= ui_translate_buttons();
|
|
|
|
short pos;
|
|
|
|
|
|
|
|
ui_is_but_sel(but);
|
|
|
|
|
|
|
|
if(but->type==TEX || but->type==IDPOIN) transopts= 0;
|
|
|
|
|
|
|
|
/* test for min and max, icon sliders, etc */
|
|
|
|
switch( but->type ) {
|
|
|
|
case NUM:
|
|
|
|
case SLI:
|
|
|
|
case SCROLL:
|
|
|
|
case NUMSLI:
|
|
|
|
case HSVSLI:
|
|
|
|
value= ui_get_but_val(but);
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if(value < but->hardmin) ui_set_but_val(but, but->hardmin);
|
|
|
|
else if(value > but->hardmax) ui_set_but_val(but, but->hardmax);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case NUMABS:
|
|
|
|
value= fabs( ui_get_but_val(but) );
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if(value < but->hardmin) ui_set_but_val(but, but->hardmin);
|
|
|
|
else if(value > but->hardmax) ui_set_but_val(but, but->hardmax);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICONTOG:
|
|
|
|
case ICONTOGN:
|
|
|
|
if(but->flag & UI_SELECT) but->iconadd= 1;
|
|
|
|
else but->iconadd= 0;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case ICONROW:
|
|
|
|
value= ui_get_but_val(but);
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
but->iconadd= (int)value- (int)(but->hardmin);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case ICONTEXTROW:
|
|
|
|
value= ui_get_but_val(but);
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
but->iconadd= (int)value- (int)(but->hardmin);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* safety is 4 to enable small number buttons (like 'users') */
|
2009-03-08 17:12:59 +00:00
|
|
|
okwidth= -4 + (but->x2 - but->x1);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* name: */
|
|
|
|
switch( but->type ) {
|
|
|
|
|
|
|
|
case MENU:
|
|
|
|
case ICONTEXTROW:
|
|
|
|
|
|
|
|
if(but->x2 - but->x1 > 24) {
|
|
|
|
value= ui_get_but_val(but);
|
|
|
|
ui_set_name_menu(but, (int)value);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case NUM:
|
|
|
|
case NUMSLI:
|
|
|
|
case HSVSLI:
|
|
|
|
case NUMABS:
|
|
|
|
|
|
|
|
value= ui_get_but_val(but);
|
|
|
|
|
|
|
|
if(ui_is_but_float(but)) {
|
2009-01-01 15:52:51 +00:00
|
|
|
if(value == FLT_MAX) sprintf(but->drawstr, "%sinf", but->str);
|
|
|
|
else if(value == -FLT_MAX) sprintf(but->drawstr, "%s-inf", but->str);
|
2008-11-14 18:46:57 +00:00
|
|
|
else if(but->a2) { /* amount of digits defined */
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
if(but->a2==1) sprintf(but->drawstr, "%s%.1f", but->str, value);
|
|
|
|
else if(but->a2==2) sprintf(but->drawstr, "%s%.2f", but->str, value);
|
|
|
|
else if(but->a2==3) sprintf(but->drawstr, "%s%.3f", but->str, value);
|
|
|
|
else sprintf(but->drawstr, "%s%.4f", but->str, value);
|
|
|
|
}
|
|
|
|
else {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
if(but->hardmax<10.001) sprintf(but->drawstr, "%s%.3f", but->str, value);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
else sprintf(but->drawstr, "%s%.2f", but->str, value);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
sprintf(but->drawstr, "%s%d", but->str, (int)value);
|
|
|
|
}
|
2009-03-09 08:31:45 +00:00
|
|
|
|
|
|
|
if(but->rnaprop) {
|
|
|
|
PropertySubType pstype = RNA_property_subtype(&but->rnapoin, but->rnaprop);
|
|
|
|
|
|
|
|
if (pstype == PROP_PERCENTAGE)
|
|
|
|
strcat(but->drawstr, "%");
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
break;
|
|
|
|
|
|
|
|
case LABEL:
|
|
|
|
if(ui_is_but_float(but)) {
|
|
|
|
value= ui_get_but_val(but);
|
|
|
|
if(but->a2) { /* amount of digits defined */
|
|
|
|
if(but->a2==1) sprintf(but->drawstr, "%s%.1f", but->str, value);
|
|
|
|
else if(but->a2==2) sprintf(but->drawstr, "%s%.2f", but->str, value);
|
|
|
|
else if(but->a2==3) sprintf(but->drawstr, "%s%.3f", but->str, value);
|
|
|
|
else sprintf(but->drawstr, "%s%.4f", but->str, value);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
sprintf(but->drawstr, "%s%.2f", but->str, value);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else strcpy(but->drawstr, but->str);
|
|
|
|
|
|
|
|
break;
|
|
|
|
|
|
|
|
case IDPOIN:
|
|
|
|
case TEX:
|
|
|
|
if(!but->editstr) {
|
|
|
|
char str[UI_MAX_DRAW_STR];
|
|
|
|
|
|
|
|
ui_get_but_string(but, str, UI_MAX_DRAW_STR-strlen(but->str));
|
|
|
|
|
|
|
|
strcpy(but->drawstr, but->str);
|
|
|
|
strcat(but->drawstr, str);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case KEYEVT:
|
|
|
|
strcpy(but->drawstr, but->str);
|
|
|
|
if (but->flag & UI_SELECT) {
|
|
|
|
strcat(but->drawstr, "Press a key");
|
|
|
|
} else {
|
2008-12-16 07:32:12 +00:00
|
|
|
strcat(but->drawstr, WM_key_event_string((short) ui_get_but_val(but)));
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case BUT_TOGDUAL:
|
|
|
|
/* trying to get the dual-icon to left of text... not very nice */
|
|
|
|
if(but->str[0]) {
|
|
|
|
strcpy(but->drawstr, " ");
|
|
|
|
strcpy(but->drawstr+2, but->str);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
strcpy(but->drawstr, but->str);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if we are doing text editing, this will override the drawstr */
|
|
|
|
if(but->editstr) {
|
|
|
|
strcpy(but->drawstr, but->str);
|
|
|
|
strcat(but->drawstr, but->editstr);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->drawstr[0]) {
|
|
|
|
but->strwidth= but->aspect*UI_GetStringWidth(but->font, but->drawstr, transopts);
|
|
|
|
// here should be check for less space for icon offsets...
|
|
|
|
if(but->type==MENU) okwidth -= 15;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
but->strwidth= 0;
|
|
|
|
|
|
|
|
/* automatic width */
|
|
|
|
if(but->x2==0.0f && but->x1 > 0.0f) {
|
|
|
|
but->x2= (but->x1+but->strwidth+6);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->strwidth==0) but->drawstr[0]= 0;
|
2009-01-15 04:13:38 +00:00
|
|
|
else if(but->block->flag & UI_BLOCK_LOOP); // no clip string, uiTextBoundsBlock is used (hack!)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
else {
|
|
|
|
|
|
|
|
/* calc but->ofs, to draw the string shorter if too long */
|
|
|
|
but->ofs= 0;
|
|
|
|
|
|
|
|
while(but->strwidth > (int)okwidth ) {
|
|
|
|
|
|
|
|
if ELEM3(but->type, NUM, NUMABS, TEX) { // only these cut off left
|
|
|
|
but->ofs++;
|
|
|
|
but->strwidth= but->aspect*UI_GetStringWidth(but->font, but->drawstr+but->ofs, transopts);
|
|
|
|
|
|
|
|
/* textbut exception */
|
|
|
|
if(but->editstr && but->pos != -1) {
|
|
|
|
pos= but->pos+strlen(but->str);
|
|
|
|
if(pos-1 < but->ofs) {
|
|
|
|
pos= but->ofs-pos+1;
|
|
|
|
but->ofs -= pos;
|
|
|
|
if(but->ofs<0) {
|
|
|
|
but->ofs= 0;
|
|
|
|
pos--;
|
|
|
|
}
|
|
|
|
but->drawstr[ strlen(but->drawstr)-pos ]= 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
but->drawstr[ strlen(but->drawstr)-1 ]= 0;
|
|
|
|
but->strwidth= but->aspect*UI_GetStringWidth(but->font, but->drawstr, transopts);
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->strwidth < 10) break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int ui_auto_themecol(uiBut *but)
|
|
|
|
{
|
2009-01-15 04:13:38 +00:00
|
|
|
if(but->block->flag & UI_BLOCK_LOOP)
|
|
|
|
return TH_MENU_ITEM;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
switch(but->type) {
|
|
|
|
case BUT:
|
|
|
|
return TH_BUT_ACTION;
|
|
|
|
case ROW:
|
|
|
|
case TOG:
|
|
|
|
case TOG3:
|
|
|
|
case TOGR:
|
|
|
|
case TOGN:
|
|
|
|
case BUT_TOGDUAL:
|
|
|
|
return TH_BUT_SETTING;
|
|
|
|
case SLI:
|
|
|
|
case NUM:
|
|
|
|
case NUMSLI:
|
|
|
|
case NUMABS:
|
|
|
|
case HSVSLI:
|
|
|
|
return TH_BUT_NUM;
|
|
|
|
case TEX:
|
|
|
|
return TH_BUT_TEXTFIELD;
|
|
|
|
case PULLDOWN:
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
case HMENU:
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
case BLOCK:
|
|
|
|
case MENU:
|
|
|
|
case BUTM:
|
|
|
|
return TH_BUT_POPUP;
|
|
|
|
case ROUNDBOX:
|
|
|
|
return TH_PANEL;
|
|
|
|
default:
|
|
|
|
return TH_BUT_NEUTRAL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiBlockBeginAlign(uiBlock *block)
|
|
|
|
{
|
|
|
|
/* if other align was active, end it */
|
|
|
|
if(block->flag & UI_BUT_ALIGN) uiBlockEndAlign(block);
|
|
|
|
|
|
|
|
block->flag |= UI_BUT_ALIGN_DOWN;
|
|
|
|
/* buttons declared after this call will this align flag */
|
|
|
|
}
|
|
|
|
|
|
|
|
static int buts_are_horiz(uiBut *but1, uiBut *but2)
|
|
|
|
{
|
|
|
|
float dx, dy;
|
|
|
|
|
|
|
|
dx= fabs( but1->x2 - but2->x1);
|
|
|
|
dy= fabs( but1->y1 - but2->y2);
|
|
|
|
|
|
|
|
if(dx > dy) return 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiBlockEndAlign(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *prev, *but=NULL, *next;
|
|
|
|
int flag= 0, cols=0, rows=0;
|
|
|
|
int theme= UI_GetThemeValue(TH_BUT_DRAWTYPE);
|
|
|
|
|
2008-12-22 05:51:34 +00:00
|
|
|
if ( !(ELEM4(theme, TH_MINIMAL, TH_SHADED, TH_ROUNDED, TH_ROUNDSHADED)) ) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
block->flag &= ~UI_BUT_ALIGN; // all 4 flags
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* auto align:
|
|
|
|
- go back to first button of align start (ALIGN_DOWN)
|
|
|
|
- compare triples, and define flags
|
|
|
|
*/
|
|
|
|
prev= block->buttons.last;
|
|
|
|
while(prev) {
|
|
|
|
if( (prev->flag & UI_BUT_ALIGN_DOWN)) but= prev;
|
|
|
|
else break;
|
|
|
|
|
|
|
|
if(but && but->next) {
|
|
|
|
if(buts_are_horiz(but, but->next)) cols++;
|
|
|
|
else rows++;
|
|
|
|
}
|
|
|
|
|
|
|
|
prev= prev->prev;
|
|
|
|
}
|
|
|
|
if(but==NULL) return;
|
|
|
|
|
|
|
|
/* rows==0: 1 row, cols==0: 1 collumn */
|
|
|
|
|
|
|
|
/* note; how it uses 'flag' in loop below (either set it, or OR it) is confusing */
|
|
|
|
prev= NULL;
|
|
|
|
while(but) {
|
|
|
|
next= but->next;
|
|
|
|
|
|
|
|
/* clear old flag */
|
|
|
|
but->flag &= ~UI_BUT_ALIGN_DOWN;
|
|
|
|
|
|
|
|
if(flag==0) { /* first case */
|
|
|
|
if(next) {
|
|
|
|
if(buts_are_horiz(but, next)) {
|
|
|
|
if(rows==0)
|
|
|
|
flag= UI_BUT_ALIGN_RIGHT;
|
|
|
|
else
|
|
|
|
flag= UI_BUT_ALIGN_DOWN|UI_BUT_ALIGN_RIGHT;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
flag= UI_BUT_ALIGN_DOWN;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(next==NULL) { /* last case */
|
|
|
|
if(prev) {
|
|
|
|
if(buts_are_horiz(prev, but)) {
|
|
|
|
if(rows==0)
|
|
|
|
flag= UI_BUT_ALIGN_LEFT;
|
|
|
|
else
|
|
|
|
flag= UI_BUT_ALIGN_TOP|UI_BUT_ALIGN_LEFT;
|
|
|
|
}
|
|
|
|
else flag= UI_BUT_ALIGN_TOP;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if(buts_are_horiz(but, next)) {
|
|
|
|
/* check if this is already second row */
|
|
|
|
if( prev && buts_are_horiz(prev, but)==0) {
|
|
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
|
|
/* exception case: bottom row */
|
|
|
|
if(rows>0) {
|
|
|
|
uiBut *bt= but;
|
|
|
|
while(bt) {
|
|
|
|
if(bt->next && buts_are_horiz(bt, bt->next)==0 ) break;
|
|
|
|
bt= bt->next;
|
|
|
|
}
|
|
|
|
if(bt==0) flag= UI_BUT_ALIGN_TOP|UI_BUT_ALIGN_RIGHT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else flag |= UI_BUT_ALIGN_LEFT;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if(cols==0) {
|
|
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
|
|
}
|
|
|
|
else { /* next button switches to new row */
|
|
|
|
if( (flag & UI_BUT_ALIGN_TOP)==0) { /* stil top row */
|
|
|
|
if(prev)
|
|
|
|
flag= UI_BUT_ALIGN_DOWN|UI_BUT_ALIGN_LEFT;
|
|
|
|
else
|
|
|
|
flag |= UI_BUT_ALIGN_DOWN;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
flag |= UI_BUT_ALIGN_TOP;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
but->flag |= flag;
|
|
|
|
|
|
|
|
/* merge coordinates */
|
|
|
|
if(prev) {
|
|
|
|
// simple cases
|
|
|
|
if(rows==0) {
|
|
|
|
but->x1= (prev->x2+but->x1)/2.0;
|
|
|
|
prev->x2= but->x1;
|
|
|
|
}
|
|
|
|
else if(cols==0) {
|
|
|
|
but->y2= (prev->y1+but->y2)/2.0;
|
|
|
|
prev->y1= but->y2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
if(buts_are_horiz(prev, but)) {
|
|
|
|
but->x1= (prev->x2+but->x1)/2.0;
|
|
|
|
prev->x2= but->x1;
|
|
|
|
/* copy height too */
|
|
|
|
but->y2= prev->y2;
|
|
|
|
}
|
|
|
|
else if(prev->prev && buts_are_horiz(prev->prev, prev)==0) {
|
|
|
|
/* the previous button is a single one in its row */
|
|
|
|
but->y2= (prev->y1+but->y2)/2.0;
|
|
|
|
prev->y1= but->y2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* the previous button is not a single one in its row */
|
|
|
|
but->y2= prev->y1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
prev= but;
|
|
|
|
but= next;
|
|
|
|
}
|
|
|
|
|
|
|
|
block->flag &= ~UI_BUT_ALIGN; // all 4 flags
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
static void uiBlockEndAligno(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
|
|
|
/* correct last defined button */
|
|
|
|
but= block->buttons.last;
|
|
|
|
if(but) {
|
|
|
|
/* vertical align case */
|
|
|
|
if( (block->flag & UI_BUT_ALIGN) == (UI_BUT_ALIGN_TOP|UI_BUT_ALIGN_DOWN) ) {
|
|
|
|
but->flag &= ~UI_BUT_ALIGN_DOWN;
|
|
|
|
}
|
|
|
|
/* horizontal align case */
|
|
|
|
if( (block->flag & UI_BUT_ALIGN) == (UI_BUT_ALIGN_LEFT|UI_BUT_ALIGN_RIGHT) ) {
|
|
|
|
but->flag &= ~UI_BUT_ALIGN_RIGHT;
|
|
|
|
}
|
|
|
|
/* else do nothing, manually provided flags */
|
|
|
|
}
|
|
|
|
block->flag &= ~UI_BUT_ALIGN; // all 4 flags
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
ui_def_but is the function that draws many button types
|
|
|
|
|
|
|
|
for float buttons:
|
|
|
|
"a1" Click Step (how much to change the value each click)
|
|
|
|
"a2" Number of decimal point values to display. 0 defaults to 3 (0.000) 1,2,3, and a maximum of 4,
|
|
|
|
all greater values will be clamped to 4.
|
|
|
|
|
|
|
|
*/
|
|
|
|
static uiBut *ui_def_but(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
short slen;
|
|
|
|
|
|
|
|
if(type & BUTPOIN) { /* a pointer is required */
|
2009-04-07 17:08:26 +00:00
|
|
|
if(poin==NULL)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
but= MEM_callocN(sizeof(uiBut), "uiBut");
|
|
|
|
|
|
|
|
but->type= type & BUTTYPE;
|
|
|
|
but->pointype= type & BUTPOIN;
|
|
|
|
but->bit= type & BIT;
|
|
|
|
but->bitnr= type & 31;
|
|
|
|
but->icon = 0;
|
2009-04-07 17:08:26 +00:00
|
|
|
but->dt= block->dt;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
BLI_addtail(&block->buttons, but);
|
|
|
|
|
|
|
|
but->retval= retval;
|
|
|
|
if( strlen(str)>=UI_MAX_NAME_STR-1 ) {
|
|
|
|
but->str= MEM_callocN( strlen(str)+2, "uiDefBut");
|
|
|
|
strcpy(but->str, str);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
but->str= but->strdata;
|
|
|
|
strcpy(but->str, str);
|
|
|
|
}
|
|
|
|
but->x1= x1;
|
|
|
|
but->y1= y1;
|
|
|
|
if(block->autofill) {
|
|
|
|
but->x2= x2;
|
|
|
|
but->y2= y2;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
but->x2= (x1+x2);
|
|
|
|
but->y2= (y1+y2);
|
|
|
|
}
|
|
|
|
but->poin= poin;
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
but->hardmin= but->softmin= min;
|
|
|
|
but->hardmax= but->softmax= max;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->a1= a1;
|
|
|
|
but->a2= a2;
|
|
|
|
but->tip= tip;
|
|
|
|
|
|
|
|
but->font= block->curfont;
|
|
|
|
|
|
|
|
but->lock= block->lock;
|
|
|
|
but->lockstr= block->lockstr;
|
|
|
|
|
2009-04-07 17:08:26 +00:00
|
|
|
but->aspect= 1.0f; //XXX block->aspect;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->win= block->win;
|
|
|
|
but->block= block; // pointer back, used for frontbuffer status, and picker
|
|
|
|
|
|
|
|
if(block->themecol==TH_AUTO) but->themecol= ui_auto_themecol(but);
|
|
|
|
else but->themecol= block->themecol;
|
2008-12-10 19:22:10 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
but->func= block->func;
|
|
|
|
but->func_arg1= block->func_arg1;
|
|
|
|
but->func_arg2= block->func_arg2;
|
2008-12-10 19:22:10 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->pos= -1; /* cursor invisible */
|
|
|
|
|
|
|
|
if(ELEM(but->type, NUM, NUMABS)) { /* add a space to name */
|
|
|
|
slen= strlen(but->str);
|
|
|
|
if(slen>0 && slen<UI_MAX_NAME_STR-2) {
|
|
|
|
if(but->str[slen-1]!=' ') {
|
|
|
|
but->str[slen]= ' ';
|
|
|
|
but->str[slen+1]= 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->type==HSVCUBE) { /* hsv buttons temp storage */
|
|
|
|
float rgb[3];
|
|
|
|
ui_get_but_vectorf(but, rgb);
|
|
|
|
rgb_to_hsv(rgb[0], rgb[1], rgb[2], but->hsv, but->hsv+1, but->hsv+2);
|
|
|
|
}
|
|
|
|
|
2009-04-02 18:16:15 +00:00
|
|
|
if((block->flag & UI_BLOCK_LOOP) || ELEM6(but->type, MENU, TEX, LABEL, IDPOIN, BLOCK, BUTM)) {
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
but->flag |= UI_TEXT_LEFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->type==BUT_TOGDUAL) {
|
|
|
|
but->flag |= UI_ICON_LEFT;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(but->type==ROUNDBOX)
|
|
|
|
but->flag |= UI_NO_HILITE;
|
|
|
|
|
|
|
|
but->flag |= (block->flag & UI_BUT_ALIGN);
|
|
|
|
if(block->flag & UI_BLOCK_NO_HILITE)
|
|
|
|
but->flag |= UI_NO_HILITE;
|
|
|
|
|
2009-01-04 07:50:41 +00:00
|
|
|
if (but->lock) {
|
|
|
|
if (but->lockstr) {
|
|
|
|
but->flag |= UI_BUT_DISABLED;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
2008-12-16 07:55:43 +00:00
|
|
|
uiBut *ui_def_but_rna(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, PointerRNA *ptr, const char *propname, int index, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
PropertyRNA *prop;
|
|
|
|
PropertyType proptype;
|
|
|
|
int freestr= 0;
|
|
|
|
|
|
|
|
prop= RNA_struct_find_property(ptr, propname);
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
if(prop) {
|
|
|
|
proptype= RNA_property_type(ptr, prop);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
/* use rna values if parameters are not specified */
|
|
|
|
if(!str) {
|
|
|
|
if(type == MENU && proptype == PROP_ENUM) {
|
|
|
|
const EnumPropertyItem *item;
|
|
|
|
DynStr *dynstr;
|
|
|
|
int i, totitem;
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
RNA_property_enum_items(ptr, prop, &item, &totitem);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
dynstr= BLI_dynstr_new();
|
|
|
|
BLI_dynstr_appendf(dynstr, "%s%%t", RNA_property_ui_name(ptr, prop));
|
|
|
|
for(i=0; i<totitem; i++)
|
|
|
|
BLI_dynstr_appendf(dynstr, "|%s %%x%d", item[i].name, item[i].value);
|
|
|
|
str= BLI_dynstr_get_cstring(dynstr);
|
|
|
|
BLI_dynstr_free(dynstr);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
freestr= 1;
|
|
|
|
}
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
else if(type == ROW && proptype == PROP_ENUM) {
|
|
|
|
const EnumPropertyItem *item;
|
|
|
|
int i, totitem;
|
|
|
|
|
|
|
|
RNA_property_enum_items(ptr, prop, &item, &totitem);
|
|
|
|
for(i=0; i<totitem; i++)
|
|
|
|
if(item[i].value == (int)max)
|
|
|
|
str= (char*)item[i].name;
|
|
|
|
|
|
|
|
if(!str)
|
|
|
|
str= (char*)RNA_property_ui_name(ptr, prop);
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
else
|
|
|
|
str= (char*)RNA_property_ui_name(ptr, prop);
|
2008-12-16 07:55:43 +00:00
|
|
|
}
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
if(!tip) {
|
|
|
|
if(type == ROW && proptype == PROP_ENUM) {
|
|
|
|
const EnumPropertyItem *item;
|
|
|
|
int i, totitem;
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
RNA_property_enum_items(ptr, prop, &item, &totitem);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
for(i=0; i<totitem; i++) {
|
|
|
|
if(item[i].value == (int)max) {
|
|
|
|
if(item[i].description[0])
|
|
|
|
tip= (char*)item[i].description;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
}
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
|
|
|
|
if(!tip)
|
|
|
|
tip= (char*)RNA_property_ui_description(ptr, prop);
|
|
|
|
|
|
|
|
if(min == max || a1 == -1 || a2 == -1) {
|
|
|
|
if(proptype == PROP_INT) {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
int hardmin, hardmax, softmin, softmax, step;
|
2008-12-16 07:55:43 +00:00
|
|
|
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
RNA_property_int_range(ptr, prop, &hardmin, &hardmax);
|
2009-01-15 04:13:38 +00:00
|
|
|
RNA_property_int_ui_range(ptr, prop, &softmin, &softmax, &step);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
if(min == max) {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
min= hardmin;
|
|
|
|
max= hardmax;
|
2009-01-15 04:13:38 +00:00
|
|
|
}
|
|
|
|
if(a1 == -1)
|
|
|
|
a1= step;
|
|
|
|
if(a2 == -1)
|
|
|
|
a2= 0;
|
|
|
|
}
|
|
|
|
else if(proptype == PROP_FLOAT) {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
float hardmin, hardmax, softmin, softmax, step, precision;
|
2009-01-15 04:13:38 +00:00
|
|
|
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
RNA_property_float_range(ptr, prop, &hardmin, &hardmax);
|
2009-01-15 04:13:38 +00:00
|
|
|
RNA_property_float_ui_range(ptr, prop, &softmin, &softmax, &step, &precision);
|
|
|
|
|
|
|
|
if(min == max) {
|
UI:
* Added support for soft/hard range in the buttons code. Currently
it works by only allowing to drag or click increment in the soft
range, but typing a number value allows to go outside it.
If the number is outside the soft range, the range will be extended,
rounded to values like:
.., 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, ..
2009-03-29 18:44:49 +00:00
|
|
|
min= hardmin;
|
|
|
|
max= hardmax;
|
2009-01-15 04:13:38 +00:00
|
|
|
}
|
|
|
|
if(a1 == -1)
|
|
|
|
a1= step;
|
|
|
|
if(a2 == -1)
|
|
|
|
a2= precision;
|
|
|
|
}
|
|
|
|
else if(proptype == PROP_STRING) {
|
|
|
|
min= 0;
|
|
|
|
max= RNA_property_string_maxlength(ptr, prop);
|
|
|
|
if(max == 0) /* interface code should ideally support unlimited length */
|
|
|
|
max= UI_MAX_DRAW_STR;
|
2008-12-16 07:55:43 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
else
|
|
|
|
str= (char*)propname;
|
2008-12-16 07:55:43 +00:00
|
|
|
|
|
|
|
/* now create button */
|
|
|
|
but= ui_def_but(block, type, retval, str, x1, y1, x2, y2, NULL, min, max, a1, a2, tip);
|
2009-01-15 04:13:38 +00:00
|
|
|
|
|
|
|
if(prop) {
|
|
|
|
but->rnapoin= *ptr;
|
|
|
|
but->rnaprop= prop;
|
2009-03-25 20:49:15 +00:00
|
|
|
|
|
|
|
if(RNA_property_array_length(&but->rnapoin, but->rnaprop))
|
|
|
|
but->rnaindex= index;
|
|
|
|
else
|
|
|
|
but->rnaindex= 0;
|
2009-03-30 17:31:37 +00:00
|
|
|
|
|
|
|
if(type == IDPOIN)
|
|
|
|
uiButSetCompleteFunc(but, ui_rna_ID_autocomplete, but);
|
2009-01-15 04:13:38 +00:00
|
|
|
}
|
2009-01-04 02:09:41 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
if (!prop || !RNA_property_editable(&but->rnapoin, prop)) {
|
2009-01-04 02:09:41 +00:00
|
|
|
but->flag |= UI_BUT_DISABLED;
|
|
|
|
but->lock = 1;
|
|
|
|
but->lockstr = "";
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
|
|
|
|
if(freestr)
|
|
|
|
MEM_freeN(str);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
uiBut *ui_def_but_operator(uiBlock *block, int type, char *opname, int opcontext, char *str, short x1, short y1, short x2, short y2, char *tip)
|
2008-12-16 07:55:43 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
2009-01-15 04:13:38 +00:00
|
|
|
wmOperatorType *ot;
|
|
|
|
|
|
|
|
ot= WM_operatortype_find(opname);
|
2008-12-16 07:55:43 +00:00
|
|
|
|
|
|
|
if(!str) {
|
2009-01-15 04:13:38 +00:00
|
|
|
if(ot) str= ot->name;
|
|
|
|
else str= opname;
|
2008-12-16 07:55:43 +00:00
|
|
|
}
|
2009-02-12 03:39:56 +00:00
|
|
|
|
2.5: Most curve/surface editmode operators back:
* Hide, Reveal
* Separate, Duplicate, Delete
* Set Weight, Set Radius, Set Spline Type, Set Handle Type, Set Smooth
* Tilt, Clear Tilt
* Smooth, Smooth Radius
* De(select) First, De(select) Last, De(select) All, Select Inverse,
Select Linked, Select Control Point Row, Select Next, Select Previous,
Select More, Select Less, Select Random, Select Every Nth
* Switch Direction, Subdivide, Make Segment, Spin, Extrude, Toggle Cyclic
* Specials Menu
Not working correct yet:
* Add Vertex (ctrl click)
* Add Menu
2009-02-12 22:12:21 +00:00
|
|
|
if ((!tip || tip[0]=='\0') && ot && ot->description) {
|
2009-02-12 03:39:56 +00:00
|
|
|
tip= ot->description;
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
but= ui_def_but(block, type, -1, str, x1, y1, x2, y2, NULL, 0, 0, 0, 0, tip);
|
2008-12-16 07:55:43 +00:00
|
|
|
but->opname= opname;
|
|
|
|
but->opcontext= opcontext;
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
if(!ot) {
|
|
|
|
but->flag |= UI_BUT_DISABLED;
|
|
|
|
but->lock = 1;
|
|
|
|
but->lockstr = "";
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
uiBut *uiDefBut(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, type, retval, str, x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* if _x_ is a power of two (only one bit) return the power,
|
|
|
|
* otherwise return -1.
|
|
|
|
* (1<<findBitIndex(x))==x for powers of two.
|
|
|
|
*/
|
|
|
|
static int findBitIndex(unsigned int x) {
|
|
|
|
if (!x || (x&(x-1))!=0) { /* x&(x-1) strips lowest bit */
|
|
|
|
return -1;
|
|
|
|
} else {
|
|
|
|
int idx= 0;
|
|
|
|
|
|
|
|
if (x&0xFFFF0000) idx+=16, x>>=16;
|
|
|
|
if (x&0xFF00) idx+=8, x>>=8;
|
|
|
|
if (x&0xF0) idx+=4, x>>=4;
|
|
|
|
if (x&0xC) idx+=2, x>>=2;
|
|
|
|
if (x&0x2) idx+=1;
|
|
|
|
|
|
|
|
return idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* autocomplete helper functions */
|
|
|
|
struct AutoComplete {
|
|
|
|
int maxlen;
|
|
|
|
char *truncate;
|
|
|
|
char *startname;
|
|
|
|
};
|
|
|
|
|
|
|
|
AutoComplete *autocomplete_begin(char *startname, int maxlen)
|
|
|
|
{
|
|
|
|
AutoComplete *autocpl;
|
|
|
|
|
|
|
|
autocpl= MEM_callocN(sizeof(AutoComplete), "AutoComplete");
|
|
|
|
autocpl->maxlen= maxlen;
|
|
|
|
autocpl->truncate= MEM_callocN(sizeof(char)*maxlen, "AutoCompleteTruncate");
|
|
|
|
autocpl->startname= startname;
|
|
|
|
|
|
|
|
return autocpl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void autocomplete_do_name(AutoComplete *autocpl, const char *name)
|
|
|
|
{
|
|
|
|
char *truncate= autocpl->truncate;
|
|
|
|
char *startname= autocpl->startname;
|
|
|
|
int a;
|
|
|
|
|
|
|
|
for(a=0; a<autocpl->maxlen-1; a++) {
|
|
|
|
if(startname[a]==0 || startname[a]!=name[a])
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
/* found a match */
|
|
|
|
if(startname[a]==0) {
|
|
|
|
/* first match */
|
|
|
|
if(truncate[0]==0)
|
|
|
|
BLI_strncpy(truncate, name, autocpl->maxlen);
|
|
|
|
else {
|
|
|
|
/* remove from truncate what is not in bone->name */
|
|
|
|
for(a=0; a<autocpl->maxlen-1; a++) {
|
|
|
|
if(truncate[a]!=name[a])
|
|
|
|
truncate[a]= 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void autocomplete_end(AutoComplete *autocpl, char *autoname)
|
2009-03-17 21:44:58 +00:00
|
|
|
{
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
if(autocpl->truncate[0])
|
|
|
|
BLI_strncpy(autoname, autocpl->truncate, autocpl->maxlen);
|
2009-03-17 21:44:58 +00:00
|
|
|
else {
|
|
|
|
if (autoname != autocpl->startname) /* dont copy a string over its self */
|
|
|
|
BLI_strncpy(autoname, autocpl->startname, autocpl->maxlen);
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
MEM_freeN(autocpl->truncate);
|
|
|
|
MEM_freeN(autocpl);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* autocomplete callback for ID buttons */
|
2008-12-10 19:22:10 +00:00
|
|
|
static void autocomplete_id(bContext *C, char *str, void *arg_v)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2008-12-16 07:32:12 +00:00
|
|
|
int blocktype= (intptr_t)arg_v;
|
2008-12-18 02:56:48 +00:00
|
|
|
ListBase *listb= wich_libbase(CTX_data_main(C), blocktype);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
if(listb==NULL) return;
|
|
|
|
|
|
|
|
/* search if str matches the beginning of an ID struct */
|
|
|
|
if(str[0]) {
|
|
|
|
AutoComplete *autocpl= autocomplete_begin(str, 22);
|
|
|
|
ID *id;
|
|
|
|
|
|
|
|
for(id= listb->first; id; id= id->next)
|
|
|
|
autocomplete_do_name(autocpl, id->name+2);
|
|
|
|
|
|
|
|
autocomplete_end(autocpl, str);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static uiBut *uiDefButBit(uiBlock *block, int type, int bit, int retval, char *str, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
int bitIdx= findBitIndex(bit);
|
|
|
|
if (bitIdx==-1) {
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
return uiDefBut(block, type|BIT|bitIdx, retval, str, x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uiBut *uiDefButF(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefBut(block, type|FLO, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButBitF(uiBlock *block, int type, int bit, int retval, char *str, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefButBit(block, type|FLO, bit, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButI(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefBut(block, type|INT, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButBitI(uiBlock *block, int type, int bit, int retval, char *str, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefButBit(block, type|INT, bit, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButS(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefBut(block, type|SHO, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButBitS(uiBlock *block, int type, int bit, int retval, char *str, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefButBit(block, type|SHO, bit, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButC(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefBut(block, type|CHA, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefButBitC(uiBlock *block, int type, int bit, int retval, char *str, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefButBit(block, type|CHA, bit, retval, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
uiBut *uiDefButR(uiBlock *block, int type, int retval, char *str, short x1, short y1, short x2, short y2, PointerRNA *ptr, const char *propname, int index, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
|
|
|
but= ui_def_but_rna(block, type, retval, str, x1, y1, x2, y2, ptr, propname, index, min, max, a1, a2, tip);
|
|
|
|
if(but)
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
uiBut *uiDefButO(uiBlock *block, int type, char *opname, int opcontext, char *str, short x1, short y1, short x2, short y2, char *tip)
|
2008-12-16 07:55:43 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
but= ui_def_but_operator(block, type, opname, opcontext, str, x1, y1, x2, y2, tip);
|
2008-12-16 07:55:43 +00:00
|
|
|
if(but)
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
uiBut *uiDefIconBut(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, type, retval, "", x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
static uiBut *uiDefIconButBit(uiBlock *block, int type, int bit, int retval, int icon, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
int bitIdx= findBitIndex(bit);
|
|
|
|
if (bitIdx==-1) {
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
return uiDefIconBut(block, type|BIT|bitIdx, retval, icon, x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefIconButF(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconBut(block, type|FLO, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButBitF(uiBlock *block, int type, int bit, int retval, int icon, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconButBit(block, type|FLO, bit, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButI(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconBut(block, type|INT, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButBitI(uiBlock *block, int type, int bit, int retval, int icon, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconButBit(block, type|INT, bit, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButS(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconBut(block, type|SHO, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButBitS(uiBlock *block, int type, int bit, int retval, int icon, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconButBit(block, type|SHO, bit, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButC(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconBut(block, type|CHA, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconButBitC(uiBlock *block, int type, int bit, int retval, int icon, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconButBit(block, type|CHA, bit, retval, icon, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
uiBut *uiDefIconButR(uiBlock *block, int type, int retval, int icon, short x1, short y1, short x2, short y2, PointerRNA *ptr, const char *propname, int index, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
|
|
|
but= ui_def_but_rna(block, type, retval, "", x1, y1, x2, y2, ptr, propname, index, min, max, a1, a2, tip);
|
|
|
|
if(but) {
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
ui_check_but(but);
|
|
|
|
}
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
uiBut *uiDefIconButO(uiBlock *block, int type, char *opname, int opcontext, int icon, short x1, short y1, short x2, short y2, char *tip)
|
2008-12-16 07:55:43 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
but= ui_def_but_operator(block, type, opname, opcontext, "", x1, y1, x2, y2, tip);
|
2008-12-16 07:55:43 +00:00
|
|
|
if(but) {
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
ui_check_but(but);
|
|
|
|
}
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
/* Button containing both string label and icon */
|
|
|
|
uiBut *uiDefIconTextBut(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, type, retval, str, x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
|
|
|
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
static uiBut *uiDefIconTextButBit(uiBlock *block, int type, int bit, int retval, int icon, char *str, short x1, short y1, short x2, short y2, void *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
int bitIdx= findBitIndex(bit);
|
|
|
|
if (bitIdx==-1) {
|
|
|
|
return NULL;
|
|
|
|
} else {
|
|
|
|
return uiDefIconTextBut(block, type|BIT|bitIdx, retval, icon, str, x1, y1, x2, y2, poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefIconTextButF(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextBut(block, type|FLO, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButBitF(uiBlock *block, int type, int bit, int retval, int icon, char *str, short x1, short y1, short x2, short y2, float *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextButBit(block, type|FLO, bit, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButI(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextBut(block, type|INT, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButBitI(uiBlock *block, int type, int bit, int retval, int icon, char *str, short x1, short y1, short x2, short y2, int *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextButBit(block, type|INT, bit, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButS(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextBut(block, type|SHO, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButBitS(uiBlock *block, int type, int bit, int retval, int icon, char *str, short x1, short y1, short x2, short y2, short *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextButBit(block, type|SHO, bit, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButC(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextBut(block, type|CHA, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
|
|
|
uiBut *uiDefIconTextButBitC(uiBlock *block, int type, int bit, int retval, int icon, char *str, short x1, short y1, short x2, short y2, char *poin, float min, float max, float a1, float a2, char *tip)
|
|
|
|
{
|
|
|
|
return uiDefIconTextButBit(block, type|CHA, bit, retval, icon, str, x1, y1, x2, y2, (void*) poin, min, max, a1, a2, tip);
|
|
|
|
}
|
2008-12-16 07:55:43 +00:00
|
|
|
uiBut *uiDefIconTextButR(uiBlock *block, int type, int retval, int icon, char *str, short x1, short y1, short x2, short y2, PointerRNA *ptr, const char *propname, int index, float min, float max, float a1, float a2, char *tip)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
|
2008-12-16 07:55:43 +00:00
|
|
|
but= ui_def_but_rna(block, type, retval, str, x1, y1, x2, y2, ptr, propname, index, min, max, a1, a2, tip);
|
|
|
|
if(but) {
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
|
|
|
ui_check_but(but);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
|
2008-12-16 07:55:43 +00:00
|
|
|
return but;
|
|
|
|
}
|
2009-01-15 04:13:38 +00:00
|
|
|
uiBut *uiDefIconTextButO(uiBlock *block, int type, char *opname, int opcontext, int icon, char *str, short x1, short y1, short x2, short y2, char *tip)
|
2008-12-16 07:55:43 +00:00
|
|
|
{
|
|
|
|
uiBut *but;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
but= ui_def_but_operator(block, type, opname, opcontext, str, x1, y1, x2, y2, tip);
|
2008-12-16 07:55:43 +00:00
|
|
|
if(but) {
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
|
|
|
}
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
2009-01-15 04:13:38 +00:00
|
|
|
static int ui_menu_y(uiBlock *block)
|
|
|
|
{
|
|
|
|
uiBut *but= block->buttons.last;
|
|
|
|
|
|
|
|
if(but) return but->y1;
|
|
|
|
else return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefMenuButO(uiBlock *block, char *opname, char *name)
|
|
|
|
{
|
|
|
|
int y= ui_menu_y(block) - MENU_ITEM_HEIGHT;
|
|
|
|
return uiDefIconTextButO(block, BUT, opname, WM_OP_INVOKE_REGION_WIN, ICON_BLANK1, name, 0, y, MENU_WIDTH, MENU_ITEM_HEIGHT-1, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefMenuSep(uiBlock *block)
|
|
|
|
{
|
|
|
|
int y= ui_menu_y(block) - MENU_SEP_HEIGHT;
|
|
|
|
return uiDefBut(block, SEPR, 0, "", 0, y, MENU_WIDTH, MENU_SEP_HEIGHT, NULL, 0.0, 0.0, 0, 0, "");
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *uiDefMenuSub(uiBlock *block, uiBlockCreateFunc func, char *name)
|
2009-01-15 04:13:38 +00:00
|
|
|
{
|
|
|
|
int y= ui_menu_y(block) - MENU_ITEM_HEIGHT;
|
|
|
|
return uiDefIconTextBlockBut(block, func, NULL, ICON_RIGHTARROW_THIN, name, 0, y, MENU_WIDTH, MENU_ITEM_HEIGHT-1, "");
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefMenuTogR(uiBlock *block, PointerRNA *ptr, char *propname, char *propvalue, char *name)
|
|
|
|
{
|
|
|
|
uiBut *but;
|
|
|
|
PropertyRNA *prop;
|
|
|
|
PropertyType type;
|
|
|
|
const EnumPropertyItem *item;
|
|
|
|
int a, value, totitem, icon= ICON_CHECKBOX_DEHLT;
|
|
|
|
int y= ui_menu_y(block) - MENU_ITEM_HEIGHT;
|
|
|
|
|
|
|
|
prop= RNA_struct_find_property(ptr, propname);
|
|
|
|
if(prop) {
|
|
|
|
type= RNA_property_type(ptr, prop);
|
|
|
|
|
|
|
|
if(type == PROP_BOOLEAN) {
|
|
|
|
if(RNA_property_boolean_get(ptr, prop))
|
|
|
|
icon= ICON_CHECKBOX_HLT;
|
|
|
|
|
|
|
|
return uiDefIconTextButR(block, TOG, 0, icon, name, 0, y, MENU_WIDTH, MENU_ITEM_HEIGHT-1, ptr, propname, 0, 0, 0, 0, 0, NULL);
|
|
|
|
}
|
|
|
|
else if(type == PROP_ENUM) {
|
|
|
|
RNA_property_enum_items(ptr, prop, &item, &totitem);
|
|
|
|
|
|
|
|
value= 0;
|
|
|
|
for(a=0; a<totitem; a++) {
|
|
|
|
if(propvalue && strcmp(propvalue, item[a].identifier) == 0) {
|
|
|
|
value= item[a].value;
|
|
|
|
if(!name)
|
|
|
|
name= (char*)item[a].name;
|
|
|
|
|
|
|
|
if(RNA_property_enum_get(ptr, prop) == value)
|
|
|
|
icon= ICON_CHECKBOX_HLT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(a != totitem)
|
|
|
|
return uiDefIconTextButR(block, ROW, 0, icon, name, 0, y, MENU_WIDTH, MENU_ITEM_HEIGHT-1, ptr, propname, 0, 0, value, 0, 0, NULL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* not found */
|
|
|
|
uiBlockSetButLock(block, 1, "");
|
|
|
|
but= uiDefIconTextBut(block, BUT, 0, ICON_BLANK1, propname, 0, y, MENU_WIDTH, MENU_ITEM_HEIGHT, NULL, 0.0, 0.0, 0, 0, "");
|
|
|
|
uiBlockClearButLock(block);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
/* END Button containing both string label and icon */
|
|
|
|
|
|
|
|
void uiAutoBlock(uiBlock *block, float minx, float miny, float sizex, float sizey, int flag)
|
|
|
|
{
|
|
|
|
block->minx= minx;
|
|
|
|
block->maxx= minx+sizex;
|
|
|
|
block->miny= miny;
|
|
|
|
block->maxy= miny+sizey;
|
|
|
|
|
|
|
|
block->autofill= flag; /* also check for if it has to be done */
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiSetButLink(uiBut *but, void **poin, void ***ppoin, short *tot, int from, int to)
|
|
|
|
{
|
|
|
|
uiLink *link;
|
|
|
|
|
|
|
|
link= but->link= MEM_callocN(sizeof(uiLink), "new uilink");
|
|
|
|
|
|
|
|
link->poin= poin;
|
|
|
|
link->ppoin= ppoin;
|
|
|
|
link->totlink= tot;
|
|
|
|
link->fromcode= from;
|
|
|
|
link->tocode= to;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* cruft to make uiBlock and uiBut private */
|
|
|
|
|
|
|
|
int uiBlocksGetYMin(ListBase *lb)
|
|
|
|
{
|
|
|
|
uiBlock *block;
|
|
|
|
int min= 0;
|
|
|
|
|
|
|
|
for (block= lb->first; block; block= block->next)
|
|
|
|
if (block==lb->first || block->miny<min)
|
|
|
|
min= block->miny;
|
|
|
|
|
|
|
|
return min;
|
|
|
|
}
|
|
|
|
|
|
|
|
int uiBlockGetCol(uiBlock *block)
|
|
|
|
{
|
|
|
|
return block->themecol;
|
|
|
|
}
|
|
|
|
void uiBlockSetCol(uiBlock *block, int col)
|
|
|
|
{
|
|
|
|
block->themecol= col;
|
|
|
|
}
|
|
|
|
void uiBlockSetEmboss(uiBlock *block, int emboss)
|
|
|
|
{
|
|
|
|
block->dt= emboss;
|
|
|
|
}
|
|
|
|
void uiBlockSetDirection(uiBlock *block, int direction)
|
|
|
|
{
|
|
|
|
block->direction= direction;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* this call escapes if there's alignment flags */
|
|
|
|
void uiBlockFlipOrder(uiBlock *block)
|
|
|
|
{
|
|
|
|
ListBase lb;
|
|
|
|
uiBut *but, *next;
|
|
|
|
float centy, miny=10000, maxy= -10000;
|
|
|
|
|
|
|
|
// if(U.uiflag & USER_PLAINMENUS)
|
|
|
|
// return;
|
|
|
|
|
|
|
|
for(but= block->buttons.first; but; but= but->next) {
|
|
|
|
if(but->flag & UI_BUT_ALIGN) return;
|
|
|
|
if(but->y1 < miny) miny= but->y1;
|
|
|
|
if(but->y2 > maxy) maxy= but->y2;
|
|
|
|
}
|
|
|
|
/* mirror trick */
|
|
|
|
centy= (miny+maxy)/2.0;
|
|
|
|
for(but= block->buttons.first; but; but= but->next) {
|
|
|
|
but->y1 = centy-(but->y1-centy);
|
|
|
|
but->y2 = centy-(but->y2-centy);
|
|
|
|
SWAP(float, but->y1, but->y2);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* also flip order in block itself, for example for arrowkey */
|
|
|
|
lb.first= lb.last= NULL;
|
|
|
|
but= block->buttons.first;
|
|
|
|
while(but) {
|
|
|
|
next= but->next;
|
|
|
|
BLI_remlink(&block->buttons, but);
|
|
|
|
BLI_addtail(&lb, but);
|
|
|
|
but= next;
|
|
|
|
}
|
|
|
|
block->buttons= lb;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void uiBlockSetFlag(uiBlock *block, int flag)
|
|
|
|
{
|
2009-03-25 20:49:15 +00:00
|
|
|
block->flag|= flag;
|
|
|
|
}
|
|
|
|
void uiBlockClearFlag(uiBlock *block, int flag)
|
|
|
|
{
|
|
|
|
block->flag&= ~flag;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
}
|
|
|
|
void uiBlockSetXOfs(uiBlock *block, int xofs)
|
|
|
|
{
|
|
|
|
block->xofs= xofs;
|
|
|
|
}
|
|
|
|
void* uiBlockGetCurFont(uiBlock *block)
|
|
|
|
{
|
|
|
|
return block->curfont;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiButSetFlag(uiBut *but, int flag)
|
|
|
|
{
|
|
|
|
but->flag|= flag;
|
|
|
|
}
|
|
|
|
void uiButClearFlag(uiBut *but, int flag)
|
|
|
|
{
|
|
|
|
but->flag&= ~flag;
|
|
|
|
}
|
|
|
|
|
|
|
|
int uiButGetRetVal(uiBut *but)
|
|
|
|
{
|
|
|
|
return but->retval;
|
|
|
|
}
|
|
|
|
|
2008-12-16 20:03:28 +00:00
|
|
|
PointerRNA *uiButGetOperatorPtrRNA(uiBut *but)
|
|
|
|
{
|
|
|
|
if(but->opname && !but->opptr) {
|
2009-01-01 20:44:40 +00:00
|
|
|
but->opptr= MEM_callocN(sizeof(PointerRNA), "uiButOpPtr");
|
|
|
|
WM_operator_properties_create(but->opptr, but->opname);
|
2008-12-16 20:03:28 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return but->opptr;
|
|
|
|
}
|
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
void uiBlockSetHandleFunc(uiBlock *block, uiBlockHandleFunc func, void *arg)
|
2008-12-10 19:22:10 +00:00
|
|
|
{
|
|
|
|
block->handle_func= func;
|
|
|
|
block->handle_func_arg= arg;
|
|
|
|
}
|
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
void uiBlockSetButmFunc(uiBlock *block, uiMenuHandleFunc func, void *arg)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
2008-12-10 19:22:10 +00:00
|
|
|
block->butm_func= func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
block->butm_func_arg= arg;
|
|
|
|
}
|
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
void uiBlockSetFunc(uiBlock *block, uiButHandleFunc func, void *arg1, void *arg2)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
block->func= func;
|
|
|
|
block->func_arg1= arg1;
|
|
|
|
block->func_arg2= arg2;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiBlockSetDrawExtraFunc(uiBlock *block, void (*func)())
|
|
|
|
{
|
|
|
|
block->drawextra= func;
|
|
|
|
}
|
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
void uiButSetFunc(uiBut *but, uiButHandleFunc func, void *arg1, void *arg2)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
but->func= func;
|
|
|
|
but->func_arg1= arg1;
|
|
|
|
but->func_arg2= arg2;
|
|
|
|
}
|
|
|
|
|
2.5: ID datablock button back, previously known as std_libbuttons. The
way this worked in 2.4x wasn't really clean, with events going all over
the place and using dubious variables such as G.but->lockpoin or
G.sima->menunr. It works as follows now, for example:
xco= uiDefIDPoinButs(block, CTX_data_main(C), NULL, (ID**)&sima->image, ID_IM, &sima->pin, xco, yco,
sima_idpoin_handle, UI_ID_BROWSE|UI_ID_RENAME|UI_ID_ADD_NEW|UI_ID_OPEN|UI_ID_DELETE|UI_ID_ALONE|UI_ID_PIN);
The last two parameters are a callback function, and a list of events
or functionalities that are supported. The callback function will then
get the ID pointer + event to handle.
2009-02-06 16:40:14 +00:00
|
|
|
void uiButSetNFunc(uiBut *but, uiButHandleNFunc funcN, void *argN, void *arg2)
|
|
|
|
{
|
|
|
|
but->funcN= funcN;
|
|
|
|
but->func_argN= argN;
|
|
|
|
but->func_arg2= arg2;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiButSetCompleteFunc(uiBut *but, uiButCompleteFunc func, void *arg)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
but->autocomplete_func= func;
|
|
|
|
but->autofunc_arg= arg;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefIDPoinBut(uiBlock *block, uiIDPoinFuncFP func, short blocktype, int retval, char *str, short x1, short y1, short x2, short y2, void *idpp, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, IDPOIN, retval, str, x1, y1, x2, y2, NULL, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
but->idpoin_func= func;
|
|
|
|
but->idpoin_idpp= (ID**) idpp;
|
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
if(blocktype)
|
UI: don't use operators anymore for handling user interface events, but rather
a special UI handler which makes the code clearer. This UI handler is attached
to the region along with other handlers, and also gets a callback when all
handlers for the region are removed to ensure things are properly cleaned up.
This should fix XXX's in the UI code related to events and context switching.
Most of the changes are in interface_handlers.c, which was renamed from
interface_ops.c, to convert operators to the UI handler. UI code notes:
* uiBeginBlock/uiEndBlock/uiFreeBlocks now takes a context argument, this is
required to properly cancel things like timers or tooltips when the region
gets removed.
* UI_add_region_handlers will add the region level UI handlers, to be used
when adding keymap handlers etc. This replaces the UI keymap.
* When the UI code starts a modal interaction (number sliding, text editing,
opening a menu, ..), it will add an UI handler at the window level which
will block events.
Windowmanager changes:
* Added an UI handler next to the existing keymap and operator modal handlers.
It has an event handling and remove callback, and like operator modal handlers
will remember the area and region if it is registered at the window level.
* Removed the MESSAGE event.
* Operator cancel and UI handler remove callbacks now get the
window/area/region restored in the context, like the operator modal and UI
handler event callbacks.
* Regions now receive MOUSEMOVE events for the mouse going outside of the
region. This was already happening for areas, but UI buttons are at the region
level so we need it there.
Issues:
* Tooltips and menus stay open when switching to another window, and button
highlight doesn't work without moving the mouse first when Blender starts up.
I tried using some events like Q_FIRSTTIME, WINTHAW, but those don't seem to
arrive..
* Timeline header buttons seem to be moving one pixel or so sometimes when
interacting with them.
* Seems not due to this commit, but UI and keymap handlers are leaking. It
seems that handlers are being added to regions in all screens, also in regions
of areas that are not visible, but these handlers are not removed. Probably
there should only be handlers in visible regions?
2008-12-10 04:36:33 +00:00
|
|
|
uiButSetCompleteFunc(but, autocomplete_id, (void *)(intptr_t)blocktype);
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *uiDefBlockBut(uiBlock *block, uiBlockCreateFunc func, void *arg, char *str, short x1, short y1, short x2, short y2, char *tip)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, BLOCK, 0, str, x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
but->block_create_func= func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *uiDefPulldownBut(uiBlock *block, uiBlockCreateFunc func, void *arg, char *str, short x1, short y1, short x2, short y2, char *tip)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, PULLDOWN, 0, str, x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
but->block_create_func= func;
|
|
|
|
ui_check_but(but);
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefMenuBut(uiBlock *block, uiMenuCreateFunc func, void *arg, char *str, short x1, short y1, short x2, short y2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, HMENU, 0, str, x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
but->menu_create_func= func;
|
|
|
|
ui_check_but(but);
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
uiBut *uiDefIconTextMenuBut(uiBlock *block, uiMenuCreateFunc func, void *arg, int icon, char *str, short x1, short y1, short x2, short y2, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, HMENU, 0, str, x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
|
|
|
but->flag|= UI_ICON_RIGHT;
|
|
|
|
|
|
|
|
but->menu_create_func= func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Block button containing both string label and icon */
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *uiDefIconTextBlockBut(uiBlock *block, uiBlockCreateFunc func, void *arg, int icon, char *str, short x1, short y1, short x2, short y2, char *tip)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, BLOCK, 0, str, x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
|
|
|
but->flag|= UI_ICON_RIGHT;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
but->block_create_func= func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Block button containing icon */
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
uiBut *uiDefIconBlockBut(uiBlock *block, uiBlockCreateFunc func, void *arg, int retval, int icon, short x1, short y1, short x2, short y2, char *tip)
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, BLOCK, retval, "", x1, y1, x2, y2, arg, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
|
|
|
|
but->icon= (BIFIconID) icon;
|
|
|
|
but->flag|= UI_HAS_ICON;
|
|
|
|
|
|
|
|
but->flag|= UI_ICON_LEFT;
|
|
|
|
but->flag|= UI_ICON_RIGHT;
|
|
|
|
|
2.5: UI & Menus
* Cleaned up UI_interface.h a bit, and added some comments to
organize things a bit and indicate what should be used when.
* uiMenu* functions can now be used to create menus for headers
too, this is done with a uiDefMenuBut, which takes a pointer
to a uiMenuCreateFunc, that will then call uiMenu* functions.
* Renamed uiMenuBegin/End to uiPupMenuBegin/End, as these are
specific to making popup menus. Will convert the other
conformation popup menu functions to use this too so we can
remove some code.
* Extended uiMenu functions, now there is is also:
BooleanO, FloatO, BooleanR, EnumR, LevelEnumR, Separator.
* Converted image window headers to use uiMenu functions, simplifies
menu code further here. Did not remove the uiDefMenu functions as
they are used in sequencer/view3d in some places now (will fix).
* Also tried to simplify and fix bounds computation a bit better
for popup menus. It tried to find out in advance what the size
of the menu was but this is difficult with keymap strings in
there, now uiPopupBoundsBlock can figure this out afterwards and
ensure the popup is within the window bounds. Will convert some
other functions to use this too.
2009-01-30 12:18:08 +00:00
|
|
|
but->block_create_func= func;
|
Port of part of the Interface code to 2.50.
This is based on the current trunk version, so these files should not need
merges. There's two things (clipboard and intptr_t) that are missing in 2.50
and commented out with XXX 2.48, these can be enabled again once trunk is
merged into this branch.
Further this is not all interface code, there are many parts commented out:
* interface.c: nearly all button types, missing: links, chartab, keyevent.
* interface_draw.c: almost all code, with some small exceptions.
* interface_ops.c: this replaces ui_do_but and uiDoBlocks with two operators,
making it non-blocking.
* interface_regions: this is a part of interface.c, split off, contains code to
create regions for tooltips, menus, pupmenu (that one is crashing currently),
color chooser, basically regions with buttons which is fairly independent of
core interface code.
* interface_panel.c and interface_icons.c: not ported over, so no panels and
icons yet. Panels should probably become (free floating) regions?
* text.c: (formerly language.c) for drawing text and translation. this works
but is using bad globals still and could be cleaned up.
Header Files:
* ED_datafiles.h now has declarations for datatoc_ files, so those extern
declarations can be #included instead of repeated.
* The user interface code is in UI_interface.h and other UI_* files.
Core:
* The API for creating blocks, buttons, etc is nearly the same still. Blocks
are now created per region instead of per area.
* The code was made non-blocking, which means that any changes and redraws
should be possible while editing a button. That means though that we need
some sort of persistence even though the blender model is to recreate buttons
for each redraw. So when a new block is created, some matching happens to
find out which buttons correspond to buttons in the previously created block,
and for activated buttons some data is then copied over to the new button.
* Added UI_init/UI_init_userdef/UI_exit functions that should initialize code
in this module, instead of multiple function calls in the windowmanager.
* Removed most static/globals from interface.c.
* Removed UIafterfunc_ I don't think it's needed anymore, and not sure how it
would integrate here?
* Currently only full window redraws are used, this should become per region
and maybe per button later.
Operators:
* Events are currently handled through two operators: button activate and menu
handle. Operators may not be the best way to implement this, since there are
currently some issues with events being missed, but they can become a special
handler type instead, this should not be a big change.
* The button activate operator runs as long as a button is active, and will
handle all interaction with that button until the button is not activated
anymore. This means clicking, text editing, number dragging, opening menu
blocks, etc.
* Since this operator has to be non-blocking, the ui_do_but code needed to made
non-blocking. That means variables that were previously on the stack, now
need to be stored away in a struct such that they can be accessed again when
the operator receives more events.
* Additionally the place in the ui_do_but code indicated the state, now that
needs to be set explicit in order to handle the right events in the right
state. So an activated button can be in one of these states: init, highlight,
wait_flash, wait_release, wait_key_event, num_editing, text_editing,
text_selecting, block_open, exit.
* For each button type an ui_apply_but_* function has also been separated out
from ui_do_but. This makes it possible to continuously apply the button as
text is being typed for example, and there is an option in the code to enable
this. Since the code non-blocking and can deal with the button being deleted
even, it should be safe to do this.
* When editing text, dragging numbers, etc, the actual data (but->poin) is not
being edited, since that would mean data is being edited without correct
updates happening, while some other part of blender may be accessing that
data in the meantime. So data values, strings, vectors are written to a
temporary location and only flush in the apply function.
Regions:
* Menus, color chooser, tooltips etc all create screen level regions. Such menu
blocks give a handle to the button that creates it, which will contain the
results of the menu block once a MESSAGE event is received from that menu
block.
* For this type of menu block the coordinates used to be in window space. They
are still created that way and ui_positionblock still works with window
coordinates, but after that the block and buttons are brought back to region
coordinates since these are now contained in a region.
* The flush/overdraw frontbuffer drawing code was removed, the windowmanager
should have enough information with these screen level regions to have full
control over what gets drawn when and to then do correct compositing.
Testing:
* The header in the time space currently has some buttons to test the UI code.
2008-11-11 18:31:32 +00:00
|
|
|
ui_check_but(but);
|
|
|
|
|
|
|
|
return but;
|
|
|
|
}
|
|
|
|
|
|
|
|
void uiDefKeyevtButS(uiBlock *block, int retval, char *str, short x1, short y1, short x2, short y2, short *spoin, char *tip)
|
|
|
|
{
|
|
|
|
uiBut *but= ui_def_but(block, KEYEVT|SHO, retval, str, x1, y1, x2, y2, spoin, 0.0, 0.0, 0.0, 0.0, tip);
|
|
|
|
ui_check_but(but);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Program Init/Exit */
|
|
|
|
|
|
|
|
void UI_init(void)
|
|
|
|
{
|
|
|
|
uiDefFont(UI_HELVB,
|
|
|
|
BMF_GetFont(BMF_kHelveticaBold14),
|
|
|
|
BMF_GetFont(BMF_kHelveticaBold12),
|
|
|
|
BMF_GetFont(BMF_kHelveticaBold10),
|
|
|
|
BMF_GetFont(BMF_kHelveticaBold8));
|
|
|
|
uiDefFont(UI_HELV,
|
|
|
|
BMF_GetFont(BMF_kHelvetica12),
|
|
|
|
BMF_GetFont(BMF_kHelvetica12),
|
|
|
|
BMF_GetFont(BMF_kHelvetica10),
|
|
|
|
BMF_GetFont(BMF_kHelveticaBold8));
|
|
|
|
|
|
|
|
ui_resources_init();
|
|
|
|
}
|
|
|
|
|
|
|
|
void UI_init_userdef()
|
|
|
|
{
|
|
|
|
ui_text_init_userdef();
|
|
|
|
ui_theme_init_userdef();
|
|
|
|
}
|
|
|
|
|
|
|
|
void UI_exit(void)
|
|
|
|
{
|
|
|
|
ui_resources_free();
|
|
|
|
}
|
|
|
|
|