This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/functions/FN_multi_function_signature.hh

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

168 lines
4.7 KiB
C++
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#pragma once
/** \file
* \ingroup fn
*
* The signature of a multi-function contains the functions name and expected parameters. New
2020-07-22 11:46:27 +10:00
* signatures should be build using the #MFSignatureBuilder class.
*/
#include "FN_multi_function_param_type.hh"
#include "BLI_vector.hh"
2020-07-03 14:25:20 +02:00
namespace blender::fn {
struct MFSignature {
/**
* The name should be statically allocated so that it lives longer than this signature. This is
* used instead of an #std::string because of the overhead when many functions are created.
* If the name of the function has to be more dynamic for debugging purposes, override
* #MultiFunction::debug_name() instead. Then the dynamic name will only be computed when it is
* actually needed.
*/
const char *function_name;
Vector<const char *> param_names;
Vector<MFParamType> param_types;
Vector<int> param_data_indices;
bool depends_on_context = false;
};
class MFSignatureBuilder {
private:
MFSignature &signature_;
public:
MFSignatureBuilder(const char *function_name, MFSignature &signature_to_build)
: signature_(signature_to_build)
{
signature_.function_name = function_name;
}
2020-07-22 11:46:27 +10:00
/* Input Parameter Types */
template<typename T> void single_input(const char *name)
{
this->single_input(name, CPPType::get<T>());
}
void single_input(const char *name, const CPPType &type)
{
this->input(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_input(const char *name)
{
this->vector_input(name, CPPType::get<T>());
}
void vector_input(const char *name, const CPPType &base_type)
{
this->input(name, MFDataType::ForVector(base_type));
}
void input(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Input, data_type));
}
2020-07-22 11:46:27 +10:00
/* Output Parameter Types */
template<typename T> void single_output(const char *name)
{
this->single_output(name, CPPType::get<T>());
}
void single_output(const char *name, const CPPType &type)
{
this->output(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_output(const char *name)
{
this->vector_output(name, CPPType::get<T>());
}
void vector_output(const char *name, const CPPType &base_type)
{
this->output(name, MFDataType::ForVector(base_type));
}
void output(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Output, data_type));
}
2020-07-22 11:46:27 +10:00
/* Mutable Parameter Types */
template<typename T> void single_mutable(const char *name)
{
this->single_mutable(name, CPPType::get<T>());
}
void single_mutable(const char *name, const CPPType &type)
{
this->mutable_(name, MFDataType::ForSingle(type));
}
template<typename T> void vector_mutable(const char *name)
{
this->vector_mutable(name, CPPType::get<T>());
}
void vector_mutable(const char *name, const CPPType &base_type)
{
this->mutable_(name, MFDataType::ForVector(base_type));
}
void mutable_(const char *name, MFDataType data_type)
{
signature_.param_names.append(name);
signature_.param_types.append(MFParamType(MFParamType::Mutable, data_type));
}
void add(const char *name, const MFParamType &param_type)
{
switch (param_type.interface_type()) {
case MFParamType::Input:
this->input(name, param_type.data_type());
break;
case MFParamType::Mutable:
this->mutable_(name, param_type.data_type());
break;
case MFParamType::Output:
this->output(name, param_type.data_type());
break;
}
}
Geometry Nodes: refactor array devirtualization Goals: * Better high level control over where devirtualization occurs. There is always a trade-off between performance and compile-time/binary-size. * Simplify using array devirtualization. * Better performance for cases where devirtualization wasn't used before. Many geometry nodes accept fields as inputs. Internally, that means that the execution functions have to accept so called "virtual arrays" as inputs. Those can be e.g. actual arrays, just single values, or lazily computed arrays. Due to these different possible virtual arrays implementations, access to individual elements is slower than it would be if everything was just a normal array (access does through a virtual function call). For more complex execution functions, this overhead does not matter, but for small functions (like a simple addition) it very much does. The virtual function call also prevents the compiler from doing some optimizations (e.g. loop unrolling and inserting simd instructions). The solution is to "devirtualize" the virtual arrays for small functions where the overhead is measurable. Essentially, the function is generated many times with different array types as input. Then there is a run-time dispatch that calls the best implementation. We have been doing devirtualization in e.g. math nodes for a long time already. This patch just generalizes the concept and makes it easier to control. It also makes it easier to investigate the different trade-offs when it comes to devirtualization. Nodes that we've optimized using devirtualization before didn't get a speedup. However, a couple of nodes are using devirtualization now, that didn't before. Those got a 2-4x speedup in common cases. * Map Range * Random Value * Switch * Combine XYZ Differential Revision: https://developer.blender.org/D14628
2022-04-26 17:12:34 +02:00
template<MFParamCategory Category, typename T>
void add(MFParamTag<Category, T> /* tag */, const char *name)
{
switch (Category) {
case MFParamCategory::SingleInput:
this->single_input<T>(name);
return;
case MFParamCategory::VectorInput:
this->vector_input<T>(name);
return;
case MFParamCategory::SingleOutput:
this->single_output<T>(name);
return;
case MFParamCategory::VectorOutput:
this->vector_output<T>(name);
return;
case MFParamCategory::SingleMutable:
this->single_mutable<T>(name);
return;
case MFParamCategory::VectorMutable:
this->vector_mutable<T>(name);
return;
}
BLI_assert_unreachable();
}
/* Context */
/** This indicates that the function accesses the context. This disables optimizations that
2020-07-22 11:46:27 +10:00
* depend on the fact that the function always performers the same operation. */
void depends_on_context()
{
signature_.depends_on_context = true;
}
};
2020-07-03 14:25:20 +02:00
} // namespace blender::fn