This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/physics/intern/implicit_eigen.cpp

1340 lines
34 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*/
/** \file
* \ingroup bph
*/
#include "implicit.h"
#ifdef IMPLICIT_SOLVER_EIGEN
//#define USE_EIGEN_CORE
#define USE_EIGEN_CONSTRAINED_CG
#ifdef __GNUC__
# pragma GCC diagnostic push
/* XXX suppress verbose warnings in eigen */
2017-11-14 17:00:54 +01:00
//# pragma GCC diagnostic ignored "-Wlogical-op"
#endif
#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#ifdef NDEBUG
#define IMPLICIT_NDEBUG
#endif
#define NDEBUG
#endif
#include <Eigen/Sparse>
#include <Eigen/src/Core/util/DisableStupidWarnings.h>
#ifdef USE_EIGEN_CONSTRAINED_CG
#include <intern/ConstrainedConjugateGradient.h>
#endif
#ifndef IMPLICIT_ENABLE_EIGEN_DEBUG
#ifndef IMPLICIT_NDEBUG
#undef NDEBUG
#else
#undef IMPLICIT_NDEBUG
#endif
#endif
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
#include "MEM_guardedalloc.h"
extern "C" {
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_texture_types.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BLI_utildefines.h"
#include "BKE_cloth.h"
#include "BKE_collision.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BPH_mass_spring.h"
}
typedef float Scalar;
static float I[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
/* slightly extended Eigen vector class
* with conversion to/from plain C float array
*/
class fVector : public Eigen::Vector3f {
public:
typedef float *ctype;
fVector()
{
}
fVector(const ctype &v)
{
for (int k = 0; k < 3; ++k)
coeffRef(k) = v[k];
}
2018-12-01 08:15:25 +11:00
fVector& operator =(const ctype &v)
{
for (int k = 0; k < 3; ++k)
coeffRef(k) = v[k];
return *this;
}
operator ctype()
{
return data();
}
};
/* slightly extended Eigen matrix class
* with conversion to/from plain C float array
*/
class fMatrix : public Eigen::Matrix3f {
public:
typedef float (*ctype)[3];
fMatrix()
{
}
fMatrix(const ctype &v)
{
for (int k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
coeffRef(l, k) = v[k][l];
}
2018-12-01 08:15:25 +11:00
fMatrix& operator =(const ctype &v)
{
for (int k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
coeffRef(l, k) = v[k][l];
return *this;
}
operator ctype()
{
return (ctype)data();
}
};
/* Extension of dense Eigen vectors,
* providing 3-float block access for blenlib math functions
*/
class lVector : public Eigen::VectorXf {
public:
typedef Eigen::VectorXf base_t;
lVector()
{
}
template <typename T>
2018-12-01 08:15:25 +11:00
lVector& operator =(T rhs)
{
base_t::operator=(rhs);
return *this;
}
2018-12-01 08:15:25 +11:00
float *v3(int vertex)
{
return &coeffRef(3 * vertex);
}
2018-12-01 08:15:25 +11:00
const float *v3(int vertex) const
{
return &coeffRef(3 * vertex);
}
};
typedef Eigen::Triplet<Scalar> Triplet;
typedef std::vector<Triplet> TripletList;
typedef Eigen::SparseMatrix<Scalar> lMatrix;
/* Constructor type that provides more convenient handling of Eigen triplets
* for efficient construction of sparse 3x3 block matrices.
* This should be used for building lMatrix instead of writing to such lMatrix directly (which is very inefficient).
* After all elements have been defined using the set() method, the actual matrix can be filled using construct().
*/
struct lMatrixCtor {
lMatrixCtor()
{
}
void reset()
{
m_trips.clear();
}
void reserve(int numverts)
{
/* reserve for diagonal entries */
m_trips.reserve(numverts * 9);
}
void add(int i, int j, const fMatrix &m)
{
i *= 3;
j *= 3;
for (int k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
m_trips.push_back(Triplet(i + k, j + l, m.coeff(l, k)));
}
void sub(int i, int j, const fMatrix &m)
{
i *= 3;
j *= 3;
for (int k = 0; k < 3; ++k)
for (int l = 0; l < 3; ++l)
m_trips.push_back(Triplet(i + k, j + l, -m.coeff(l, k)));
}
inline void construct(lMatrix &m)
{
m.setFromTriplets(m_trips.begin(), m_trips.end());
m_trips.clear();
}
private:
TripletList m_trips;
};
#ifdef USE_EIGEN_CORE
typedef Eigen::ConjugateGradient<lMatrix, Eigen::Lower, Eigen::DiagonalPreconditioner<Scalar> > ConjugateGradient;
#endif
#ifdef USE_EIGEN_CONSTRAINED_CG
typedef Eigen::ConstrainedConjugateGradient<lMatrix, Eigen::Lower, lMatrix,
Eigen::DiagonalPreconditioner<Scalar> >
2018-12-01 08:15:25 +11:00
ConstraintConjGrad;
#endif
using Eigen::ComputationInfo;
static void print_lvector(const lVector &v)
{
for (int i = 0; i < v.rows(); ++i) {
if (i > 0 && i % 3 == 0)
printf("\n");
printf("%f,\n", v[i]);
}
}
static void print_lmatrix(const lMatrix &m)
{
for (int j = 0; j < m.rows(); ++j) {
if (j > 0 && j % 3 == 0)
printf("\n");
for (int i = 0; i < m.cols(); ++i) {
if (i > 0 && i % 3 == 0)
printf(" ");
implicit_print_matrix_elem(m.coeff(j, i));
}
printf("\n");
}
}
BLI_INLINE void lMatrix_reserve_elems(lMatrix &m, int num)
{
m.reserve(Eigen::VectorXi::Constant(m.cols(), num));
}
BLI_INLINE float *lVector_v3(lVector &v, int vertex)
{
return v.data() + 3 * vertex;
}
BLI_INLINE const float *lVector_v3(const lVector &v, int vertex)
{
return v.data() + 3 * vertex;
}
#if 0
BLI_INLINE void triplets_m3(TripletList &tlist, float m[3][3], int i, int j)
{
i *= 3;
j *= 3;
for (int l = 0; l < 3; ++l) {
for (int k = 0; k < 3; ++k) {
tlist.push_back(Triplet(i + k, j + l, m[k][l]));
}
}
}
BLI_INLINE void triplets_m3fl(TripletList &tlist, float m[3][3], int i, int j, float factor)
{
i *= 3;
j *= 3;
for (int l = 0; l < 3; ++l) {
for (int k = 0; k < 3; ++k) {
tlist.push_back(Triplet(i + k, j + l, m[k][l] * factor));
}
}
}
BLI_INLINE void lMatrix_add_triplets(lMatrix &r, const TripletList &tlist)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r += t;
}
BLI_INLINE void lMatrix_madd_triplets(lMatrix &r, const TripletList &tlist, float f)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r += f * t;
}
BLI_INLINE void lMatrix_sub_triplets(lMatrix &r, const TripletList &tlist)
{
lMatrix t(r.rows(), r.cols());
t.setFromTriplets(tlist.begin(), tlist.end());
r -= t;
}
#endif
BLI_INLINE void outerproduct(float r[3][3], const float a[3], const float b[3])
{
mul_v3_v3fl(r[0], a, b[0]);
mul_v3_v3fl(r[1], a, b[1]);
mul_v3_v3fl(r[2], a, b[2]);
}
BLI_INLINE void cross_m3_v3m3(float r[3][3], const float v[3], float m[3][3])
{
cross_v3_v3v3(r[0], v, m[0]);
cross_v3_v3v3(r[1], v, m[1]);
cross_v3_v3v3(r[2], v, m[2]);
}
BLI_INLINE void cross_v3_identity(float r[3][3], const float v[3])
{
2018-12-01 08:15:25 +11:00
r[0][0] = 0.0f; r[1][0] = v[2]; r[2][0] = -v[1];
r[0][1] = -v[2]; r[1][1] = 0.0f; r[2][1] = v[0];
r[0][2] = v[1]; r[1][2] = -v[0]; r[2][2] = 0.0f;
}
BLI_INLINE void madd_m3_m3fl(float r[3][3], float m[3][3], float f)
{
r[0][0] += m[0][0] * f;
r[0][1] += m[0][1] * f;
r[0][2] += m[0][2] * f;
r[1][0] += m[1][0] * f;
r[1][1] += m[1][1] * f;
r[1][2] += m[1][2] * f;
r[2][0] += m[2][0] * f;
r[2][1] += m[2][1] * f;
r[2][2] += m[2][2] * f;
}
BLI_INLINE void madd_m3_m3m3fl(float r[3][3], float a[3][3], float b[3][3], float f)
{
r[0][0] = a[0][0] + b[0][0] * f;
r[0][1] = a[0][1] + b[0][1] * f;
r[0][2] = a[0][2] + b[0][2] * f;
r[1][0] = a[1][0] + b[1][0] * f;
r[1][1] = a[1][1] + b[1][1] * f;
r[1][2] = a[1][2] + b[1][2] * f;
r[2][0] = a[2][0] + b[2][0] * f;
r[2][1] = a[2][1] + b[2][1] * f;
r[2][2] = a[2][2] + b[2][2] * f;
}
struct Implicit_Data {
typedef std::vector<fMatrix> fMatrixVector;
Implicit_Data(int numverts)
{
resize(numverts);
}
void resize(int numverts)
{
this->numverts = numverts;
int tot = 3 * numverts;
M.resize(tot, tot);
F.resize(tot);
dFdX.resize(tot, tot);
dFdV.resize(tot, tot);
tfm.resize(numverts, I);
X.resize(tot);
Xnew.resize(tot);
V.resize(tot);
Vnew.resize(tot);
A.resize(tot, tot);
B.resize(tot);
dV.resize(tot);
z.resize(tot);
S.resize(tot, tot);
iM.reserve(numverts);
idFdX.reserve(numverts);
idFdV.reserve(numverts);
iS.reserve(numverts);
}
int numverts;
/* inputs */
2018-12-01 08:15:25 +11:00
lMatrix M; /* masses */
lVector F; /* forces */
lMatrix dFdX, dFdV; /* force jacobians */
2018-12-01 08:15:25 +11:00
fMatrixVector tfm; /* local coordinate transform */
/* motion state data */
2018-12-01 08:15:25 +11:00
lVector X, Xnew; /* positions */
lVector V, Vnew; /* velocities */
/* internal solver data */
2018-12-01 08:15:25 +11:00
lVector B; /* B for A*dV = B */
lMatrix A; /* A for A*dV = B */
2018-12-01 08:15:25 +11:00
lVector dV; /* velocity change (solution of A*dV = B) */
lVector z; /* target velocity in constrained directions */
lMatrix S; /* filtering matrix for constraints */
/* temporary constructors */
2018-12-01 08:15:25 +11:00
lMatrixCtor iM; /* masses */
lMatrixCtor idFdX, idFdV; /* force jacobians */
lMatrixCtor iS; /* filtering matrix for constraints */
};
Implicit_Data *BPH_mass_spring_solver_create(int numverts, int numsprings)
{
Implicit_Data *id = new Implicit_Data(numverts);
return id;
}
void BPH_mass_spring_solver_free(Implicit_Data *id)
{
if (id)
delete id;
}
int BPH_mass_spring_solver_numvert(Implicit_Data *id)
{
if (id)
return id->numverts;
else
return 0;
}
/* ==== Transformation from/to root reference frames ==== */
BLI_INLINE void world_to_root_v3(Implicit_Data *data, int index, float r[3], const float v[3])
{
copy_v3_v3(r, v);
mul_transposed_m3_v3(data->tfm[index], r);
}
BLI_INLINE void root_to_world_v3(Implicit_Data *data, int index, float r[3], const float v[3])
{
mul_v3_m3v3(r, data->tfm[index], v);
}
BLI_INLINE void world_to_root_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
{
float trot[3][3];
copy_m3_m3(trot, data->tfm[index]);
transpose_m3(trot);
mul_m3_m3m3(r, trot, m);
}
BLI_INLINE void root_to_world_m3(Implicit_Data *data, int index, float r[3][3], float m[3][3])
{
mul_m3_m3m3(r, data->tfm[index], m);
}
/* ================================ */
bool BPH_mass_spring_solve_velocities(Implicit_Data *data, float dt, ImplicitSolverResult *result)
{
#ifdef USE_EIGEN_CORE
typedef ConjugateGradient solver_t;
#endif
#ifdef USE_EIGEN_CONSTRAINED_CG
typedef ConstraintConjGrad solver_t;
#endif
data->iM.construct(data->M);
data->idFdX.construct(data->dFdX);
data->idFdV.construct(data->dFdV);
data->iS.construct(data->S);
solver_t cg;
cg.setMaxIterations(100);
cg.setTolerance(0.01f);
#ifdef USE_EIGEN_CONSTRAINED_CG
cg.filter() = data->S;
#endif
2018-12-01 08:15:25 +11:00
data->A = data->M - dt * data->dFdV - dt * dt * data->dFdX;
cg.compute(data->A);
2018-12-01 08:15:25 +11:00
data->B = dt * data->F + dt * dt * data->dFdX * data->V;
#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
printf("==== A ====\n");
print_lmatrix(id->A);
printf("==== z ====\n");
print_lvector(id->z);
printf("==== B ====\n");
print_lvector(id->B);
printf("==== S ====\n");
print_lmatrix(id->S);
#endif
#ifdef USE_EIGEN_CORE
data->dV = cg.solve(data->B);
#endif
#ifdef USE_EIGEN_CONSTRAINED_CG
data->dV = cg.solveWithGuess(data->B, data->z);
#endif
#ifdef IMPLICIT_PRINT_SOLVER_INPUT_OUTPUT
printf("==== dV ====\n");
print_lvector(id->dV);
printf("========\n");
#endif
data->Vnew = data->V + data->dV;
switch (cg.info()) {
case Eigen::Success: result->status = BPH_SOLVER_SUCCESS; break;
case Eigen::NoConvergence: result->status = BPH_SOLVER_NO_CONVERGENCE; break;
case Eigen::InvalidInput: result->status = BPH_SOLVER_INVALID_INPUT; break;
case Eigen::NumericalIssue: result->status = BPH_SOLVER_NUMERICAL_ISSUE; break;
}
result->iterations = cg.iterations();
result->error = cg.error();
return cg.info() == Eigen::Success;
}
bool BPH_mass_spring_solve_positions(Implicit_Data *data, float dt)
{
data->Xnew = data->X + data->Vnew * dt;
return true;
}
/* ================================ */
void BPH_mass_spring_apply_result(Implicit_Data *data)
{
data->X = data->Xnew;
data->V = data->Vnew;
}
void BPH_mass_spring_set_vertex_mass(Implicit_Data *data, int index, float mass)
{
float m[3][3];
copy_m3_m3(m, I);
mul_m3_fl(m, mass);
data->iM.add(index, index, m);
}
void BPH_mass_spring_set_rest_transform(Implicit_Data *data, int index, float tfm[3][3])
{
#ifdef CLOTH_ROOT_FRAME
copy_m3_m3(data->tfm[index], tfm);
#else
unit_m3(data->tfm[index]);
(void)tfm;
#endif
}
void BPH_mass_spring_set_motion_state(Implicit_Data *data, int index, const float x[3], const float v[3])
{
world_to_root_v3(data, index, data->X.v3(index), x);
world_to_root_v3(data, index, data->V.v3(index), v);
}
void BPH_mass_spring_set_position(Implicit_Data *data, int index, const float x[3])
{
world_to_root_v3(data, index, data->X.v3(index), x);
}
void BPH_mass_spring_set_velocity(Implicit_Data *data, int index, const float v[3])
{
world_to_root_v3(data, index, data->V.v3(index), v);
}
void BPH_mass_spring_get_motion_state(struct Implicit_Data *data, int index, float x[3], float v[3])
{
if (x) root_to_world_v3(data, index, x, data->X.v3(index));
if (v) root_to_world_v3(data, index, v, data->V.v3(index));
}
void BPH_mass_spring_get_position(struct Implicit_Data *data, int index, float x[3])
{
root_to_world_v3(data, index, x, data->X.v3(index));
}
void BPH_mass_spring_get_new_velocity(Implicit_Data *data, int index, float v[3])
{
root_to_world_v3(data, index, v, data->V.v3(index));
}
void BPH_mass_spring_set_new_velocity(Implicit_Data *data, int index, const float v[3])
{
world_to_root_v3(data, index, data->V.v3(index), v);
}
void BPH_mass_spring_clear_constraints(Implicit_Data *data)
{
int numverts = data->numverts;
for (int i = 0; i < numverts; ++i) {
data->iS.add(i, i, I);
zero_v3(data->z.v3(i));
}
}
void BPH_mass_spring_add_constraint_ndof0(Implicit_Data *data, int index, const float dV[3])
{
data->iS.sub(index, index, I);
world_to_root_v3(data, index, data->z.v3(index), dV);
}
void BPH_mass_spring_add_constraint_ndof1(Implicit_Data *data, int index, const float c1[3], const float c2[3], const float dV[3])
{
float m[3][3], p[3], q[3], u[3], cmat[3][3];
world_to_root_v3(data, index, p, c1);
outerproduct(cmat, p, p);
copy_m3_m3(m, cmat);
world_to_root_v3(data, index, q, c2);
outerproduct(cmat, q, q);
add_m3_m3m3(m, m, cmat);
/* XXX not sure but multiplication should work here */
data->iS.sub(index, index, m);
// mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
world_to_root_v3(data, index, u, dV);
add_v3_v3(data->z.v3(index), u);
}
void BPH_mass_spring_add_constraint_ndof2(Implicit_Data *data, int index, const float c1[3], const float dV[3])
{
float m[3][3], p[3], u[3], cmat[3][3];
world_to_root_v3(data, index, p, c1);
outerproduct(cmat, p, p);
copy_m3_m3(m, cmat);
data->iS.sub(index, index, m);
// mul_m3_m3m3(data->S[index].m, data->S[index].m, m);
world_to_root_v3(data, index, u, dV);
add_v3_v3(data->z.v3(index), u);
}
void BPH_mass_spring_clear_forces(Implicit_Data *data)
{
data->F.setZero();
data->dFdX.setZero();
data->dFdV.setZero();
}
void BPH_mass_spring_force_reference_frame(Implicit_Data *data, int index, const float acceleration[3], const float omega[3], const float domega_dt[3], float mass)
{
#ifdef CLOTH_ROOT_FRAME
float acc[3], w[3], dwdt[3];
float f[3], dfdx[3][3], dfdv[3][3];
float euler[3], coriolis[3], centrifugal[3], rotvel[3];
float deuler[3][3], dcoriolis[3][3], dcentrifugal[3][3], drotvel[3][3];
world_to_root_v3(data, index, acc, acceleration);
world_to_root_v3(data, index, w, omega);
world_to_root_v3(data, index, dwdt, domega_dt);
cross_v3_v3v3(euler, dwdt, data->X.v3(index));
cross_v3_v3v3(coriolis, w, data->V.v3(index));
mul_v3_fl(coriolis, 2.0f);
cross_v3_v3v3(rotvel, w, data->X.v3(index));
cross_v3_v3v3(centrifugal, w, rotvel);
sub_v3_v3v3(f, acc, euler);
sub_v3_v3(f, coriolis);
sub_v3_v3(f, centrifugal);
mul_v3_fl(f, mass); /* F = m * a */
cross_v3_identity(deuler, dwdt);
cross_v3_identity(dcoriolis, w);
mul_m3_fl(dcoriolis, 2.0f);
cross_v3_identity(drotvel, w);
cross_m3_v3m3(dcentrifugal, w, drotvel);
add_m3_m3m3(dfdx, deuler, dcentrifugal);
negate_m3(dfdx);
mul_m3_fl(dfdx, mass);
copy_m3_m3(dfdv, dcoriolis);
negate_m3(dfdv);
mul_m3_fl(dfdv, mass);
add_v3_v3(data->F.v3(index), f);
data->idFdX.add(index, index, dfdx);
data->idFdV.add(index, index, dfdv);
#else
(void)data;
(void)index;
(void)acceleration;
(void)omega;
(void)domega_dt;
#endif
}
void BPH_mass_spring_force_gravity(Implicit_Data *data, int index, float mass, const float g[3])
{
/* force = mass * acceleration (in this case: gravity) */
float f[3];
world_to_root_v3(data, index, f, g);
mul_v3_fl(f, mass);
add_v3_v3(data->F.v3(index), f);
}
void BPH_mass_spring_force_drag(Implicit_Data *data, float drag)
{
int numverts = data->numverts;
for (int i = 0; i < numverts; i++) {
float tmp[3][3];
/* NB: uses root space velocity, no need to transform */
madd_v3_v3fl(data->F.v3(i), data->V.v3(i), -drag);
copy_m3_m3(tmp, I);
mul_m3_fl(tmp, -drag);
data->idFdV.add(i, i, tmp);
}
}
void BPH_mass_spring_force_extern(struct Implicit_Data *data, int i, const float f[3], float dfdx[3][3], float dfdv[3][3])
{
float tf[3], tdfdx[3][3], tdfdv[3][3];
world_to_root_v3(data, i, tf, f);
world_to_root_m3(data, i, tdfdx, dfdx);
world_to_root_m3(data, i, tdfdv, dfdv);
add_v3_v3(data->F.v3(i), tf);
data->idFdX.add(i, i, tdfdx);
data->idFdV.add(i, i, tdfdv);
}
static float calc_nor_area_tri(float nor[3], const float v1[3], const float v2[3], const float v3[3])
{
float n1[3], n2[3];
sub_v3_v3v3(n1, v1, v2);
sub_v3_v3v3(n2, v2, v3);
cross_v3_v3v3(nor, n1, n2);
return normalize_v3(nor);
}
/* XXX does not support force jacobians yet, since the effector system does not provide them either */
2018-12-01 08:15:25 +11:00
void BPH_mass_spring_force_face_wind(Implicit_Data *data, int v1, int v2, int v3, const float(*winvec)[3])
{
const float effector_scale = 0.02f;
float win[3], nor[3], area;
float factor;
// calculate face normal and area
area = calc_nor_area_tri(nor, data->X.v3(v1), data->X.v3(v2), data->X.v3(v3));
factor = effector_scale * area / 3.0f;
world_to_root_v3(data, v1, win, winvec[v1]);
madd_v3_v3fl(data->F.v3(v1), nor, factor * dot_v3v3(win, nor));
world_to_root_v3(data, v2, win, winvec[v2]);
madd_v3_v3fl(data->F.v3(v2), nor, factor * dot_v3v3(win, nor));
world_to_root_v3(data, v3, win, winvec[v3]);
madd_v3_v3fl(data->F.v3(v3), nor, factor * dot_v3v3(win, nor));
}
2018-12-01 08:15:25 +11:00
void BPH_mass_spring_force_edge_wind(Implicit_Data *data, int v1, int v2, const float(*winvec)[3])
{
const float effector_scale = 0.01;
float win[3], dir[3], nor[3], length;
sub_v3_v3v3(dir, data->X.v3(v1), data->X.v3(v2));
length = normalize_v3(dir);
world_to_root_v3(data, v1, win, winvec[v1]);
madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
madd_v3_v3fl(data->F.v3(v1), nor, effector_scale * length);
world_to_root_v3(data, v2, win, winvec[v2]);
madd_v3_v3v3fl(nor, win, dir, -dot_v3v3(win, dir));
madd_v3_v3fl(data->F.v3(v2), nor, effector_scale * length);
}
BLI_INLINE void dfdx_spring(float to[3][3], const float dir[3], float length, float L, float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
//return ( (I-outerprod(dir, dir))*Min(1.0f, rest/length) - I) * -k;
outerproduct(to, dir, dir);
sub_m3_m3m3(to, I, to);
2018-12-01 08:15:25 +11:00
mul_m3_fl(to, (L / length));
sub_m3_m3m3(to, to, I);
mul_m3_fl(to, k);
}
/* unused */
#if 0
BLI_INLINE void dfdx_damp(float to[3][3], const float dir[3], float length, const float vel[3], float rest, float damping)
{
// inner spring damping vel is the relative velocity of the endpoints.
2018-12-01 08:15:25 +11:00
// return (I-outerprod(dir, dir)) * (-damping * -(dot(dir, vel)/Max(length, rest)));
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
2018-12-01 08:15:25 +11:00
mul_fmatrix_S(to, (-damping * -(dot_v3v3(dir, vel) / MAX2(length, rest))));
}
#endif
BLI_INLINE void dfdv_damp(float to[3][3], const float dir[3], float damping)
{
// derivative of force wrt velocity
outerproduct(to, dir, dir);
mul_m3_fl(to, -damping);
}
BLI_INLINE float fb(float length, float L)
{
float x = length / L;
return (-11.541f * powf(x, 4) + 34.193f * powf(x, 3) - 39.083f * powf(x, 2) + 23.116f * x - 9.713f);
}
BLI_INLINE float fbderiv(float length, float L)
{
2018-12-01 08:15:25 +11:00
float x = length / L;
return (-46.164f * powf(x, 3) + 102.579f * powf(x, 2) - 78.166f * x + 23.116f);
}
BLI_INLINE float fbstar(float length, float L, float kb, float cb)
{
float tempfb_fl = kb * fb(length, L);
float fbstar_fl = cb * (length - L);
if (tempfb_fl < fbstar_fl)
return fbstar_fl;
else
return tempfb_fl;
}
// function to calculae bending spring force (taken from Choi & Co)
BLI_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
{
float tempfb_fl = kb * fb(length, L);
float fbstar_fl = cb * (length - L);
if (tempfb_fl < fbstar_fl) {
return -cb;
}
else {
2018-12-01 08:15:25 +11:00
return -kb *fbderiv(length, L);
}
}
/* calculate elonglation */
BLI_INLINE bool spring_length(Implicit_Data *data, int i, int j, float r_extent[3], float r_dir[3], float *r_length, float r_vel[3])
{
sub_v3_v3v3(r_extent, data->X.v3(j), data->X.v3(i));
sub_v3_v3v3(r_vel, data->V.v3(j), data->V.v3(i));
*r_length = len_v3(r_extent);
if (*r_length > ALMOST_ZERO) {
2018-09-02 18:51:31 +10:00
#if 0
if (length > L) {
if ((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) &&
2018-12-01 08:15:25 +11:00
( ((length - L) * 100.0f / L) > clmd->sim_parms->maxspringlen))
2016-01-21 09:05:52 +11:00
{
// cut spring!
s->flags |= CSPRING_FLAG_DEACTIVATE;
return false;
}
}
2018-09-02 18:51:31 +10:00
#endif
2018-12-01 08:15:25 +11:00
mul_v3_v3fl(r_dir, r_extent, 1.0f / (*r_length));
}
else {
zero_v3(r_dir);
}
return true;
}
BLI_INLINE void apply_spring(Implicit_Data *data, int i, int j, const float f[3], float dfdx[3][3], float dfdv[3][3])
{
add_v3_v3(data->F.v3(i), f);
sub_v3_v3(data->F.v3(j), f);
data->idFdX.add(i, i, dfdx);
data->idFdX.add(j, j, dfdx);
data->idFdX.sub(i, j, dfdx);
data->idFdX.sub(j, i, dfdx);
data->idFdV.add(i, i, dfdv);
data->idFdV.add(j, j, dfdv);
data->idFdV.sub(i, j, dfdv);
data->idFdV.sub(j, i, dfdv);
}
bool BPH_mass_spring_force_spring_linear(Implicit_Data *data, int i, int j, float restlen,
float stiffness, float damping, bool no_compress, float clamp_force,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3])
{
float extent[3], length, dir[3], vel[3];
// calculate elonglation
spring_length(data, i, j, extent, dir, &length, vel);
if (length > restlen || no_compress) {
float stretch_force, f[3], dfdx[3][3], dfdv[3][3];
stretch_force = stiffness * (length - restlen);
if (clamp_force > 0.0f && stretch_force > clamp_force) {
stretch_force = clamp_force;
}
mul_v3_v3fl(f, dir, stretch_force);
// Ascher & Boxman, p.21: Damping only during elonglation
// something wrong with it...
madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
dfdx_spring(dfdx, dir, length, restlen, stiffness);
dfdv_damp(dfdv, dir, damping);
apply_spring(data, i, j, f, dfdx, dfdv);
if (r_f) copy_v3_v3(r_f, f);
if (r_dfdx) copy_m3_m3(r_dfdx, dfdx);
if (r_dfdv) copy_m3_m3(r_dfdv, dfdv);
return true;
}
else {
if (r_f) zero_v3(r_f);
if (r_dfdx) zero_m3(r_dfdx);
if (r_dfdv) zero_m3(r_dfdv);
return false;
}
}
/* See "Stable but Responsive Cloth" (Choi, Ko 2005) */
bool BPH_mass_spring_force_spring_bending(Implicit_Data *data, int i, int j, float restlen,
float kb, float cb,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3])
{
float extent[3], length, dir[3], vel[3];
// calculate elonglation
spring_length(data, i, j, extent, dir, &length, vel);
if (length < restlen) {
float f[3], dfdx[3][3], dfdv[3][3];
mul_v3_v3fl(f, dir, fbstar(length, restlen, kb, cb));
outerproduct(dfdx, dir, dir);
mul_m3_fl(dfdx, fbstar_jacobi(length, restlen, kb, cb));
/* XXX damping not supported */
zero_m3(dfdv);
apply_spring(data, i, j, f, dfdx, dfdv);
if (r_f) copy_v3_v3(r_f, f);
if (r_dfdx) copy_m3_m3(r_dfdx, dfdx);
if (r_dfdv) copy_m3_m3(r_dfdv, dfdv);
return true;
}
else {
if (r_f) zero_v3(r_f);
if (r_dfdx) zero_m3(r_dfdx);
if (r_dfdv) zero_m3(r_dfdv);
return false;
}
}
/* Jacobian of a direction vector.
* Basically the part of the differential orthogonal to the direction,
* inversely proportional to the length of the edge.
*
* dD_ij/dx_i = -dD_ij/dx_j = (D_ij * D_ij^T - I) / len_ij
*/
BLI_INLINE void spring_grad_dir(Implicit_Data *data, int i, int j, float edge[3], float dir[3], float grad_dir[3][3])
{
float length;
sub_v3_v3v3(edge, data->X.v3(j), data->X.v3(i));
length = normalize_v3_v3(dir, edge);
if (length > ALMOST_ZERO) {
outerproduct(grad_dir, dir, dir);
sub_m3_m3m3(grad_dir, I, grad_dir);
mul_m3_fl(grad_dir, 1.0f / length);
}
else {
zero_m3(grad_dir);
}
}
BLI_INLINE void spring_angbend_forces(Implicit_Data *data, int i, int j, int k,
const float goal[3],
float stiffness, float damping,
int q, const float dx[3], const float dv[3],
float r_f[3])
{
float edge_ij[3], dir_ij[3];
float edge_jk[3], dir_jk[3];
float vel_ij[3], vel_jk[3], vel_ortho[3];
float f_bend[3], f_damp[3];
float fk[3];
float dist[3];
zero_v3(fk);
sub_v3_v3v3(edge_ij, data->X.v3(j), data->X.v3(i));
if (q == i) sub_v3_v3(edge_ij, dx);
if (q == j) add_v3_v3(edge_ij, dx);
normalize_v3_v3(dir_ij, edge_ij);
sub_v3_v3v3(edge_jk, data->X.v3(k), data->X.v3(j));
if (q == j) sub_v3_v3(edge_jk, dx);
if (q == k) add_v3_v3(edge_jk, dx);
normalize_v3_v3(dir_jk, edge_jk);
sub_v3_v3v3(vel_ij, data->V.v3(j), data->V.v3(i));
if (q == i) sub_v3_v3(vel_ij, dv);
if (q == j) add_v3_v3(vel_ij, dv);
sub_v3_v3v3(vel_jk, data->V.v3(k), data->V.v3(j));
if (q == j) sub_v3_v3(vel_jk, dv);
if (q == k) add_v3_v3(vel_jk, dv);
/* bending force */
sub_v3_v3v3(dist, goal, edge_jk);
mul_v3_v3fl(f_bend, dist, stiffness);
add_v3_v3(fk, f_bend);
/* damping force */
madd_v3_v3v3fl(vel_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
mul_v3_v3fl(f_damp, vel_ortho, damping);
sub_v3_v3(fk, f_damp);
copy_v3_v3(r_f, fk);
}
/* Finite Differences method for estimating the jacobian of the force */
BLI_INLINE void spring_angbend_estimate_dfdx(Implicit_Data *data, int i, int j, int k,
const float goal[3],
float stiffness, float damping,
int q, float dfdx[3][3])
{
const float delta = 0.00001f; // TODO find a good heuristic for this
float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
float f[3];
int a, b;
zero_m3(dvec_null);
unit_m3(dvec_pos);
mul_m3_fl(dvec_pos, delta * 0.5f);
copy_m3_m3(dvec_neg, dvec_pos);
negate_m3(dvec_neg);
/* XXX TODO offset targets to account for position dependency */
for (a = 0; a < 3; ++a) {
spring_angbend_forces(data, i, j, k, goal, stiffness, damping,
q, dvec_pos[a], dvec_null[a], f);
copy_v3_v3(dfdx[a], f);
spring_angbend_forces(data, i, j, k, goal, stiffness, damping,
q, dvec_neg[a], dvec_null[a], f);
sub_v3_v3(dfdx[a], f);
for (b = 0; b < 3; ++b) {
dfdx[a][b] /= delta;
}
}
}
/* Finite Differences method for estimating the jacobian of the force */
BLI_INLINE void spring_angbend_estimate_dfdv(Implicit_Data *data, int i, int j, int k,
const float goal[3],
float stiffness, float damping,
int q, float dfdv[3][3])
{
const float delta = 0.00001f; // TODO find a good heuristic for this
float dvec_null[3][3], dvec_pos[3][3], dvec_neg[3][3];
float f[3];
int a, b;
zero_m3(dvec_null);
unit_m3(dvec_pos);
mul_m3_fl(dvec_pos, delta * 0.5f);
copy_m3_m3(dvec_neg, dvec_pos);
negate_m3(dvec_neg);
/* XXX TODO offset targets to account for position dependency */
for (a = 0; a < 3; ++a) {
spring_angbend_forces(data, i, j, k, goal, stiffness, damping,
q, dvec_null[a], dvec_pos[a], f);
copy_v3_v3(dfdv[a], f);
spring_angbend_forces(data, i, j, k, goal, stiffness, damping,
q, dvec_null[a], dvec_neg[a], f);
sub_v3_v3(dfdv[a], f);
for (b = 0; b < 3; ++b) {
dfdv[a][b] /= delta;
}
}
}
/* Angular spring that pulls the vertex toward the local target
* See "Artistic Simulation of Curly Hair" (Pixar technical memo #12-03a)
*/
bool BPH_mass_spring_force_spring_bending_angular(Implicit_Data *data, int i, int j, int k,
const float target[3], float stiffness, float damping)
{
float goal[3];
float fj[3], fk[3];
float dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
float dfj_dvi[3][3], dfj_dvj[3][3], dfk_dvi[3][3], dfk_dvj[3][3], dfk_dvk[3][3];
const float vecnull[3] = {0.0f, 0.0f, 0.0f};
world_to_root_v3(data, j, goal, target);
spring_angbend_forces(data, i, j, k, goal, stiffness, damping, k, vecnull, vecnull, fk);
negate_v3_v3(fj, fk); /* counterforce */
spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, i, dfk_dxi);
spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, j, dfk_dxj);
spring_angbend_estimate_dfdx(data, i, j, k, goal, stiffness, damping, k, dfk_dxk);
copy_m3_m3(dfj_dxi, dfk_dxi); negate_m3(dfj_dxi);
copy_m3_m3(dfj_dxj, dfk_dxj); negate_m3(dfj_dxj);
spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, i, dfk_dvi);
spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, j, dfk_dvj);
spring_angbend_estimate_dfdv(data, i, j, k, goal, stiffness, damping, k, dfk_dvk);
copy_m3_m3(dfj_dvi, dfk_dvi); negate_m3(dfj_dvi);
copy_m3_m3(dfj_dvj, dfk_dvj); negate_m3(dfj_dvj);
/* add forces and jacobians to the solver data */
add_v3_v3(data->F.v3(j), fj);
add_v3_v3(data->F.v3(k), fk);
data->idFdX.add(j, j, dfj_dxj);
data->idFdX.add(k, k, dfk_dxk);
data->idFdX.add(i, j, dfj_dxi);
data->idFdX.add(j, i, dfj_dxi);
data->idFdX.add(j, k, dfk_dxj);
data->idFdX.add(k, j, dfk_dxj);
data->idFdX.add(i, k, dfk_dxi);
data->idFdX.add(k, i, dfk_dxi);
data->idFdV.add(j, j, dfj_dvj);
data->idFdV.add(k, k, dfk_dvk);
data->idFdV.add(i, j, dfj_dvi);
data->idFdV.add(j, i, dfj_dvi);
data->idFdV.add(j, k, dfk_dvj);
data->idFdV.add(k, j, dfk_dvj);
data->idFdV.add(i, k, dfk_dvi);
data->idFdV.add(k, i, dfk_dvi);
/* XXX analytical calculation of derivatives below is incorrect.
* This proved to be difficult, but for now just using the finite difference method for
* estimating the jacobians should be sufficient.
*/
#if 0
float edge_ij[3], dir_ij[3], grad_dir_ij[3][3];
float edge_jk[3], dir_jk[3], grad_dir_jk[3][3];
float dist[3], vel_jk[3], vel_jk_ortho[3], projvel[3];
float target[3];
float tmp[3][3];
float fi[3], fj[3], fk[3];
float dfi_dxi[3][3], dfj_dxi[3][3], dfj_dxj[3][3], dfk_dxi[3][3], dfk_dxj[3][3], dfk_dxk[3][3];
float dfdvi[3][3];
// TESTING
damping = 0.0f;
zero_v3(fi);
zero_v3(fj);
zero_v3(fk);
zero_m3(dfi_dxi);
zero_m3(dfj_dxi);
zero_m3(dfk_dxi);
zero_m3(dfk_dxj);
zero_m3(dfk_dxk);
/* jacobian of direction vectors */
spring_grad_dir(data, i, j, edge_ij, dir_ij, grad_dir_ij);
spring_grad_dir(data, j, k, edge_jk, dir_jk, grad_dir_jk);
sub_v3_v3v3(vel_jk, data->V[k], data->V[j]);
/* bending force */
mul_v3_v3fl(target, dir_ij, restlen);
sub_v3_v3v3(dist, target, edge_jk);
mul_v3_v3fl(fk, dist, stiffness);
/* damping force */
madd_v3_v3v3fl(vel_jk_ortho, vel_jk, dir_jk, -dot_v3v3(vel_jk, dir_jk));
madd_v3_v3fl(fk, vel_jk_ortho, damping);
/* XXX this only holds true as long as we assume straight rest shape!
* eventually will become a bit more involved since the opposite segment
* gets its own target, under condition of having equal torque on both sides.
*/
copy_v3_v3(fi, fk);
/* counterforce on the middle point */
sub_v3_v3(fj, fi);
sub_v3_v3(fj, fk);
/* === derivatives === */
madd_m3_m3fl(dfk_dxi, grad_dir_ij, stiffness * restlen);
madd_m3_m3fl(dfk_dxj, grad_dir_ij, -stiffness * restlen);
madd_m3_m3fl(dfk_dxj, I, stiffness);
madd_m3_m3fl(dfk_dxk, I, -stiffness);
copy_m3_m3(dfi_dxi, dfk_dxk);
negate_m3(dfi_dxi);
/* dfj_dfi == dfi_dfj due to symmetry,
* dfi_dfj == dfk_dfj due to fi == fk
* XXX see comment above on future bent rest shapes
*/
copy_m3_m3(dfj_dxi, dfk_dxj);
/* dfj_dxj == -(dfi_dxj + dfk_dxj) due to fj == -(fi + fk) */
sub_m3_m3m3(dfj_dxj, dfj_dxj, dfj_dxi);
sub_m3_m3m3(dfj_dxj, dfj_dxj, dfk_dxj);
/* add forces and jacobians to the solver data */
add_v3_v3(data->F[i], fi);
add_v3_v3(data->F[j], fj);
add_v3_v3(data->F[k], fk);
add_m3_m3m3(data->dFdX[i].m, data->dFdX[i].m, dfi_dxi);
add_m3_m3m3(data->dFdX[j].m, data->dFdX[j].m, dfj_dxj);
add_m3_m3m3(data->dFdX[k].m, data->dFdX[k].m, dfk_dxk);
add_m3_m3m3(data->dFdX[block_ij].m, data->dFdX[block_ij].m, dfj_dxi);
add_m3_m3m3(data->dFdX[block_jk].m, data->dFdX[block_jk].m, dfk_dxj);
add_m3_m3m3(data->dFdX[block_ik].m, data->dFdX[block_ik].m, dfk_dxi);
#endif
return true;
}
bool BPH_mass_spring_force_spring_goal(Implicit_Data *data, int i, const float goal_x[3], const float goal_v[3],
float stiffness, float damping,
float r_f[3], float r_dfdx[3][3], float r_dfdv[3][3])
{
float root_goal_x[3], root_goal_v[3], extent[3], length, dir[3], vel[3];
float f[3], dfdx[3][3], dfdv[3][3];
/* goal is in world space */
world_to_root_v3(data, i, root_goal_x, goal_x);
world_to_root_v3(data, i, root_goal_v, goal_v);
sub_v3_v3v3(extent, root_goal_x, data->X.v3(i));
sub_v3_v3v3(vel, root_goal_v, data->V.v3(i));
length = normalize_v3_v3(dir, extent);
if (length > ALMOST_ZERO) {
mul_v3_v3fl(f, dir, stiffness * length);
// Ascher & Boxman, p.21: Damping only during elonglation
// something wrong with it...
madd_v3_v3fl(f, dir, damping * dot_v3v3(vel, dir));
dfdx_spring(dfdx, dir, length, 0.0f, stiffness);
dfdv_damp(dfdv, dir, damping);
add_v3_v3(data->F.v3(i), f);
data->idFdX.add(i, i, dfdx);
data->idFdV.add(i, i, dfdv);
if (r_f) copy_v3_v3(r_f, f);
if (r_dfdx) copy_m3_m3(r_dfdx, dfdx);
if (r_dfdv) copy_m3_m3(r_dfdv, dfdv);
return true;
}
else {
if (r_f) zero_v3(r_f);
if (r_dfdx) zero_m3(r_dfdx);
if (r_dfdv) zero_m3(r_dfdv);
return false;
}
}
#endif /* IMPLICIT_SOLVER_EIGEN */