This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Object.c

945 lines
30 KiB
C
Raw Normal View History

/*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Michel Selten
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Object.h"
/*****************************************************************************/
/* Function: M_Object_New */
/* Python equivalent: Blender.Object.New */
/*****************************************************************************/
PyObject *M_Object_New(PyObject *self, PyObject *args)
{
struct Object * object;
C_Object * blen_object;
int type;
char name[32];
printf ("In Object_New()\n");
if (!PyArg_ParseTuple(args, "i", &type))
{
PythonReturnErrorObject (PyExc_TypeError,
"type expected");
return (NULL);
}
/* Create a new object. */
switch (type)
{
case OB_MESH: strcpy (name, "Mesh"); break;
case OB_CURVE: strcpy (name, "Curve"); break;
case OB_SURF: strcpy (name, "Surf"); break;
case OB_FONT: strcpy (name, "Text"); break;
case OB_MBALL: strcpy (name, "Mball"); break;
case OB_CAMERA: strcpy (name, "Camera"); break;
case OB_LAMP: strcpy (name, "Lamp"); break;
case OB_IKA: strcpy (name, "Ika"); break;
case OB_LATTICE: strcpy (name, "Lattice"); break;
case OB_WAVE: strcpy (name, "Wave"); break;
case OB_ARMATURE: strcpy (name, "Armature"); break;
default: strcpy (name, "Empty");
}
object = alloc_libblock (&(G.main->object), ID_OB, name);
object->flag = 0;
object->type = type;
/* transforms */
QuatOne(object->quat);
QuatOne(object->dquat);
object->col[3]= 1.0; // alpha
object->size[0] = object->size[1] = object->size[2] = 1.0;
object->loc[0] = object->loc[1] = object->loc[2] = 0.0;
Mat4One(object->parentinv);
Mat4One(object->obmat);
object->dt = OB_SHADED; // drawtype
if (U.flag & MAT_ON_OB)
{
object->colbits = -1;
}
switch (object->type)
{
case OB_CAMERA: /* fall through. */
case OB_LAMP:
object->trackflag = OB_NEGZ;
object->upflag = OB_POSY;
break;
default:
object->trackflag = OB_POSY;
object->upflag = OB_POSZ;
}
object->ipoflag = OB_OFFS_OB + OB_OFFS_PARENT;
/* duplivert settings */
object->dupon = 1;
object->dupoff = 0;
object->dupsta = 1;
object->dupend = 100;
/* Gameengine defaults*/
object->mass = 1.0;
object->inertia = 1.0;
object->formfactor = 0.4;
object->damping = 0.04;
object->rdamping = 0.1;
object->anisotropicFriction[0] = 1.0;
object->anisotropicFriction[1] = 1.0;
object->anisotropicFriction[2] = 1.0;
object->gameflag = OB_PROP;
object->lay = 1; // Layer, by default visible
switch(type)
{
case OB_MESH:
object->data = add_mesh();
G.totmesh++;
break;
case OB_CAMERA:
object->data = add_camera();
break;
case OB_LAMP:
object->data = add_lamp();
G.totlamp++;
break;
/* TODO the following types will be supported later
case OB_CURVE:
object->data = add_curve(OB_CURVE);
G.totcurve++;
break;
case OB_SURF:
object->data = add_curve(OB_SURF);
G.totcurve++;
break;
case OB_FONT:
object->data = add_curve(OB_FONT);
break;
case OB_MBALL:
object->data = add_mball();
break;
case OB_IKA:
object->data = add_ika();
object->dt = OB_WIRE;
break;
case OB_LATTICE:
object->data = (void *)add_lattice();
object->dt = OB_WIRE;
break;
case OB_WAVE:
object->data = add_wave();
break;
case OB_ARMATURE:
object->data = add_armature();
break;
*/
}
G.totobj++;
/* Create a Python object from it. */
blen_object = (C_Object*)PyObject_NEW (C_Object, &object_type);
blen_object->object = object;
return ((PyObject*)blen_object);
}
/*****************************************************************************/
/* Function: M_Object_Get */
/* Python equivalent: Blender.Object.Get */
/*****************************************************************************/
PyObject *M_Object_Get(PyObject *self, PyObject *args)
{
struct Object * object;
char * name = NULL;
printf ("In Object_Get()\n");
PyArg_ParseTuple(args, "|s", &name);
if (name != NULL)
{
C_Object * blen_object;
object = GetObjectByName (name);
if (object == NULL)
{
/* No object exists with the name specified in the argument name. */
return (PythonReturnErrorObject (PyExc_AttributeError,
"Unknown object specified."));
}
blen_object = (C_Object*)PyObject_NEW (C_Object, &object_type);
blen_object->object = object;
return ((PyObject*)blen_object);
}
else
{
/* No argument has been given. Return a list of all objects by name. */
PyObject * obj_list;
ID * id_iter;
int index = 0;
obj_list = PyList_New (BLI_countlist (&(G.main->object)));
if (obj_list == NULL)
{
return (PythonReturnErrorObject (PyExc_SystemError,
"List creation failed."));
}
object = G.main->object.first;
id_iter = &(object->id);
while (id_iter)
{
PyObject * object;
object = PyString_FromString (GetIdName (id_iter));
if (object == NULL)
{
return (PythonReturnErrorObject (PyExc_SystemError,
"Python string creation failed."));
}
PyList_SetItem (obj_list, index, object);
id_iter = id_iter->next;
index++;
}
return (obj_list);
}
}
/*****************************************************************************/
/* Function: M_Object_GetSelected */
/* Python equivalent: Blender.Object.getSelected */
/*****************************************************************************/
PyObject *M_Object_GetSelected (PyObject *self, PyObject *args)
{
C_Object * blen_object;
PyObject * list;
Base * base_iter;
printf ("In Object_GetSelected()\n");
list = PyList_New (0);
if ((G.scene->basact) &&
((G.scene->basact->flag & SELECT) &&
(G.scene->basact->lay & G.vd->lay)))
{
/* Active object is first in the list. */
blen_object = (C_Object*)PyObject_NEW (C_Object, &object_type);
if (blen_object == NULL)
{
Py_DECREF (list);
Py_INCREF (Py_None);
return (Py_None);
}
blen_object->object = G.scene->basact->object;
PyList_Append (list, (PyObject*)blen_object);
}
base_iter = G.scene->base.first;
while (base_iter)
{
if (((G.scene->basact->flag & SELECT) &&
(G.scene->basact->lay & G.vd->lay)) &&
(base_iter != G.scene->basact))
{
blen_object = (C_Object*)PyObject_NEW (C_Object, &object_type);
if (blen_object == NULL)
{
Py_DECREF (list);
Py_INCREF (Py_None);
return (Py_None);
}
blen_object->object = base_iter->object;
PyList_Append (list, (PyObject*)blen_object);
}
base_iter = base_iter->next;
}
return (list);
}
/*****************************************************************************/
/* Function: initObject */
/*****************************************************************************/
PyObject *M_Object_Init (void)
{
PyObject * module;
printf ("In initObject()\n");
module = Py_InitModule3("Object", M_Object_methods, M_Object_doc);
return (module);
}
/*****************************************************************************/
/* Python C_Camera methods: */
/*****************************************************************************/
static PyObject *Object_clrParent (C_Object *self, PyObject *args)
{
int mode=0;
int fast=0;
Object * parent;
if (!PyArg_ParseTuple (args, "|ii", &mode, &fast))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected one or two integers as arguments"));
}
parent = self->object->parent;
self->object->parent = 0;
if (mode == 2)
{
/* Keep transform */
apply_obmat (self->object);
}
if (!fast)
{
sort_baselist (G.scene);
}
return (Py_None);
}
static PyObject *Object_getData (C_Object *self)
{
PyObject * data_object;
int obj_id;
ID * id;
/* If there's no data associated to the Object, then there's nothing to */
/* return. */
if (self->object->data == NULL)
{
Py_INCREF (Py_None);
return (Py_None);
}
id = (ID*)self->object;
obj_id = MAKE_ID2 (id->name[0], id->name[1]);
switch (obj_id)
{
case ID_CA:
case ID_CU:
case ID_IM:
case ID_IP:
case ID_LA:
case ID_MA:
case ID_ME:
case ID_OB:
data_object = M_ObjectCreatePyObject (self->object->data);
Py_INCREF (data_object);
return (data_object);
case ID_SCE:
case ID_TXT:
case ID_WO:
default:
Py_INCREF (Py_None);
return (Py_None);
}
return (Py_None);
}
static PyObject *Object_getDeformData (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getDeltaLocation (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getDrawMode (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getDrawType (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getEuler (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getInverseMatrix (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getLocation (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_getMaterials (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getMatrix (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getParent (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getTracked (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_getType (C_Object *self)
{
return (Py_None);
}
static PyObject *Object_link (C_Object *self, PyObject *args)
{
PyObject * py_data;
ID * id;
ID * oldid;
int obj_id;
void * data = NULL;
if (!PyArg_ParseTuple (args, "O", &py_data))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected an object as argument"));
}
/* TODO: remove the Object type here, add the correct functions when */
/* ready. */
if (M_ObjectCheckPyObject (py_data))
data = (void*) M_ObjectFromPyObject (py_data);
oldid = (ID*) self->object->data;
id = (ID*) data;
obj_id = MAKE_ID2 (id->name[0], id->name[1]);
switch (obj_id)
{
case ID_ME:
if (self->object->type != OB_MESH)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
case ID_CA:
if (self->object->type != OB_CAMERA)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
case ID_LA:
if (self->object->type != OB_LAMP)
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"The 'link' object is incompatible with the base object"));
}
break;
default:
return (PythonReturnErrorObject (PyExc_AttributeError,
"Linking this object type is not supported"));
}
self->object->data = data;
id_us_plus (id);
if (oldid)
{
if (id->us > 0)
{
id->us--;
}
else
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"old object reference count below 0"));
}
}
return (Py_None);
}
static PyObject *Object_makeParent (C_Object *self, PyObject *args)
{
PyObject * list;
PyObject * py_child;
Object * child;
Object * parent;
int noninverse;
int fast;
int i;
/* Check if the arguments passed to makeParent are valid. */
if (!PyArg_ParseTuple (args, "O|ii", &list, &noninverse, &fast))
{
return (PythonReturnErrorObject (PyExc_AttributeError,
"expected a list of objects and one or two integers as arguments"));
}
if (!PySequence_Check (list))
{
return (PythonReturnErrorObject (PyExc_TypeError,
"expected a list of objects"));
}
/* Check if the PyObject passed in list is a Blender object. */
for (i=0 ; i<PySequence_Length (list) ; i++)
{
child = NULL;
py_child = PySequence_GetItem (list, i);
if (M_ObjectCheckPyObject (py_child))
child = (Object*) M_ObjectFromPyObject (py_child);
if (child == NULL)
{
return (PythonReturnErrorObject (PyExc_TypeError,
"Object Type expected"));
}
parent = (Object*)self->object;
if (test_parent_loop (parent, child))
{
return (PythonReturnErrorObject (PyExc_RuntimeError,
"parenting loop detected - parenting failed"));
}
child->partype = PAROBJECT;
child->parent = parent;
if (noninverse == 1)
{
/* Parent inverse = unity */
child->loc[0] = 0.0;
child->loc[1] = 0.0;
child->loc[2] = 0.0;
}
else
{
what_does_parent (child);
Mat4Invert (child->parentinv, parent->obmat);
}
if (!fast)
{
sort_baselist (G.scene);
}
/* We don't need the child object anymore. */
Py_DECREF ((PyObject *) child);
}
return (Py_None);
}
static PyObject *Object_materialUsage (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setDeltaLocation (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setDrawMode (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setDrawType (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setEuler (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setLocation (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_setMaterials (C_Object *self, PyObject *args)
{
return (Py_None);
}
static PyObject *Object_shareFrom (C_Object *self, PyObject *args)
{
return (Py_None);
}
/*****************************************************************************/
/* Function: M_ObjectCreatePyObject */
/* Description: This function will create a new BlenObject from an existing */
/* Object structure. */
/*****************************************************************************/
PyObject* M_ObjectCreatePyObject (struct Object *obj)
{
C_Object * blen_object;
printf ("In M_ObjectCreatePyObject\n");
blen_object = (C_Object*)PyObject_NEW (C_Object, &object_type);
if (blen_object == NULL)
{
return (NULL);
}
blen_object->object = obj;
return ((PyObject*)blen_object);
}
/*****************************************************************************/
/* Function: M_ObjectCheckPyObject */
/* Description: This function returns true when the given PyObject is of the */
/* type Object. Otherwise it will return false. */
/*****************************************************************************/
int M_ObjectCheckPyObject (PyObject *py_obj)
{
return (py_obj->ob_type == &object_type);
}
/*****************************************************************************/
/* Function: M_ObjectFromPyObject */
/* Description: This function returns the Blender object from the given */
/* PyObject. */
/*****************************************************************************/
struct Object* M_ObjectFromPyObject (PyObject *py_obj)
{
C_Object * blen_obj;
blen_obj = (C_Object*)py_obj;
return (blen_obj->object);
}
/*****************************************************************************/
/* Function: ObjectDeAlloc */
/* Description: This is a callback function for the BlenObject type. It is */
/* the destructor function. */
/*****************************************************************************/
static void ObjectDeAlloc (C_Object *obj)
{
PyObject_DEL (obj);
}
/*****************************************************************************/
/* Function: ObjectGetAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Blender and */
/* passes it to Python. */
/*****************************************************************************/
static PyObject* ObjectGetAttr (C_Object *obj, char *name)
{
struct Object * object;
struct Ika * ika;
object = obj->object;
if (StringEqual (name, "LocX"))
return (PyFloat_FromDouble(object->loc[0]));
if (StringEqual (name, "LocY"))
return (PyFloat_FromDouble(object->loc[1]));
if (StringEqual (name, "LocZ"))
return (PyFloat_FromDouble(object->loc[2]));
if (StringEqual (name, "loc"))
return (Py_BuildValue ("fff", object->loc[0], object->loc[1],
object->loc[2]));
if (StringEqual (name, "dLocX"))
return (PyFloat_FromDouble(object->dloc[0]));
if (StringEqual (name, "dLocY"))
return (PyFloat_FromDouble(object->dloc[1]));
if (StringEqual (name, "dLocZ"))
return (PyFloat_FromDouble(object->dloc[2]));
if (StringEqual (name, "dloc"))
return (Py_BuildValue ("fff", object->dloc[0], object->dloc[1],
object->dloc[2]));
if (StringEqual (name, "RotX"))
return (PyFloat_FromDouble(object->rot[0]));
if (StringEqual (name, "RotY"))
return (PyFloat_FromDouble(object->rot[1]));
if (StringEqual (name, "RotZ"))
return (PyFloat_FromDouble(object->rot[2]));
if (StringEqual (name, "rot"))
return (Py_BuildValue ("fff", object->rot[0], object->rot[1],
object->rot[2]));
if (StringEqual (name, "dRotX"))
return (PyFloat_FromDouble(object->drot[0]));
if (StringEqual (name, "dRotY"))
return (PyFloat_FromDouble(object->drot[1]));
if (StringEqual (name, "dRotZ"))
return (PyFloat_FromDouble(object->drot[2]));
if (StringEqual (name, "drot"))
return (Py_BuildValue ("fff", object->drot[0], object->drot[1],
object->drot[2]));
if (StringEqual (name, "SizeX"))
return (PyFloat_FromDouble(object->size[0]));
if (StringEqual (name, "SizeY"))
return (PyFloat_FromDouble(object->size[1]));
if (StringEqual (name, "SizeZ"))
return (PyFloat_FromDouble(object->size[2]));
if (StringEqual (name, "size"))
return (Py_BuildValue ("fff", object->size[0], object->size[1],
object->size[2]));
if (StringEqual (name, "dSizeX"))
return (PyFloat_FromDouble(object->dsize[0]));
if (StringEqual (name, "dSizeY"))
return (PyFloat_FromDouble(object->dsize[1]));
if (StringEqual (name, "dSizeZ"))
return (PyFloat_FromDouble(object->dsize[2]));
if (StringEqual (name, "dsize"))
return (Py_BuildValue ("fff", object->dsize[0], object->dsize[1],
object->dsize[2]));
if (strncmp (name,"Eff", 3) == 0)
{
if ( (object->type == OB_IKA) && (object->data != NULL) )
{
ika = object->data;
switch (name[3])
{
case 'X':
return (PyFloat_FromDouble (ika->effg[0]));
case 'Y':
return (PyFloat_FromDouble (ika->effg[1]));
case 'Z':
return (PyFloat_FromDouble (ika->effg[2]));
default:
/* Do we need to display a sensible error message here? */
return (NULL);
}
}
return (NULL);
}
if (StringEqual (name, "Layer"))
return (PyInt_FromLong(object->lay));
if (StringEqual (name, "parent"))
return (M_ObjectCreatePyObject (object->parent));
if (StringEqual (name, "track"))
return (M_ObjectCreatePyObject (object->track));
if (StringEqual (name, "data"))
return (Object_getData (obj));
if (StringEqual (name, "ipo"))
{
printf ("This is not implemented yet.\n");
return (Py_None);
}
if (StringEqual (name, "mat"))
{
printf ("This is not implemented yet. (matrix)\n");
return (Py_None);
}
if (StringEqual (name, "matrix"))
{
printf ("This is not implemented yet. (matrix)\n");
return (Py_None);
}
if (StringEqual (name, "colbits"))
return (Py_BuildValue ("h", object->colbits));
if (StringEqual (name, "drawType"))
return (Py_BuildValue ("b", object->dt));
if (StringEqual (name, "drawMode"))
return (Py_BuildValue ("b", object->dtx));
printf ("Unknown variable.\n");
return (Py_None);
}
/*****************************************************************************/
/* Function: ObjectSetAttr */
/* Description: This is a callback function for the BlenObject type. It is */
/* the function that retrieves any value from Python and sets */
/* it accordingly in Blender. */
/*****************************************************************************/
static int ObjectSetAttr (C_Object *obj, char *name, PyObject *value)
{
struct Object * object;
struct Ika * ika;
object = obj->object;
if (StringEqual (name, "LocX"))
return (!PyArg_Parse (value, "f", &(object->loc[0])));
if (StringEqual (name, "LocY"))
return (!PyArg_Parse (value, "f", &(object->loc[1])));
if (StringEqual (name, "LocZ"))
return (!PyArg_Parse (value, "f", &(object->loc[2])));
if (StringEqual (name, "loc"))
return (!PyArg_Parse (value, "fff", &(object->loc[0]),
&(object->loc[1]), &(object->loc[2])));
if (StringEqual (name, "dLocX"))
return (!PyArg_Parse (value, "f", &(object->dloc[0])));
if (StringEqual (name, "dLocY"))
return (!PyArg_Parse (value, "f", &(object->dloc[1])));
if (StringEqual (name, "dLocZ"))
return (!PyArg_Parse (value, "f", &(object->dloc[2])));
if (StringEqual (name, "dloc"))
return (!PyArg_Parse (value, "fff", &(object->dloc[0]),
&(object->dloc[1]), &(object->dloc[2])));
if (StringEqual (name, "RotX"))
return (!PyArg_Parse (value, "f", &(object->rot[0])));
if (StringEqual (name, "RotY"))
return (!PyArg_Parse (value, "f", &(object->rot[1])));
if (StringEqual (name, "RotZ"))
return (!PyArg_Parse (value, "f", &(object->rot[2])));
if (StringEqual (name, "rot"))
return (!PyArg_Parse (value, "fff", &(object->rot[0]),
&(object->rot[1]), &(object->rot[2])));
if (StringEqual (name, "dRotX"))
return (!PyArg_Parse (value, "f", &(object->drot[0])));
if (StringEqual (name, "dRotY"))
return (!PyArg_Parse (value, "f", &(object->drot[1])));
if (StringEqual (name, "dRotZ"))
return (!PyArg_Parse (value, "f", &(object->drot[2])));
if (StringEqual (name, "drot"))
return (!PyArg_Parse (value, "fff", &(object->drot[0]),
&(object->drot[1]), &(object->drot[2])));
if (StringEqual (name, "SizeX"))
return (!PyArg_Parse (value, "f", &(object->size[0])));
if (StringEqual (name, "SizeY"))
return (!PyArg_Parse (value, "f", &(object->size[1])));
if (StringEqual (name, "SizeZ"))
return (!PyArg_Parse (value, "f", &(object->size[2])));
if (StringEqual (name, "size"))
return (!PyArg_Parse (value, "fff", &(object->size[0]),
&(object->size[1]), &(object->size[2])));
if (StringEqual (name, "dSizeX"))
return (!PyArg_Parse (value, "f", &(object->dsize[0])));
if (StringEqual (name, "dSizeY"))
return (!PyArg_Parse (value, "f", &(object->dsize[1])));
if (StringEqual (name, "dSizeZ"))
return (!PyArg_Parse (value, "f", &(object->dsize[2])));
if (StringEqual (name, "dsize"))
return (!PyArg_Parse (value, "fff", &(object->dsize[0]),
&(object->dsize[1]), &(object->dsize[2])));
if (strncmp (name,"Eff", 3) == 0)
{
if ( (object->type == OB_IKA) && (object->data != NULL) )
{
ika = object->data;
switch (name[3])
{
case 'X':
return (!PyArg_Parse (value, "f", &(ika->effg[0])));
case 'Y':
return (!PyArg_Parse (value, "f", &(ika->effg[1])));
case 'Z':
return (!PyArg_Parse (value, "f", &(ika->effg[2])));
default:
/* Do we need to display a sensible error message here? */
return (0);
}
}
return (0);
}
if (StringEqual (name, "Layer"))
return (!PyArg_Parse (value, "i", &(object->lay)));
if (StringEqual (name, "parent"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the parent is not allowed.");
return (0);
}
if (StringEqual (name, "track"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the track is not allowed.");
return (0);
}
if (StringEqual (name, "data"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the data is not allowed.");
return (0);
}
if (StringEqual (name, "ipo"))
{
/* This is not allowed. */
PythonReturnErrorObject (PyExc_AttributeError,
"Setting the ipo is not allowed.");
return (0);
}
if (StringEqual (name, "mat"))
{
printf ("This is not implemented yet. (matrix)\n");
return (1);
}
if (StringEqual (name, "matrix"))
{
printf ("This is not implemented yet. (matrix)\n");
return (1);
}
if (StringEqual (name, "colbits"))
return (!PyArg_Parse (value, "h", &(object->colbits)));
if (StringEqual (name, "drawType"))
return (!PyArg_Parse (value, "b", &(object->dt)));
if (StringEqual (name, "drawMode"))
return (!PyArg_Parse (value, "b", &(object->dtx)));
printf ("Unknown variable.\n");
return (0);
}
/*****************************************************************************/
/* Function: ObjectPrint */
/* Description: This is a callback function for the C_Object type. It */
/* builds a meaninful string to 'print' object objects. */
/*****************************************************************************/
static int ObjectPrint(C_Object *self, FILE *fp, int flags)
{
fprintf(fp, "[Object \"%s\"]", self->object->id.name+2);
return 0;
}
/*****************************************************************************/
/* Function: ObjectRepr */
/* Description: This is a callback function for the C_Object type. It */
/* builds a meaninful string to represent object objects. */
/*****************************************************************************/
static PyObject *ObjectRepr (C_Object *self)
{
return PyString_FromString(self->object->id.name+2);
}