This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle.c

4305 lines
123 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle.c
* \ingroup bke
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_particle_types.h"
#include "DNA_smoke_types.h"
#include "DNA_scene_types.h"
#include "DNA_dynamicpaint_types.h"
#include "BLI_blenlib.h"
#include "BLI_noise.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_kdtree.h"
#include "BLI_rand.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_linklist.h"
#include "BLT_translation.h"
#include "BKE_anim.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cloth.h"
#include "BKE_colortools.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_main.h"
#include "BKE_lattice.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_material.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_library_query.h"
#include "BKE_library_remap.h"
#include "BKE_depsgraph.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_pointcache.h"
#include "BKE_scene.h"
#include "BKE_deform.h"
#include "RE_render_ext.h"
unsigned int PSYS_FRAND_SEED_OFFSET[PSYS_FRAND_COUNT];
unsigned int PSYS_FRAND_SEED_MULTIPLIER[PSYS_FRAND_COUNT];
float PSYS_FRAND_BASE[PSYS_FRAND_COUNT];
void psys_init_rng(void)
{
int i;
BLI_srandom(5831); /* arbitrary */
for (i = 0; i < PSYS_FRAND_COUNT; ++i) {
PSYS_FRAND_BASE[i] = BLI_frand();
PSYS_FRAND_SEED_OFFSET[i] = (unsigned int)BLI_rand();
PSYS_FRAND_SEED_MULTIPLIER[i] = (unsigned int)BLI_rand();
}
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx,
ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex);
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par,
int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra);
extern void do_child_modifiers(ParticleThreadContext *ctx, ParticleSimulationData *sim,
ParticleTexture *ptex, const float par_co[3], const float par_vel[3], const float par_rot[4], const float par_orco[3],
ChildParticle *cpa, const float orco[3], float mat[4][4], ParticleKey *state, float t);
/* few helpers for countall etc. */
int count_particles(ParticleSystem *psys)
{
ParticleSettings *part = psys->part;
PARTICLE_P;
int tot = 0;
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {}
else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {}
else tot++;
}
return tot;
}
int count_particles_mod(ParticleSystem *psys, int totgr, int cur)
{
ParticleSettings *part = psys->part;
PARTICLE_P;
int tot = 0;
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {}
else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {}
else if (p % totgr == cur) tot++;
}
return tot;
}
/* we allocate path cache memory in chunks instead of a big contiguous
* chunk, windows' memory allocater fails to find big blocks of memory often */
#define PATH_CACHE_BUF_SIZE 1024
static ParticleCacheKey *pcache_key_segment_endpoint_safe(ParticleCacheKey *key)
{
return (key->segments > 0) ? (key + (key->segments - 1)) : key;
}
static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int totkeys)
{
LinkData *buf;
ParticleCacheKey **cache;
int i, totkey, totbufkey;
tot = MAX2(tot, 1);
totkey = 0;
cache = MEM_callocN(tot * sizeof(void *), "PathCacheArray");
while (totkey < tot) {
totbufkey = MIN2(tot - totkey, PATH_CACHE_BUF_SIZE);
buf = MEM_callocN(sizeof(LinkData), "PathCacheLinkData");
buf->data = MEM_callocN(sizeof(ParticleCacheKey) * totbufkey * totkeys, "ParticleCacheKey");
for (i = 0; i < totbufkey; i++)
cache[totkey + i] = ((ParticleCacheKey *)buf->data) + i * totkeys;
totkey += totbufkey;
BLI_addtail(bufs, buf);
}
return cache;
}
static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs)
{
LinkData *buf;
if (cache)
MEM_freeN(cache);
for (buf = bufs->first; buf; buf = buf->next)
MEM_freeN(buf->data);
BLI_freelistN(bufs);
}
/************************************************/
/* Getting stuff */
/************************************************/
/* get object's active particle system safely */
ParticleSystem *psys_get_current(Object *ob)
{
ParticleSystem *psys;
if (ob == NULL) return NULL;
for (psys = ob->particlesystem.first; psys; psys = psys->next) {
if (psys->flag & PSYS_CURRENT)
return psys;
}
return NULL;
}
short psys_get_current_num(Object *ob)
{
ParticleSystem *psys;
short i;
if (ob == NULL) return 0;
for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++)
if (psys->flag & PSYS_CURRENT)
return i;
return i;
}
void psys_set_current_num(Object *ob, int index)
{
ParticleSystem *psys;
short i;
if (ob == NULL) return;
for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) {
if (i == index)
psys->flag |= PSYS_CURRENT;
else
psys->flag &= ~PSYS_CURRENT;
}
}
#if 0 /* UNUSED */
Object *psys_find_object(Scene *scene, ParticleSystem *psys)
{
Base *base;
ParticleSystem *tpsys;
for (base = scene->base.first; base; base = base->next) {
for (tpsys = base->object->particlesystem.first; psys; psys = psys->next) {
if (tpsys == psys)
return base->object;
}
}
return NULL;
}
#endif
struct LatticeDeformData *psys_create_lattice_deform_data(ParticleSimulationData *sim)
{
struct LatticeDeformData *lattice_deform_data = NULL;
if (psys_in_edit_mode(sim->scene, sim->psys) == 0) {
Object *lattice = NULL;
ModifierData *md = (ModifierData *)psys_get_modifier(sim->ob, sim->psys);
for (; md; md = md->next) {
if (md->type == eModifierType_Lattice) {
LatticeModifierData *lmd = (LatticeModifierData *)md;
lattice = lmd->object;
break;
}
}
if (lattice)
lattice_deform_data = init_latt_deform(lattice, NULL);
}
return lattice_deform_data;
}
void psys_disable_all(Object *ob)
{
ParticleSystem *psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag |= PSYS_DISABLED;
}
void psys_enable_all(Object *ob)
{
ParticleSystem *psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag &= ~PSYS_DISABLED;
}
bool psys_in_edit_mode(Scene *scene, ParticleSystem *psys)
{
return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys == psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata);
}
bool psys_check_enabled(Object *ob, ParticleSystem *psys, const bool use_render_params)
{
ParticleSystemModifierData *psmd;
if (psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part)
return 0;
psmd = psys_get_modifier(ob, psys);
if (psys->renderdata || use_render_params) {
if (!(psmd->modifier.mode & eModifierMode_Render))
return 0;
}
else if (!(psmd->modifier.mode & eModifierMode_Realtime))
return 0;
return 1;
}
bool psys_check_edited(ParticleSystem *psys)
{
if (psys->part && psys->part->type == PART_HAIR)
return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited));
else
return (psys->pointcache->edit && psys->pointcache->edit->edited);
}
void psys_check_group_weights(ParticleSettings *part)
{
ParticleDupliWeight *dw, *tdw;
GroupObject *go;
int current = 0;
if (part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) {
/* First try to find NULL objects from their index,
* and remove all weights that don't have an object in the group. */
dw = part->dupliweights.first;
while (dw) {
if (dw->ob == NULL || !BKE_group_object_exists(part->dup_group, dw->ob)) {
go = (GroupObject *)BLI_findlink(&part->dup_group->gobject, dw->index);
if (go) {
dw->ob = go->ob;
}
else {
tdw = dw->next;
BLI_freelinkN(&part->dupliweights, dw);
dw = tdw;
}
}
else {
dw = dw->next;
}
}
/* then add objects in the group to new list */
go = part->dup_group->gobject.first;
while (go) {
dw = part->dupliweights.first;
while (dw && dw->ob != go->ob)
dw = dw->next;
if (!dw) {
dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight");
dw->ob = go->ob;
dw->count = 1;
BLI_addtail(&part->dupliweights, dw);
}
go = go->next;
}
dw = part->dupliweights.first;
for (; dw; dw = dw->next) {
if (dw->flag & PART_DUPLIW_CURRENT) {
current = 1;
break;
}
}
if (!current) {
dw = part->dupliweights.first;
if (dw)
dw->flag |= PART_DUPLIW_CURRENT;
}
}
else {
BLI_freelistN(&part->dupliweights);
}
}
int psys_uses_gravity(ParticleSimulationData *sim)
{
return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f;
}
/************************************************/
/* Freeing stuff */
/************************************************/
static void fluid_free_settings(SPHFluidSettings *fluid)
{
if (fluid)
MEM_freeN(fluid);
}
/** Free (or release) any data used by this particle settings (does not free the partsett itself). */
void BKE_particlesettings_free(ParticleSettings *part)
{
int a;
BKE_animdata_free((ID *)part, false);
for (a = 0; a < MAX_MTEX; a++) {
MEM_SAFE_FREE(part->mtex[a]);
}
if (part->clumpcurve)
curvemapping_free(part->clumpcurve);
if (part->roughcurve)
curvemapping_free(part->roughcurve);
free_partdeflect(part->pd);
free_partdeflect(part->pd2);
MEM_SAFE_FREE(part->effector_weights);
BLI_freelistN(&part->dupliweights);
boid_free_settings(part->boids);
fluid_free_settings(part->fluid);
}
void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics)
{
PARTICLE_P;
LOOP_PARTICLES {
if (pa->hair)
MEM_freeN(pa->hair);
pa->hair = NULL;
pa->totkey = 0;
}
psys->flag &= ~PSYS_HAIR_DONE;
if (psys->clmd) {
if (dynamics) {
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
modifier_free((ModifierData *)psys->clmd);
psys->clmd = NULL;
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
}
else {
cloth_free_modifier(psys->clmd);
}
}
if (psys->hair_in_dm)
psys->hair_in_dm->release(psys->hair_in_dm);
psys->hair_in_dm = NULL;
if (psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->hair_out_dm = NULL;
}
void free_keyed_keys(ParticleSystem *psys)
{
PARTICLE_P;
if (psys->part->type == PART_HAIR)
return;
if (psys->particles && psys->particles->keys) {
MEM_freeN(psys->particles->keys);
LOOP_PARTICLES {
if (pa->keys) {
pa->keys = NULL;
pa->totkey = 0;
}
}
}
}
static void free_child_path_cache(ParticleSystem *psys)
{
psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs);
psys->childcache = NULL;
psys->totchildcache = 0;
}
void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit)
{
if (edit) {
psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs);
edit->pathcache = NULL;
edit->totcached = 0;
}
if (psys) {
psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs);
psys->pathcache = NULL;
psys->totcached = 0;
free_child_path_cache(psys);
}
}
void psys_free_children(ParticleSystem *psys)
{
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
free_child_path_cache(psys);
}
void psys_free_particles(ParticleSystem *psys)
{
PARTICLE_P;
if (psys->particles) {
/* Even though psys->part should never be NULL, this can happen as an exception during deletion.
* See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
if (psys->part && psys->part->type == PART_HAIR) {
LOOP_PARTICLES {
if (pa->hair)
MEM_freeN(pa->hair);
}
}
if (psys->particles->keys)
MEM_freeN(psys->particles->keys);
if (psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles = NULL;
psys->totpart = 0;
}
}
void psys_free_pdd(ParticleSystem *psys)
{
if (psys->pdd) {
if (psys->pdd->cdata)
MEM_freeN(psys->pdd->cdata);
psys->pdd->cdata = NULL;
if (psys->pdd->vdata)
MEM_freeN(psys->pdd->vdata);
psys->pdd->vdata = NULL;
if (psys->pdd->ndata)
MEM_freeN(psys->pdd->ndata);
psys->pdd->ndata = NULL;
if (psys->pdd->vedata)
MEM_freeN(psys->pdd->vedata);
psys->pdd->vedata = NULL;
psys->pdd->totpoint = 0;
psys->pdd->tot_vec_size = 0;
}
}
/* free everything */
void psys_free(Object *ob, ParticleSystem *psys)
{
if (psys) {
int nr = 0;
ParticleSystem *tpsys;
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 1);
psys_free_particles(psys);
if (psys->edit && psys->free_edit)
psys->free_edit(psys->edit);
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
/* check if we are last non-visible particle system */
for (tpsys = ob->particlesystem.first; tpsys; tpsys = tpsys->next) {
if (tpsys->part) {
if (ELEM(tpsys->part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
nr++;
break;
}
}
}
/* clear do-not-draw-flag */
if (!nr)
ob->transflag &= ~OB_DUPLIPARTS;
psys->part = NULL;
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
BLI_freelistN(&psys->targets);
BLI_bvhtree_free(psys->bvhtree);
BLI_kdtree_free(psys->tree);
if (psys->fluid_springs)
MEM_freeN(psys->fluid_springs);
pdEndEffectors(&psys->effectors);
if (psys->pdd) {
psys_free_pdd(psys);
MEM_freeN(psys->pdd);
}
MEM_freeN(psys);
}
}
/************************************************/
/* Rendering */
/************************************************/
/* these functions move away particle data and bring it back after
* rendering, to make different render settings possible without
* removing the previous data. this should be solved properly once */
void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[4][4], float winmat[4][4], int winx, int winy, int timeoffset)
{
ParticleRenderData *data;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
if (psys->renderdata)
return;
data = MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData");
data->child = psys->child;
data->totchild = psys->totchild;
data->pathcache = psys->pathcache;
data->pathcachebufs.first = psys->pathcachebufs.first;
data->pathcachebufs.last = psys->pathcachebufs.last;
data->totcached = psys->totcached;
data->childcache = psys->childcache;
data->childcachebufs.first = psys->childcachebufs.first;
data->childcachebufs.last = psys->childcachebufs.last;
data->totchildcache = psys->totchildcache;
if (psmd->dm_final)
data->dm = CDDM_copy(psmd->dm_final);
data->totdmvert = psmd->totdmvert;
data->totdmedge = psmd->totdmedge;
data->totdmface = psmd->totdmface;
psys->child = NULL;
psys->pathcache = NULL;
psys->childcache = NULL;
psys->totchild = psys->totcached = psys->totchildcache = 0;
BLI_listbase_clear(&psys->pathcachebufs);
BLI_listbase_clear(&psys->childcachebufs);
copy_m4_m4(data->winmat, winmat);
mul_m4_m4m4(data->viewmat, viewmat, ob->obmat);
mul_m4_m4m4(data->mat, winmat, data->viewmat);
data->winx = winx;
data->winy = winy;
data->timeoffset = timeoffset;
psys->renderdata = data;
/* Hair can and has to be recalculated if everything isn't displayed. */
if (psys->part->disp != 100 && psys->part->type == PART_HAIR)
psys->recalc |= PSYS_RECALC_RESET;
}
void psys_render_restore(Object *ob, ParticleSystem *psys)
{
ParticleRenderData *data;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
float render_disp = psys_get_current_display_percentage(psys);
float disp;
data = psys->renderdata;
if (!data)
return;
if (data->elems)
MEM_freeN(data->elems);
if (psmd->dm_final) {
psmd->dm_final->needsFree = 1;
psmd->dm_final->release(psmd->dm_final);
}
if (psmd->dm_deformed) {
psmd->dm_deformed->needsFree = 1;
psmd->dm_deformed->release(psmd->dm_deformed);
psmd->dm_deformed = NULL;
}
psys_free_path_cache(psys, NULL);
if (psys->child) {
MEM_freeN(psys->child);
psys->child = 0;
psys->totchild = 0;
}
psys->child = data->child;
psys->totchild = data->totchild;
psys->pathcache = data->pathcache;
psys->pathcachebufs.first = data->pathcachebufs.first;
psys->pathcachebufs.last = data->pathcachebufs.last;
psys->totcached = data->totcached;
psys->childcache = data->childcache;
psys->childcachebufs.first = data->childcachebufs.first;
psys->childcachebufs.last = data->childcachebufs.last;
psys->totchildcache = data->totchildcache;
psmd->dm_final = data->dm;
psmd->totdmvert = data->totdmvert;
psmd->totdmedge = data->totdmedge;
psmd->totdmface = data->totdmface;
psmd->flag &= ~eParticleSystemFlag_psys_updated;
if (psmd->dm_final) {
if (!psmd->dm_final->deformedOnly) {
if (ob->derivedDeform) {
psmd->dm_deformed = CDDM_copy(ob->derivedDeform);
}
else {
psmd->dm_deformed = CDDM_from_mesh((Mesh *)ob->data);
}
DM_ensure_tessface(psmd->dm_deformed);
}
psys_calc_dmcache(ob, psmd->dm_final, psmd->dm_deformed, psys);
}
MEM_freeN(data);
psys->renderdata = NULL;
/* restore particle display percentage */
disp = psys_get_current_display_percentage(psys);
if (disp != render_disp) {
/* Hair can and has to be recalculated if everything isn't displayed. */
if (psys->part->type == PART_HAIR) {
psys->recalc |= PSYS_RECALC_RESET;
}
else {
PARTICLE_P;
LOOP_PARTICLES {
if (psys_frand(psys, p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
}
}
}
bool psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params)
{
ParticleRenderData *data;
ParticleRenderElem *elem;
float x, w, scale, alpha, lambda, t, scalemin, scalemax;
int b;
if (!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE)))
return false;
data = psys->renderdata;
if (!data->do_simplify)
return false;
b = (data->index_mf_to_mpoly) ? DM_origindex_mface_mpoly(data->index_mf_to_mpoly, data->index_mp_to_orig, cpa->num) : cpa->num;
if (b == ORIGINDEX_NONE) {
return false;
}
elem = &data->elems[b];
lambda = elem->lambda;
t = elem->t;
scalemin = elem->scalemin;
scalemax = elem->scalemax;
if (!elem->reduce) {
scale = scalemin;
alpha = 1.0f;
}
else {
x = (elem->curchild + 0.5f) / elem->totchild;
if (x < lambda - t) {
scale = scalemax;
alpha = 1.0f;
}
else if (x >= lambda + t) {
scale = scalemin;
alpha = 0.0f;
}
else {
w = (lambda + t - x) / (2.0f * t);
scale = scalemin + (scalemax - scalemin) * w;
alpha = w;
}
}
params[0] = scale;
params[1] = alpha;
elem->curchild++;
return 1;
}
/************************************************/
/* Interpolation */
/************************************************/
static float interpolate_particle_value(float v1, float v2, float v3, float v4, const float w[4], int four)
{
float value;
value = w[0] * v1 + w[1] * v2 + w[2] * v3;
if (four)
value += w[3] * v4;
CLAMP(value, 0.f, 1.f);
return value;
}
void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, bool velocity)
{
float t[4];
if (type < 0) {
interp_cubic_v3(result->co, result->vel, keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt);
}
else {
key_curve_position_weights(dt, t, type);
interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
if (velocity) {
float temp[3];
if (dt > 0.999f) {
key_curve_position_weights(dt - 0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
sub_v3_v3v3(result->vel, result->co, temp);
}
else {
key_curve_position_weights(dt + 0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
sub_v3_v3v3(result->vel, temp, result->co);
}
}
}
}
typedef struct ParticleInterpolationData {
HairKey *hkey[2];
DerivedMesh *dm;
MVert *mvert[2];
int keyed;
ParticleKey *kkey[2];
PointCache *cache;
PTCacheMem *pm;
PTCacheEditPoint *epoint;
PTCacheEditKey *ekey[2];
float birthtime, dietime;
int bspline;
} ParticleInterpolationData;
/* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */
/* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */
static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2)
{
static PTCacheMem *pm = NULL;
int index1, index2;
if (index < 0) { /* initialize */
*cur = cache->mem_cache.first;
if (*cur)
*cur = (*cur)->next;
}
else {
if (*cur) {
while (*cur && (*cur)->next && (float)(*cur)->frame < t)
*cur = (*cur)->next;
pm = *cur;
index2 = BKE_ptcache_mem_index_find(pm, index);
index1 = BKE_ptcache_mem_index_find(pm->prev, index);
if (index2 < 0) {
return;
}
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
if (index1 < 0)
copy_particle_key(key1, key2, 1);
else
BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame);
}
else if (cache->mem_cache.first) {
pm = cache->mem_cache.first;
index2 = BKE_ptcache_mem_index_find(pm, index);
if (index2 < 0) {
return;
}
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
copy_particle_key(key1, key2, 1);
}
}
}
static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end)
{
PTCacheMem *pm;
int ret = 0;
for (pm = cache->mem_cache.first; pm; pm = pm->next) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0) {
*start = pm->frame;
ret++;
break;
}
}
for (pm = cache->mem_cache.last; pm; pm = pm->prev) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0) {
*end = pm->frame;
ret++;
break;
}
}
return ret == 2;
}
float psys_get_dietime_from_cache(PointCache *cache, int index)
{
PTCacheMem *pm;
int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */
for (pm = cache->mem_cache.last; pm; pm = pm->prev) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0)
return (float)pm->frame;
}
return (float)dietime;
}
static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind)
{
if (pind->epoint) {
PTCacheEditPoint *point = pind->epoint;
pind->ekey[0] = point->keys;
pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL;
pind->birthtime = *(point->keys->time);
pind->dietime = *((point->keys + point->totkey - 1)->time);
}
else if (pind->keyed) {
ParticleKey *key = pa->keys;
pind->kkey[0] = key;
pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
}
else if (pind->cache) {
float start = 0.0f, end = 0.0f;
get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL);
pind->birthtime = pa ? pa->time : pind->cache->startframe;
pind->dietime = pa ? pa->dietime : pind->cache->endframe;
if (get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) {
pind->birthtime = MAX2(pind->birthtime, start);
pind->dietime = MIN2(pind->dietime, end);
}
}
else {
HairKey *key = pa->hair;
pind->hkey[0] = key;
pind->hkey[1] = key + 1;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
if (pind->dm) {
pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index);
pind->mvert[1] = pind->mvert[0] + 1;
}
}
}
static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey)
{
copy_v3_v3(key->co, ekey->co);
if (ekey->vel) {
copy_v3_v3(key->vel, ekey->vel);
}
key->time = *(ekey->time);
}
static void hair_to_particle(ParticleKey *key, HairKey *hkey)
{
copy_v3_v3(key->co, hkey->co);
key->time = hkey->time;
}
static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey)
{
copy_v3_v3(key->co, mvert->co);
key->time = hkey->time;
}
static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result)
{
PTCacheEditPoint *point = pind->epoint;
ParticleKey keys[4];
int point_vel = (point && point->keys->vel);
float real_t, dfra, keytime, invdt = 1.f;
/* billboards wont fill in all of these, so start cleared */
memset(keys, 0, sizeof(keys));
/* interpret timing and find keys */
if (point) {
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey - 1].time) - *(pind->ekey[0]->time));
while (*(pind->ekey[1]->time) < real_t)
pind->ekey[1]++;
pind->ekey[0] = pind->ekey[1] - 1;
}
else if (pind->keyed) {
/* we have only one key, so let's use that */
if (pind->kkey[1] == NULL) {
copy_particle_key(result, pind->kkey[0], 1);
return;
}
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey - 1].time - pind->kkey[0]->time);
if (psys->part->phystype == PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) {
ParticleTarget *pt = psys->targets.first;
pt = pt->next;
while (pt && pa->time + pt->time < real_t)
pt = pt->next;
if (pt) {
pt = pt->prev;
if (pa->time + pt->time + pt->duration > real_t)
real_t = pa->time + pt->time;
}
else
real_t = pa->time + ((ParticleTarget *)psys->targets.last)->time;
}
CLAMP(real_t, pa->time, pa->dietime);
while (pind->kkey[1]->time < real_t)
pind->kkey[1]++;
pind->kkey[0] = pind->kkey[1] - 1;
}
else if (pind->cache) {
if (result->time < 0.0f) /* flag for time in frames */
real_t = -result->time;
else
real_t = pa->time + t * (pa->dietime - pa->time);
}
else {
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey - 1].time - pind->hkey[0]->time);
while (pind->hkey[1]->time < real_t) {
pind->hkey[1]++;
pind->mvert[1]++;
}
pind->hkey[0] = pind->hkey[1] - 1;
}
/* set actual interpolation keys */
if (point) {
edit_to_particle(keys + 1, pind->ekey[0]);
edit_to_particle(keys + 2, pind->ekey[1]);
}
else if (pind->dm) {
pind->mvert[0] = pind->mvert[1] - 1;
mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]);
mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]);
}
else if (pind->keyed) {
memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey));
}
else if (pind->cache) {
get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys + 1, keys + 2);
}
else {
hair_to_particle(keys + 1, pind->hkey[0]);
hair_to_particle(keys + 2, pind->hkey[1]);
}
/* set secondary interpolation keys for hair */
if (!pind->keyed && !pind->cache && !point_vel) {
if (point) {
if (pind->ekey[0] != point->keys)
edit_to_particle(keys, pind->ekey[0] - 1);
else
edit_to_particle(keys, pind->ekey[0]);
}
else if (pind->dm) {
if (pind->hkey[0] != pa->hair)
mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1);
else
mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]);
}
else {
if (pind->hkey[0] != pa->hair)
hair_to_particle(keys, pind->hkey[0] - 1);
else
hair_to_particle(keys, pind->hkey[0]);
}
if (point) {
if (pind->ekey[1] != point->keys + point->totkey - 1)
edit_to_particle(keys + 3, pind->ekey[1] + 1);
else
edit_to_particle(keys + 3, pind->ekey[1]);
}
else if (pind->dm) {
if (pind->hkey[1] != pa->hair + pa->totkey - 1)
mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1);
else
mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]);
}
else {
if (pind->hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, pind->hkey[1] + 1);
else
hair_to_particle(keys + 3, pind->hkey[1]);
}
}
dfra = keys[2].time - keys[1].time;
keytime = (real_t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if (pind->keyed || pind->cache || point_vel) {
invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f);
mul_v3_fl(keys[1].vel, invdt);
mul_v3_fl(keys[2].vel, invdt);
interp_qt_qtqt(result->rot, keys[1].rot, keys[2].rot, keytime);
}
/* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0, 1]->[k2, k3] (k1 & k4 used for cardinal & bspline interpolation)*/
psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */
: (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL),
keys, keytime, result, 1);
/* the velocity needs to be converted back from cubic interpolation */
if (pind->keyed || pind->cache || point_vel)
mul_v3_fl(result->vel, 1.f / invdt);
}
static void interpolate_pathcache(ParticleCacheKey *first, float t, ParticleCacheKey *result)
{
int i = 0;
ParticleCacheKey *cur = first;
/* scale the requested time to fit the entire path even if the path is cut early */
t *= (first + first->segments)->time;
while (i < first->segments && cur->time < t)
cur++;
if (cur->time == t)
*result = *cur;
else {
float dt = (t - (cur - 1)->time) / (cur->time - (cur - 1)->time);
interp_v3_v3v3(result->co, (cur - 1)->co, cur->co, dt);
interp_v3_v3v3(result->vel, (cur - 1)->vel, cur->vel, dt);
interp_qt_qtqt(result->rot, (cur - 1)->rot, cur->rot, dt);
result->time = t;
}
/* first is actual base rotation, others are incremental from first */
if (cur == first || cur - 1 == first)
copy_qt_qt(result->rot, first->rot);
else
mul_qt_qtqt(result->rot, first->rot, result->rot);
}
/************************************************/
/* Particles on a dm */
/************************************************/
/* interpolate a location on a face based on face coordinates */
void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3],
float w[4], float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
float *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0;
float e1[3], e2[3], s1, s2, t1, t2;
float *uv1, *uv2, *uv3, *uv4;
float n1[3], n2[3], n3[3], n4[3];
float tuv[4][2];
float *o1, *o2, *o3, *o4;
v1 = mvert[mface->v1].co;
v2 = mvert[mface->v2].co;
v3 = mvert[mface->v3].co;
normal_short_to_float_v3(n1, mvert[mface->v1].no);
normal_short_to_float_v3(n2, mvert[mface->v2].no);
normal_short_to_float_v3(n3, mvert[mface->v3].no);
if (mface->v4) {
v4 = mvert[mface->v4].co;
normal_short_to_float_v3(n4, mvert[mface->v4].no);
interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w);
if (nor) {
if (mface->flag & ME_SMOOTH)
interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w);
else
normal_quad_v3(nor, v1, v2, v3, v4);
}
}
else {
interp_v3_v3v3v3(vec, v1, v2, v3, w);
if (nor) {
if (mface->flag & ME_SMOOTH)
interp_v3_v3v3v3(nor, n1, n2, n3, w);
else
normal_tri_v3(nor, v1, v2, v3);
}
}
/* calculate tangent vectors */
if (utan && vtan) {
if (tface) {
uv1 = tface->uv[0];
uv2 = tface->uv[1];
uv3 = tface->uv[2];
uv4 = tface->uv[3];
}
else {
uv1 = tuv[0]; uv2 = tuv[1]; uv3 = tuv[2]; uv4 = tuv[3];
map_to_sphere(uv1, uv1 + 1, v1[0], v1[1], v1[2]);
map_to_sphere(uv2, uv2 + 1, v2[0], v2[1], v2[2]);
map_to_sphere(uv3, uv3 + 1, v3[0], v3[1], v3[2]);
if (v4)
map_to_sphere(uv4, uv4 + 1, v4[0], v4[1], v4[2]);
}
if (v4) {
s1 = uv3[0] - uv1[0];
s2 = uv4[0] - uv1[0];
t1 = uv3[1] - uv1[1];
t2 = uv4[1] - uv1[1];
sub_v3_v3v3(e1, v3, v1);
sub_v3_v3v3(e2, v4, v1);
}
else {
s1 = uv2[0] - uv1[0];
s2 = uv3[0] - uv1[0];
t1 = uv2[1] - uv1[1];
t2 = uv3[1] - uv1[1];
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
}
vtan[0] = (s1 * e2[0] - s2 * e1[0]);
vtan[1] = (s1 * e2[1] - s2 * e1[1]);
vtan[2] = (s1 * e2[2] - s2 * e1[2]);
utan[0] = (t1 * e2[0] - t2 * e1[0]);
utan[1] = (t1 * e2[1] - t2 * e1[1]);
utan[2] = (t1 * e2[2] - t2 * e1[2]);
}
if (orco) {
if (orcodata) {
o1 = orcodata[mface->v1];
o2 = orcodata[mface->v2];
o3 = orcodata[mface->v3];
if (mface->v4) {
o4 = orcodata[mface->v4];
interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w);
if (ornor)
normal_quad_v3(ornor, o1, o2, o3, o4);
}
else {
interp_v3_v3v3v3(orco, o1, o2, o3, w);
if (ornor)
normal_tri_v3(ornor, o1, o2, o3);
}
}
else {
copy_v3_v3(orco, vec);
if (ornor && nor)
copy_v3_v3(ornor, nor);
}
}
}
void psys_interpolate_uvs(const MTFace *tface, int quad, const float w[4], float uvco[2])
{
float v10 = tface->uv[0][0];
float v11 = tface->uv[0][1];
float v20 = tface->uv[1][0];
float v21 = tface->uv[1][1];
float v30 = tface->uv[2][0];
float v31 = tface->uv[2][1];
float v40, v41;
if (quad) {
v40 = tface->uv[3][0];
v41 = tface->uv[3][1];
uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30 + w[3] * v40;
uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31 + w[3] * v41;
}
else {
uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30;
uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31;
}
}
void psys_interpolate_mcol(const MCol *mcol, int quad, const float w[4], MCol *mc)
{
const char *cp1, *cp2, *cp3, *cp4;
char *cp;
cp = (char *)mc;
cp1 = (const char *)&mcol[0];
cp2 = (const char *)&mcol[1];
cp3 = (const char *)&mcol[2];
if (quad) {
cp4 = (char *)&mcol[3];
cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0] + w[3] * cp4[0]);
cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1] + w[3] * cp4[1]);
cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2] + w[3] * cp4[2]);
cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3] + w[3] * cp4[3]);
}
else {
cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0]);
cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1]);
cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2]);
cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3]);
}
}
static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, const float fw[4], const float *values)
{
if (values == 0 || index == -1)
return 0.0;
switch (from) {
case PART_FROM_VERT:
return values[index];
case PART_FROM_FACE:
case PART_FROM_VOLUME:
{
MFace *mf = dm->getTessFaceData(dm, index, CD_MFACE);
return interpolate_particle_value(values[mf->v1], values[mf->v2], values[mf->v3], values[mf->v4], fw, mf->v4);
}
}
return 0.0f;
}
/* conversion of pa->fw to origspace layer coordinates */
static void psys_w_to_origspace(const float w[4], float uv[2])
{
uv[0] = w[1] + w[2];
uv[1] = w[2] + w[3];
}
/* conversion of pa->fw to weights in face from origspace */
static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, const float w[4], float neww[4])
{
float v[4][3], co[3];
v[0][0] = osface->uv[0][0]; v[0][1] = osface->uv[0][1]; v[0][2] = 0.0f;
v[1][0] = osface->uv[1][0]; v[1][1] = osface->uv[1][1]; v[1][2] = 0.0f;
v[2][0] = osface->uv[2][0]; v[2][1] = osface->uv[2][1]; v[2][2] = 0.0f;
psys_w_to_origspace(w, co);
co[2] = 0.0f;
if (quad) {
v[3][0] = osface->uv[3][0]; v[3][1] = osface->uv[3][1]; v[3][2] = 0.0f;
interp_weights_poly_v3(neww, v, 4, co);
}
else {
interp_weights_poly_v3(neww, v, 3, co);
neww[3] = 0.0f;
}
}
/**
* Find the final derived mesh tessface for a particle, from its original tessface index.
* This is slow and can be optimized but only for many lookups.
*
* \param dm_final final DM, it may not have the same topology as original mesh.
* \param dm_deformed deformed-only DM, it has the exact same topology as original mesh.
* \param findex_orig the input tessface index.
* \param fw face weights (position of the particle inside the \a findex_orig tessface).
* \param poly_nodes may be NULL, otherwise an array of linked list, one for each final DM polygon, containing all
* its tessfaces indices.
* \return the DM tessface index.
*/
int psys_particle_dm_face_lookup(
DerivedMesh *dm_final, DerivedMesh *dm_deformed,
int findex_orig, const float fw[4], struct LinkNode **poly_nodes)
{
MFace *mtessface_final;
OrigSpaceFace *osface_final;
int pindex_orig;
float uv[2], (*faceuv)[2];
const int *index_mf_to_mpoly_deformed = NULL;
const int *index_mf_to_mpoly = NULL;
const int *index_mp_to_orig = NULL;
const int totface_final = dm_final->getNumTessFaces(dm_final);
const int totface_deformed = dm_deformed ? dm_deformed->getNumTessFaces(dm_deformed) : totface_final;
if (ELEM(0, totface_final, totface_deformed)) {
return DMCACHE_NOTFOUND;
}
index_mf_to_mpoly = dm_final->getTessFaceDataArray(dm_final, CD_ORIGINDEX);
index_mp_to_orig = dm_final->getPolyDataArray(dm_final, CD_ORIGINDEX);
BLI_assert(index_mf_to_mpoly);
if (dm_deformed) {
index_mf_to_mpoly_deformed = dm_deformed->getTessFaceDataArray(dm_deformed, CD_ORIGINDEX);
}
else {
BLI_assert(dm_final->deformedOnly);
index_mf_to_mpoly_deformed = index_mf_to_mpoly;
}
BLI_assert(index_mf_to_mpoly_deformed);
pindex_orig = index_mf_to_mpoly_deformed[findex_orig];
if (dm_deformed == NULL) {
dm_deformed = dm_final;
}
index_mf_to_mpoly_deformed = NULL;
mtessface_final = dm_final->getTessFaceArray(dm_final);
osface_final = dm_final->getTessFaceDataArray(dm_final, CD_ORIGSPACE);
if (osface_final == NULL) {
/* Assume we don't need osface_final data, and we get a direct 1-1 mapping... */
if (findex_orig < totface_final) {
//printf("\tNO CD_ORIGSPACE, assuming not needed\n");
return findex_orig;
}
else {
printf("\tNO CD_ORIGSPACE, error out of range\n");
return DMCACHE_NOTFOUND;
}
}
else if (findex_orig >= dm_deformed->getNumTessFaces(dm_deformed)) {
return DMCACHE_NOTFOUND; /* index not in the original mesh */
}
psys_w_to_origspace(fw, uv);
if (poly_nodes) {
/* we can have a restricted linked list of faces to check, faster! */
LinkNode *tessface_node = poly_nodes[pindex_orig];
for (; tessface_node; tessface_node = tessface_node->next) {
int findex_dst = GET_INT_FROM_POINTER(tessface_node->link);
faceuv = osface_final[findex_dst].uv;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if (mtessface_final[findex_dst].v4) {
if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) {
return findex_dst;
}
}
else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) {
return findex_dst;
}
}
}
else { /* if we have no node, try every face */
for (int findex_dst = 0; findex_dst < totface_final; findex_dst++) {
/* If current tessface from 'final' DM and orig tessface (given by index) map to the same orig poly... */
if (DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, findex_dst) == pindex_orig) {
faceuv = osface_final[findex_dst].uv;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if (mtessface_final[findex_dst].v4) {
if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) {
return findex_dst;
}
}
else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) {
return findex_dst;
}
}
}
}
return DMCACHE_NOTFOUND;
}
static int psys_map_index_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, const float fw[4], float UNUSED(foffset), int *mapindex, float mapfw[4])
{
if (index < 0)
return 0;
if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) {
/* for meshes that are either only deformed or for child particles, the
* index and fw do not require any mapping, so we can directly use it */
if (from == PART_FROM_VERT) {
if (index >= dm->getNumVerts(dm))
return 0;
*mapindex = index;
}
else { /* FROM_FACE/FROM_VOLUME */
if (index >= dm->getNumTessFaces(dm))
return 0;
*mapindex = index;
copy_v4_v4(mapfw, fw);
}
}
else {
/* for other meshes that have been modified, we try to map the particle
* to their new location, which means a different index, and for faces
* also a new face interpolation weights */
if (from == PART_FROM_VERT) {
if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm))
return 0;
*mapindex = index_dmcache;
}
else { /* FROM_FACE/FROM_VOLUME */
/* find a face on the derived mesh that uses this face */
MFace *mface;
OrigSpaceFace *osface;
int i;
i = index_dmcache;
if (i == DMCACHE_NOTFOUND || i >= dm->getNumTessFaces(dm))
return 0;
*mapindex = i;
/* modify the original weights to become
* weights for the derived mesh face */
osface = dm->getTessFaceDataArray(dm, CD_ORIGSPACE);
mface = dm->getTessFaceData(dm, i, CD_MFACE);
if (osface == NULL)
mapfw[0] = mapfw[1] = mapfw[2] = mapfw[3] = 0.0f;
else
psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw);
}
}
return 1;
}
/* interprets particle data to get a point on a mesh in object space */
void psys_particle_on_dm(DerivedMesh *dm_final, int from, int index, int index_dmcache,
const float fw[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
float tmpnor[3], mapfw[4];
float (*orcodata)[3];
int mapindex;
if (!psys_map_index_on_dm(dm_final, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) {
if (vec) { vec[0] = vec[1] = vec[2] = 0.0; }
if (nor) { nor[0] = nor[1] = 0.0; nor[2] = 1.0; }
if (orco) { orco[0] = orco[1] = orco[2] = 0.0; }
if (ornor) { ornor[0] = ornor[1] = 0.0; ornor[2] = 1.0; }
if (utan) { utan[0] = utan[1] = utan[2] = 0.0; }
if (vtan) { vtan[0] = vtan[1] = vtan[2] = 0.0; }
return;
}
orcodata = dm_final->getVertDataArray(dm_final, CD_ORCO);
if (from == PART_FROM_VERT) {
dm_final->getVertCo(dm_final, mapindex, vec);
if (nor) {
dm_final->getVertNo(dm_final, mapindex, nor);
normalize_v3(nor);
}
if (orco) {
if (orcodata) {
copy_v3_v3(orco, orcodata[mapindex]);
}
else {
copy_v3_v3(orco, vec);
}
}
if (ornor) {
dm_final->getVertNo(dm_final, mapindex, ornor);
normalize_v3(ornor);
}
if (utan && vtan) {
utan[0] = utan[1] = utan[2] = 0.0f;
vtan[0] = vtan[1] = vtan[2] = 0.0f;
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
MFace *mface;
MTFace *mtface;
MVert *mvert;
mface = dm_final->getTessFaceData(dm_final, mapindex, CD_MFACE);
mvert = dm_final->getVertDataArray(dm_final, CD_MVERT);
mtface = CustomData_get_layer(&dm_final->faceData, CD_MTFACE);
if (mtface)
mtface += mapindex;
if (from == PART_FROM_VOLUME) {
psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, tmpnor, utan, vtan, orco, ornor);
if (nor)
copy_v3_v3(nor, tmpnor);
normalize_v3(tmpnor); /* XXX Why not normalize tmpnor before copying it into nor??? -- mont29 */
mul_v3_fl(tmpnor, -foffset);
add_v3_v3(vec, tmpnor);
}
else
psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, nor, utan, vtan, orco, ornor);
}
}
float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values)
{
float mapfw[4];
int mapindex;
if (!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw))
return 0.0f;
return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values);
}
ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys)
{
ModifierData *md;
ParticleSystemModifierData *psmd;
for (md = ob->modifiers.first; md; md = md->next) {
if (md->type == eModifierType_ParticleSystem) {
psmd = (ParticleSystemModifierData *) md;
if (psmd->psys == psys) {
return psmd;
}
}
}
return NULL;
}
/************************************************/
/* Particles on a shape */
/************************************************/
/* ready for future use */
static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index),
float *UNUSED(fuv), float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
/* TODO */
float zerovec[3] = {0.0f, 0.0f, 0.0f};
if (vec) {
copy_v3_v3(vec, zerovec);
}
if (nor) {
copy_v3_v3(nor, zerovec);
}
if (utan) {
copy_v3_v3(utan, zerovec);
}
if (vtan) {
copy_v3_v3(vtan, zerovec);
}
if (orco) {
copy_v3_v3(orco, zerovec);
}
if (ornor) {
copy_v3_v3(ornor, zerovec);
}
}
/************************************************/
/* Particles on emitter */
/************************************************/
CustomDataMask psys_emitter_customdata_mask(ParticleSystem *psys)
{
CustomDataMask dataMask = 0;
MTex *mtex;
int i;
if (!psys->part)
return 0;
for (i = 0; i < MAX_MTEX; i++) {
mtex = psys->part->mtex[i];
if (mtex && mtex->mapto && (mtex->texco & TEXCO_UV))
dataMask |= CD_MASK_MTFACE;
}
if (psys->part->tanfac != 0.0f)
dataMask |= CD_MASK_MTFACE;
/* ask for vertexgroups if we need them */
for (i = 0; i < PSYS_TOT_VG; i++) {
if (psys->vgroup[i]) {
dataMask |= CD_MASK_MDEFORMVERT;
break;
}
}
/* particles only need this if they are after a non deform modifier, and
* the modifier stack will only create them in that case. */
dataMask |= CD_MASK_ORIGSPACE_MLOOP | CD_MASK_ORIGINDEX;
dataMask |= CD_MASK_ORCO;
return dataMask;
}
void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache,
float fuv[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
if (psmd && psmd->dm_final) {
if (psmd->psys->part->distr == PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT) {
if (vec)
copy_v3_v3(vec, fuv);
if (orco)
copy_v3_v3(orco, fuv);
return;
}
/* we cant use the num_dmcache */
psys_particle_on_dm(psmd->dm_final, from, index, index_dmcache, fuv, foffset, vec, nor, utan, vtan, orco, ornor);
}
else
psys_particle_on_shape(from, index, fuv, vec, nor, utan, vtan, orco, ornor);
}
/************************************************/
/* Path Cache */
/************************************************/
extern void do_kink(ParticleKey *state, const float par_co[3], const float par_vel[3], const float par_rot[4], float time, float freq, float shape, float amplitude, float flat,
short type, short axis, float obmat[4][4], int smooth_start);
extern float do_clump(ParticleKey *state, const float par_co[3], float time, const float orco_offset[3], float clumpfac, float clumppow, float pa_clump,
bool use_clump_noise, float clump_noise_size, CurveMapping *clumpcurve);
void precalc_guides(ParticleSimulationData *sim, ListBase *effectors)
{
EffectedPoint point;
ParticleKey state;
EffectorData efd;
EffectorCache *eff;
ParticleSystem *psys = sim->psys;
EffectorWeights *weights = sim->psys->part->effector_weights;
GuideEffectorData *data;
PARTICLE_P;
if (!effectors)
return;
LOOP_PARTICLES {
psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, state.co, 0, 0, 0, 0, 0);
mul_m4_v3(sim->ob->obmat, state.co);
mul_mat3_m4_v3(sim->ob->obmat, state.vel);
pd_point_from_particle(sim, pa, &state, &point);
for (eff = effectors->first; eff; eff = eff->next) {
if (eff->pd->forcefield != PFIELD_GUIDE)
continue;
if (!eff->guide_data)
eff->guide_data = MEM_callocN(sizeof(GuideEffectorData) * psys->totpart, "GuideEffectorData");
data = eff->guide_data + p;
sub_v3_v3v3(efd.vec_to_point, state.co, eff->guide_loc);
copy_v3_v3(efd.nor, eff->guide_dir);
efd.distance = len_v3(efd.vec_to_point);
copy_v3_v3(data->vec_to_point, efd.vec_to_point);
data->strength = effector_falloff(eff, &efd, &point, weights);
}
}
}
int do_guides(ParticleSettings *part, ListBase *effectors, ParticleKey *state, int index, float time)
{
CurveMapping *clumpcurve = (part->child_flag & PART_CHILD_USE_CLUMP_CURVE) ? part->clumpcurve : NULL;
CurveMapping *roughcurve = (part->child_flag & PART_CHILD_USE_ROUGH_CURVE) ? part->roughcurve : NULL;
EffectorCache *eff;
PartDeflect *pd;
Curve *cu;
GuideEffectorData *data;
float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f};
float guidevec[4], guidedir[3], rot2[4], temp[3];
float guidetime, radius, weight, angle, totstrength = 0.0f;
float vec_to_point[3];
if (effectors) for (eff = effectors->first; eff; eff = eff->next) {
pd = eff->pd;
if (pd->forcefield != PFIELD_GUIDE)
continue;
data = eff->guide_data + index;
if (data->strength <= 0.0f)
continue;
guidetime = time / (1.0f - pd->free_end);
if (guidetime > 1.0f)
continue;
cu = (Curve *)eff->ob->data;
if (pd->flag & PFIELD_GUIDE_PATH_ADD) {
if (where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0)
return 0;
}
else {
if (where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0)
return 0;
}
mul_m4_v3(eff->ob->obmat, guidevec);
mul_mat3_m4_v3(eff->ob->obmat, guidedir);
normalize_v3(guidedir);
copy_v3_v3(vec_to_point, data->vec_to_point);
if (guidetime != 0.0f) {
/* curve direction */
cross_v3_v3v3(temp, eff->guide_dir, guidedir);
angle = dot_v3v3(eff->guide_dir, guidedir) / (len_v3(eff->guide_dir));
angle = saacos(angle);
axis_angle_to_quat(rot2, temp, angle);
mul_qt_v3(rot2, vec_to_point);
/* curve tilt */
axis_angle_to_quat(rot2, guidedir, guidevec[3] - eff->guide_loc[3]);
mul_qt_v3(rot2, vec_to_point);
}
/* curve taper */
if (cu->taperobj)
mul_v3_fl(vec_to_point, BKE_displist_calc_taper(eff->scene, cu->taperobj, (int)(data->strength * guidetime * 100.0f), 100));
else { /* curve size*/
if (cu->flag & CU_PATH_RADIUS) {
mul_v3_fl(vec_to_point, radius);
}
}
if (clumpcurve)
curvemapping_changed_all(clumpcurve);
if (roughcurve)
curvemapping_changed_all(roughcurve);
{
ParticleKey key;
float par_co[3] = {0.0f, 0.0f, 0.0f};
float par_vel[3] = {0.0f, 0.0f, 0.0f};
float par_rot[4] = {1.0f, 0.0f, 0.0f, 0.0f};
float orco_offset[3] = {0.0f, 0.0f, 0.0f};
copy_v3_v3(key.co, vec_to_point);
do_kink(&key, par_co, par_vel, par_rot, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0);
do_clump(&key, par_co, guidetime, orco_offset, pd->clump_fac, pd->clump_pow, 1.0f,
part->child_flag & PART_CHILD_USE_CLUMP_NOISE, part->clump_noise_size, clumpcurve);
copy_v3_v3(vec_to_point, key.co);
}
add_v3_v3(vec_to_point, guidevec);
//sub_v3_v3v3(pa_loc, pa_loc, pa_zero);
madd_v3_v3fl(effect, vec_to_point, data->strength);
madd_v3_v3fl(veffect, guidedir, data->strength);
totstrength += data->strength;
if (pd->flag & PFIELD_GUIDE_PATH_WEIGHT)
totstrength *= weight;
}
if (totstrength != 0.0f) {
if (totstrength > 1.0f)
mul_v3_fl(effect, 1.0f / totstrength);
CLAMP(totstrength, 0.0f, 1.0f);
//add_v3_v3(effect, pa_zero);
interp_v3_v3v3(state->co, state->co, effect, totstrength);
normalize_v3(veffect);
mul_v3_fl(veffect, len_v3(state->vel));
copy_v3_v3(state->vel, veffect);
return 1;
}
return 0;
}
static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec)
{
float force[3] = {0.0f, 0.0f, 0.0f};
ParticleKey eff_key;
EffectedPoint epoint;
/* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */
if (sim->psys->flag & PSYS_HAIR_DYNAMICS)
return;
copy_v3_v3(eff_key.co, (ca - 1)->co);
copy_v3_v3(eff_key.vel, (ca - 1)->vel);
copy_qt_qt(eff_key.rot, (ca - 1)->rot);
pd_point_from_particle(sim, sim->psys->particles + i, &eff_key, &epoint);
pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL);
mul_v3_fl(force, effector * powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps);
add_v3_v3(force, vec);
normalize_v3(force);
if (k < steps)
sub_v3_v3v3(vec, (ca + 1)->co, ca->co);
madd_v3_v3v3fl(ca->co, (ca - 1)->co, force, *length);
if (k < steps)
*length = len_v3(vec);
}
static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius)
{
copy_v3_v3(child->co, cpa->fuv);
mul_v3_fl(child->co, radius);
child->co[0] *= flat;
copy_v3_v3(child->vel, par->vel);
if (par_rot) {
mul_qt_v3(par_rot, child->co);
copy_qt_qt(child->rot, par_rot);
}
else
unit_qt(child->rot);
add_v3_v3(child->co, par->co);
}
float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup)
{
float *vg = 0;
if (vgroup < 0) {
/* hair dynamics pinning vgroup */
}
else if (psys->vgroup[vgroup]) {
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
if (dvert) {
int totvert = dm->getNumVerts(dm), i;
vg = MEM_callocN(sizeof(float) * totvert, "vg_cache");
if (psys->vg_neg & (1 << vgroup)) {
for (i = 0; i < totvert; i++)
vg[i] = 1.0f - defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1);
}
else {
for (i = 0; i < totvert; i++)
vg[i] = defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1);
}
}
}
return vg;
}
void psys_find_parents(ParticleSimulationData *sim, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
KDTree *tree;
ChildParticle *cpa;
ParticleTexture ptex;
int p, totparent, totchild = sim->psys->totchild;
float co[3], orco[3];
int from = PART_FROM_FACE;
totparent = (int)(totchild * part->parents * 0.3f);
if ((sim->psys->renderdata || use_render_params) && part->child_nbr && part->ren_child_nbr)
totparent *= (float)part->child_nbr / (float)part->ren_child_nbr;
/* hard limit, workaround for it being ignored above */
if (sim->psys->totpart < totparent) {
totparent = sim->psys->totpart;
}
tree = BLI_kdtree_new(totparent);
for (p = 0, cpa = sim->psys->child; p < totparent; p++, cpa++) {
psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0);
/* Check if particle doesn't exist because of texture influence. Insert only existing particles into kdtree. */
get_cpa_texture(sim->psmd->dm_final, psys, part, psys->particles + cpa->pa[0], p, cpa->num, cpa->fuv, orco, &ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra);
if (ptex.exist >= psys_frand(psys, p + 24)) {
BLI_kdtree_insert(tree, p, orco);
}
}
BLI_kdtree_balance(tree);
for (; p < totchild; p++, cpa++) {
psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0);
cpa->parent = BLI_kdtree_find_nearest(tree, orco, NULL);
}
BLI_kdtree_free(tree);
}
static bool psys_thread_context_init_path(
ParticleThreadContext *ctx, ParticleSimulationData *sim, Scene *scene,
float cfra, const bool editupdate, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
int totparent = 0, between = 0;
int segments = 1 << part->draw_step;
int totchild = psys->totchild;
psys_thread_context_init(ctx, sim);
/*---start figuring out what is actually wanted---*/
if (psys_in_edit_mode(scene, psys)) {
ParticleEditSettings *pset = &scene->toolsettings->particle;
if ((psys->renderdata == 0 && use_render_params == 0) && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0)
totchild = 0;
segments = 1 << pset->draw_step;
}
if (totchild && part->childtype == PART_CHILD_FACES) {
totparent = (int)(totchild * part->parents * 0.3f);
if ((psys->renderdata || use_render_params) && part->child_nbr && part->ren_child_nbr)
totparent *= (float)part->child_nbr / (float)part->ren_child_nbr;
/* part->parents could still be 0 so we can't test with totparent */
between = 1;
}
if (psys->renderdata || use_render_params)
segments = 1 << part->ren_step;
else {
totchild = (int)((float)totchild * (float)part->disp / 100.0f);
totparent = MIN2(totparent, totchild);
}
if (totchild == 0)
return false;
/* fill context values */
ctx->between = between;
ctx->segments = segments;
if (ELEM(part->kink, PART_KINK_SPIRAL))
ctx->extra_segments = max_ii(part->kink_extra_steps, 1);
else
ctx->extra_segments = 0;
ctx->totchild = totchild;
ctx->totparent = totparent;
ctx->parent_pass = 0;
ctx->cfra = cfra;
ctx->editupdate = editupdate;
psys->lattice_deform_data = psys_create_lattice_deform_data(&ctx->sim);
/* cache all relevant vertex groups if they exist */
ctx->vg_length = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_LENGTH);
ctx->vg_clump = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_CLUMP);
ctx->vg_kink = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_KINK);
ctx->vg_rough1 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH1);
ctx->vg_rough2 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH2);
ctx->vg_roughe = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGHE);
if (psys->part->flag & PART_CHILD_EFFECT)
ctx->vg_effector = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_EFFECTOR);
/* prepare curvemapping tables */
if ((part->child_flag & PART_CHILD_USE_CLUMP_CURVE) && part->clumpcurve) {
ctx->clumpcurve = curvemapping_copy(part->clumpcurve);
curvemapping_changed_all(ctx->clumpcurve);
}
else {
ctx->clumpcurve = NULL;
}
if ((part->child_flag & PART_CHILD_USE_ROUGH_CURVE) && part->roughcurve) {
ctx->roughcurve = curvemapping_copy(part->roughcurve);
curvemapping_changed_all(ctx->roughcurve);
}
else {
ctx->roughcurve = NULL;
}
return true;
}
static void psys_task_init_path(ParticleTask *task, ParticleSimulationData *sim)
{
/* init random number generator */
int seed = 31415926 + sim->psys->seed;
task->rng_path = BLI_rng_new(seed);
}
/* note: this function must be thread safe, except for branching! */
static void psys_thread_create_path(ParticleTask *task, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i)
{
ParticleThreadContext *ctx = task->ctx;
Object *ob = ctx->sim.ob;
ParticleSystem *psys = ctx->sim.psys;
ParticleSettings *part = psys->part;
ParticleCacheKey **cache = psys->childcache;
ParticleCacheKey **pcache = psys_in_edit_mode(ctx->sim.scene, psys) && psys->edit ? psys->edit->pathcache : psys->pathcache;
ParticleCacheKey *child, *key[4];
ParticleTexture ptex;
float *cpa_fuv = 0, *par_rot = 0, rot[4];
float orco[3], ornor[3], hairmat[4][4], dvec[3], off1[4][3], off2[4][3];
float eff_length, eff_vec[3], weight[4];
int k, cpa_num;
short cpa_from;
if (!pcache)
return;
if (ctx->between) {
ParticleData *pa = psys->particles + cpa->pa[0];
int w, needupdate;
float foffset, wsum = 0.f;
float co[3];
float p_min = part->parting_min;
float p_max = part->parting_max;
/* Virtual parents don't work nicely with parting. */
float p_fac = part->parents > 0.f ? 0.f : part->parting_fac;
if (ctx->editupdate) {
needupdate = 0;
w = 0;
while (w < 4 && cpa->pa[w] >= 0) {
if (psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) {
needupdate = 1;
break;
}
w++;
}
if (!needupdate)
return;
else
memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1));
}
/* get parent paths */
for (w = 0; w < 4; w++) {
if (cpa->pa[w] >= 0) {
key[w] = pcache[cpa->pa[w]];
weight[w] = cpa->w[w];
}
else {
key[w] = pcache[0];
weight[w] = 0.f;
}
}
/* modify weights to create parting */
if (p_fac > 0.f) {
const ParticleCacheKey *key_0_last = pcache_key_segment_endpoint_safe(key[0]);
for (w = 0; w < 4; w++) {
if (w && (weight[w] > 0.f)) {
const ParticleCacheKey *key_w_last = pcache_key_segment_endpoint_safe(key[w]);
float d;
if (part->flag & PART_CHILD_LONG_HAIR) {
/* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */
float d1 = len_v3v3(key[0]->co, key[w]->co);
float d2 = len_v3v3(key_0_last->co, key_w_last->co);
d = d1 > 0.f ? d2 / d1 - 1.f : 10000.f;
}
else {
float v1[3], v2[3];
sub_v3_v3v3(v1, key_0_last->co, key[0]->co);
sub_v3_v3v3(v2, key_w_last->co, key[w]->co);
normalize_v3(v1);
normalize_v3(v2);
d = RAD2DEGF(saacos(dot_v3v3(v1, v2)));
}
if (p_max > p_min)
d = (d - p_min) / (p_max - p_min);
else
d = (d - p_min) <= 0.f ? 0.f : 1.f;
CLAMP(d, 0.f, 1.f);
if (d > 0.f)
weight[w] *= (1.f - d);
}
wsum += weight[w];
}
for (w = 0; w < 4; w++)
weight[w] /= wsum;
interp_v4_v4v4(weight, cpa->w, weight, p_fac);
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, ornor, 0, 0, orco, 0);
mul_m4_v3(ob->obmat, co);
for (w = 0; w < 4; w++)
sub_v3_v3v3(off1[w], co, key[w]->co);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm_final, psys->part->from, pa, hairmat);
}
else {
ParticleData *pa = psys->particles + cpa->parent;
float co[3];
if (ctx->editupdate) {
if (!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC))
return;
memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1));
}
/* get the parent path */
key[0] = pcache[cpa->parent];
/* get the original coordinates (orco) for texture usage */
cpa_from = part->from;
cpa_num = pa->num;
/* XXX hack to avoid messed up particle num and subsequent crash (#40733) */
if (cpa_num > ctx->sim.psmd->dm_final->getNumTessFaces(ctx->sim.psmd->dm_final))
cpa_num = 0;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, ornor, 0, 0, orco, 0);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm_final, psys->part->from, pa, hairmat);
}
child_keys->segments = ctx->segments;
/* get different child parameters from textures & vgroups */
get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if (ptex.exist < psys_frand(psys, i + 24)) {
child_keys->segments = -1;
return;
}
/* create the child path */
for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) {
if (ctx->between) {
int w = 0;
zero_v3(child->co);
zero_v3(child->vel);
unit_qt(child->rot);
for (w = 0; w < 4; w++) {
copy_v3_v3(off2[w], off1[w]);
if (part->flag & PART_CHILD_LONG_HAIR) {
/* Use parent rotation (in addition to emission location) to determine child offset. */
if (k)
mul_qt_v3((key[w] + k)->rot, off2[w]);
/* Fade the effect of rotation for even lengths in the end */
project_v3_v3v3(dvec, off2[w], (key[w] + k)->vel);
madd_v3_v3fl(off2[w], dvec, -(float)k / (float)ctx->segments);
}
add_v3_v3(off2[w], (key[w] + k)->co);
}
/* child position is the weighted sum of parent positions */
interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight);
interp_v3_v3v3v3v3(child->vel, (key[0] + k)->vel, (key[1] + k)->vel, (key[2] + k)->vel, (key[3] + k)->vel, weight);
copy_qt_qt(child->rot, (key[0] + k)->rot);
}
else {
if (k) {
mul_qt_qtqt(rot, (key[0] + k)->rot, key[0]->rot);
par_rot = rot;
}
else {
par_rot = key[0]->rot;
}
/* offset the child from the parent position */
offset_child(cpa, (ParticleKey *)(key[0] + k), par_rot, (ParticleKey *)child, part->childflat, part->childrad);
}
child->time = (float)k / (float)ctx->segments;
}
/* apply effectors */
if (part->flag & PART_CHILD_EFFECT) {
for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) {
if (k) {
do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->segments, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec);
}
else {
sub_v3_v3v3(eff_vec, (child + 1)->co, child->co);
eff_length = len_v3(eff_vec);
}
}
}
{
ParticleData *pa = NULL;
ParticleCacheKey *par = NULL;
float par_co[3];
float par_orco[3];
if (ctx->totparent) {
if (i >= ctx->totparent) {
pa = &psys->particles[cpa->parent];
/* this is now threadsafe, virtual parents are calculated before rest of children */
BLI_assert(cpa->parent < psys->totchildcache);
par = cache[cpa->parent];
}
}
else if (cpa->parent >= 0) {
pa = &psys->particles[cpa->parent];
par = pcache[cpa->parent];
/* If particle is unexisting, try to pick a viable parent from particles used for interpolation. */
for (k = 0; k < 4 && pa && (pa->flag & PARS_UNEXIST); k++) {
if (cpa->pa[k] >= 0) {
pa = &psys->particles[cpa->pa[k]];
par = pcache[cpa->pa[k]];
}
}
if (pa->flag & PARS_UNEXIST) pa = NULL;
}
if (pa) {
ListBase modifiers;
BLI_listbase_clear(&modifiers);
psys_particle_on_emitter(ctx->sim.psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset,
par_co, NULL, NULL, NULL, par_orco, NULL);
psys_apply_child_modifiers(ctx, &modifiers, cpa, &ptex, orco, ornor, hairmat, child_keys, par, par_orco);
}
else
zero_v3(par_orco);
}
/* Hide virtual parents */
if (i < ctx->totparent)
child_keys->segments = -1;
}
static void exec_child_path_cache(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
ParticleTask *task = taskdata;
ParticleThreadContext *ctx = task->ctx;
ParticleSystem *psys = ctx->sim.psys;
ParticleCacheKey **cache = psys->childcache;
ChildParticle *cpa;
int i;
cpa = psys->child + task->begin;
for (i = task->begin; i < task->end; ++i, ++cpa) {
BLI_assert(i < psys->totchildcache);
psys_thread_create_path(task, cpa, cache[i], i);
}
}
void psys_cache_child_paths(
ParticleSimulationData *sim, float cfra,
const bool editupdate, const bool use_render_params)
{
TaskScheduler *task_scheduler;
TaskPool *task_pool;
ParticleThreadContext ctx;
ParticleTask *tasks_parent, *tasks_child;
int numtasks_parent, numtasks_child;
int i, totchild, totparent;
if (sim->psys->flag & PSYS_GLOBAL_HAIR)
return;
/* create a task pool for child path tasks */
if (!psys_thread_context_init_path(&ctx, sim, sim->scene, cfra, editupdate, use_render_params))
return;
task_scheduler = BLI_task_scheduler_get();
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
totchild = ctx.totchild;
totparent = ctx.totparent;
if (editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) {
; /* just overwrite the existing cache */
}
else {
/* clear out old and create new empty path cache */
free_child_path_cache(sim->psys);
sim->psys->childcache = psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx.segments + ctx.extra_segments + 1);
sim->psys->totchildcache = totchild;
}
/* cache parent paths */
ctx.parent_pass = 1;
psys_tasks_create(&ctx, 0, totparent, &tasks_parent, &numtasks_parent);
for (i = 0; i < numtasks_parent; ++i) {
ParticleTask *task = &tasks_parent[i];
psys_task_init_path(task, sim);
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
}
BLI_task_pool_work_and_wait(task_pool);
/* cache child paths */
ctx.parent_pass = 0;
psys_tasks_create(&ctx, totparent, totchild, &tasks_child, &numtasks_child);
for (i = 0; i < numtasks_child; ++i) {
ParticleTask *task = &tasks_child[i];
psys_task_init_path(task, sim);
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
psys_tasks_free(tasks_parent, numtasks_parent);
psys_tasks_free(tasks_child, numtasks_child);
psys_thread_context_free(&ctx);
}
/* figure out incremental rotations along path starting from unit quat */
static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i)
{
float cosangle, angle, tangent[3], normal[3], q[4];
switch (i) {
case 0:
/* start from second key */
break;
case 1:
/* calculate initial tangent for incremental rotations */
sub_v3_v3v3(prev_tangent, key0->co, key1->co);
normalize_v3(prev_tangent);
unit_qt(key1->rot);
break;
default:
sub_v3_v3v3(tangent, key0->co, key1->co);
normalize_v3(tangent);
cosangle = dot_v3v3(tangent, prev_tangent);
/* note we do the comparison on cosangle instead of
* angle, since floating point accuracy makes it give
* different results across platforms */
if (cosangle > 0.999999f) {
copy_v4_v4(key1->rot, key2->rot);
}
else {
angle = saacos(cosangle);
cross_v3_v3v3(normal, prev_tangent, tangent);
axis_angle_to_quat(q, normal, angle);
mul_qt_qtqt(key1->rot, q, key2->rot);
}
copy_v3_v3(prev_tangent, tangent);
}
}
/**
* Calculates paths ready for drawing/rendering
* - Useful for making use of opengl vertex arrays for super fast strand drawing.
* - Makes child strands possible and creates them too into the cache.
* - Cached path data is also used to determine cut position for the editmode tool. */
void psys_cache_paths(ParticleSimulationData *sim, float cfra, const bool use_render_params)
{
PARTICLE_PSMD;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleCacheKey *ca, **cache;
DerivedMesh *hair_dm = (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL;
ParticleKey result;
Material *ma;
ParticleInterpolationData pind;
ParticleTexture ptex;
PARTICLE_P;
float birthtime = 0.0, dietime = 0.0;
float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/;
float col[4] = {0.5f, 0.5f, 0.5f, 1.0f};
float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4];
float rotmat[3][3];
int k;
int segments = (int)pow(2.0, (double)((psys->renderdata || use_render_params) ? part->ren_step : part->draw_step));
int totpart = psys->totpart;
float length, vec[3];
float *vg_effector = NULL;
float *vg_length = NULL, pa_length = 1.0f;
int keyed, baked;
/* we don't have anything valid to create paths from so let's quit here */
if ((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache) == 0)
return;
if (psys_in_edit_mode(sim->scene, psys))
if (psys->renderdata == 0 && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0)
return;
keyed = psys->flag & PSYS_KEYED;
baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR;
/* clear out old and create new empty path cache */
psys_free_path_cache(psys, psys->edit);
cache = psys->pathcache = psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, segments + 1);
psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
ma = give_current_material(sim->ob, psys->part->omat);
if (ma && (psys->part->draw_col == PART_DRAW_COL_MAT))
copy_v3_v3(col, &ma->r);
if ((psys->flag & PSYS_GLOBAL_HAIR) == 0) {
if ((psys->part->flag & PART_CHILD_EFFECT) == 0)
vg_effector = psys_cache_vgroup(psmd->dm_final, psys, PSYS_VG_EFFECTOR);
if (!psys->totchild)
vg_length = psys_cache_vgroup(psmd->dm_final, psys, PSYS_VG_LENGTH);
}
/* ensure we have tessfaces to be used for mapping */
if (part->from != PART_FROM_VERT) {
DM_ensure_tessface(psmd->dm_final);
}
/*---first main loop: create all actual particles' paths---*/
LOOP_PARTICLES {
if (!psys->totchild) {
psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f);
pa_length = ptex.length * (1.0f - part->randlength * psys_frand(psys, psys->seed + p));
if (vg_length)
pa_length *= psys_particle_value_from_verts(psmd->dm_final, part->from, pa, vg_length);
}
pind.keyed = keyed;
pind.cache = baked ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
pind.dm = hair_dm;
memset(cache[p], 0, sizeof(*cache[p]) * (segments + 1));
cache[p]->segments = segments;
/*--get the first data points--*/
init_particle_interpolation(sim->ob, sim->psys, pa, &pind);
/* hairmat is needed for for non-hair particle too so we get proper rotations */
psys_mat_hair_to_global(sim->ob, psmd->dm_final, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
if (part->draw & PART_ABS_PATH_TIME) {
birthtime = MAX2(pind.birthtime, part->path_start);
dietime = MIN2(pind.dietime, part->path_end);
}
else {
float tb = pind.birthtime;
birthtime = tb + part->path_start * (pind.dietime - tb);
dietime = tb + part->path_end * (pind.dietime - tb);
}
if (birthtime >= dietime) {
cache[p]->segments = -1;
continue;
}
dietime = birthtime + pa_length * (dietime - birthtime);
/*--interpolate actual path from data points--*/
for (k = 0, ca = cache[p]; k <= segments; k++, ca++) {
time = (float)k / (float)segments;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, p, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* dynamic hair is in object space */
/* keyed and baked are already in global space */
if (hair_dm)
mul_m4_v3(sim->ob->obmat, ca->co);
else if (!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR))
mul_m4_v3(hairmat, ca->co);
copy_v3_v3(ca->col, col);
}
if (part->type == PART_HAIR) {
HairKey *hkey;
for (k = 0, hkey = pa->hair; k < pa->totkey; ++k, ++hkey) {
mul_v3_m4v3(hkey->world_co, hairmat, hkey->co);
}
}
/*--modify paths and calculate rotation & velocity--*/
if (!(psys->flag & PSYS_GLOBAL_HAIR)) {
/* apply effectors */
if ((psys->part->flag & PART_CHILD_EFFECT) == 0) {
float effector = 1.0f;
if (vg_effector)
effector *= psys_particle_value_from_verts(psmd->dm_final, psys->part->from, pa, vg_effector);
sub_v3_v3v3(vec, (cache[p] + 1)->co, cache[p]->co);
length = len_v3(vec);
for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++)
do_path_effectors(sim, p, ca, k, segments, cache[p]->co, effector, dfra, cfra, &length, vec);
}
/* apply guide curves to path data */
if (sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT) == 0) {
for (k = 0, ca = cache[p]; k <= segments; k++, ca++)
/* ca is safe to cast, since only co and vel are used */
do_guides(sim->psys->part, sim->psys->effectors, (ParticleKey *)ca, p, (float)k / (float)segments);
}
/* lattices have to be calculated separately to avoid mixups between effector calculations */
if (psys->lattice_deform_data) {
for (k = 0, ca = cache[p]; k <= segments; k++, ca++)
calc_latt_deform(psys->lattice_deform_data, ca->co, 1.0f);
}
}
/* finally do rotation & velocity */
for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if (k == segments)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if (k == 1)
copy_v3_v3((ca - 1)->vel, ca->vel);
ca->time = (float)k / (float)segments;
}
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[p]->rot, rotmat);
}
psys->totcached = totpart;
if (psys->lattice_deform_data) {
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
if (vg_effector)
MEM_freeN(vg_effector);
if (vg_length)
MEM_freeN(vg_length);
}
void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra, const bool use_render_params)
{
ParticleCacheKey *ca, **cache = edit->pathcache;
ParticleEditSettings *pset = &scene->toolsettings->particle;
PTCacheEditPoint *point = NULL;
PTCacheEditKey *ekey = NULL;
ParticleSystem *psys = edit->psys;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
ParticleData *pa = psys ? psys->particles : NULL;
ParticleInterpolationData pind;
ParticleKey result;
float birthtime = 0.0f, dietime = 0.0f;
float t, time = 0.0f, keytime = 0.0f /*, frs_sec */;
float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f};
int k, i;
int segments = 1 << pset->draw_step;
int totpart = edit->totpoint, recalc_set = 0;
float sel_col[3];
float nosel_col[3];
segments = MAX2(segments, 4);
if (!cache || edit->totpoint != edit->totcached) {
/* clear out old and create new empty path cache */
psys_free_path_cache(edit->psys, edit);
cache = edit->pathcache = psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, segments + 1);
/* set flag for update (child particles check this too) */
for (i = 0, point = edit->points; i < totpart; i++, point++)
point->flag |= PEP_EDIT_RECALC;
recalc_set = 1;
}
/* frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; */ /* UNUSED */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
; /* use weight painting colors now... */
}
else {
sel_col[0] = (float)edit->sel_col[0] / 255.0f;
sel_col[1] = (float)edit->sel_col[1] / 255.0f;
sel_col[2] = (float)edit->sel_col[2] / 255.0f;
nosel_col[0] = (float)edit->nosel_col[0] / 255.0f;
nosel_col[1] = (float)edit->nosel_col[1] / 255.0f;
nosel_col[2] = (float)edit->nosel_col[2] / 255.0f;
}
/*---first main loop: create all actual particles' paths---*/
for (i = 0, point = edit->points; i < totpart; i++, pa += pa ? 1 : 0, point++) {
if (edit->totcached && !(point->flag & PEP_EDIT_RECALC))
continue;
if (point->totkey == 0)
continue;
ekey = point->keys;
pind.keyed = 0;
pind.cache = NULL;
pind.epoint = point;
pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0;
pind.dm = NULL;
/* should init_particle_interpolation set this ? */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
pind.hkey[0] = NULL;
/* pa != NULL since the weight brush is only available for hair */
pind.hkey[1] = pa->hair;
}
memset(cache[i], 0, sizeof(*cache[i]) * (segments + 1));
cache[i]->segments = segments;
/*--get the first data points--*/
init_particle_interpolation(ob, psys, pa, &pind);
if (psys) {
psys_mat_hair_to_global(ob, psmd->dm_final, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
}
birthtime = pind.birthtime;
dietime = pind.dietime;
if (birthtime >= dietime) {
cache[i]->segments = -1;
continue;
}
/*--interpolate actual path from data points--*/
for (k = 0, ca = cache[i]; k <= segments; k++, ca++) {
time = (float)k / (float)segments;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, i, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* non-hair points are already in global space */
if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
mul_m4_v3(hairmat, ca->co);
if (k) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if (k == segments)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if (k == 1)
copy_v3_v3((ca - 1)->vel, ca->vel);
}
}
else {
ca->vel[0] = ca->vel[1] = 0.0f;
ca->vel[2] = 1.0f;
}
/* selection coloring in edit mode */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
float t2;
if (k == 0) {
weight_to_rgb(ca->col, pind.hkey[1]->weight);
}
else {
float w1[3], w2[3];
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
weight_to_rgb(w1, pind.hkey[0]->weight);
weight_to_rgb(w2, pind.hkey[1]->weight);
interp_v3_v3v3(ca->col, w1, w2, keytime);
}
/* at the moment this is only used for weight painting.
* will need to move out of this check if its used elsewhere. */
t2 = birthtime + ((float)k / (float)segments) * (dietime - birthtime);
while (pind.hkey[1]->time < t2) pind.hkey[1]++;
pind.hkey[0] = pind.hkey[1] - 1;
}
else {
if ((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT) {
if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) {
copy_v3_v3(ca->col, sel_col);
}
else {
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime);
}
}
else {
if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) {
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime);
}
else {
copy_v3_v3(ca->col, nosel_col);
}
}
}
ca->time = t;
}
if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[i]->rot, rotmat);
}
}
edit->totcached = totpart;
if (psys) {
ParticleSimulationData sim = {0};
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
psys_cache_child_paths(&sim, cfra, true, use_render_params);
}
/* clear recalc flag if set here */
if (recalc_set) {
for (i = 0, point = edit->points; i < totpart; i++, point++)
point->flag &= ~PEP_EDIT_RECALC;
}
}
/************************************************/
/* Particle Key handling */
/************************************************/
void copy_particle_key(ParticleKey *to, ParticleKey *from, int time)
{
if (time) {
memcpy(to, from, sizeof(ParticleKey));
}
else {
float to_time = to->time;
memcpy(to, from, sizeof(ParticleKey));
to->time = to_time;
}
}
void psys_get_from_key(ParticleKey *key, float loc[3], float vel[3], float rot[4], float *time)
{
if (loc) copy_v3_v3(loc, key->co);
if (vel) copy_v3_v3(vel, key->vel);
if (rot) copy_qt_qt(rot, key->rot);
if (time) *time = key->time;
}
/*-------changing particle keys from space to another-------*/
#if 0
static void key_from_object(Object *ob, ParticleKey *key)
{
float q[4];
add_v3_v3(key->vel, key->co);
mul_m4_v3(ob->obmat, key->co);
mul_m4_v3(ob->obmat, key->vel);
mat4_to_quat(q, ob->obmat);
sub_v3_v3v3(key->vel, key->vel, key->co);
mul_qt_qtqt(key->rot, q, key->rot);
}
#endif
static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[4][4])
{
float det, w1, w2, d1[2], d2[2];
memset(mat, 0, sizeof(float) * 4 * 4);
mat[3][3] = 1.0f;
/* first axis is the normal */
normal_tri_v3(mat[2], v1, v2, v3);
/* second axis along (1, 0) in uv space */
if (uv) {
d1[0] = uv[1][0] - uv[0][0];
d1[1] = uv[1][1] - uv[0][1];
d2[0] = uv[2][0] - uv[0][0];
d2[1] = uv[2][1] - uv[0][1];
det = d2[0] * d1[1] - d2[1] * d1[0];
if (det != 0.0f) {
det = 1.0f / det;
w1 = -d2[1] * det;
w2 = d1[1] * det;
mat[1][0] = w1 * (v2[0] - v1[0]) + w2 * (v3[0] - v1[0]);
mat[1][1] = w1 * (v2[1] - v1[1]) + w2 * (v3[1] - v1[1]);
mat[1][2] = w1 * (v2[2] - v1[2]) + w2 * (v3[2] - v1[2]);
normalize_v3(mat[1]);
}
else
mat[1][0] = mat[1][1] = mat[1][2] = 0.0f;
}
else {
sub_v3_v3v3(mat[1], v2, v1);
normalize_v3(mat[1]);
}
/* third as a cross product */
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[4][4], int orco)
{
float v[3][3];
MFace *mface;
OrigSpaceFace *osface;
float (*orcodata)[3];
int i = (ELEM(pa->num_dmcache, DMCACHE_ISCHILD, DMCACHE_NOTFOUND)) ? pa->num : pa->num_dmcache;
if (i == -1 || i >= dm->getNumTessFaces(dm)) { unit_m4(mat); return; }
mface = dm->getTessFaceData(dm, i, CD_MFACE);
osface = dm->getTessFaceData(dm, i, CD_ORIGSPACE);
if (orco && (orcodata = dm->getVertDataArray(dm, CD_ORCO))) {
copy_v3_v3(v[0], orcodata[mface->v1]);
copy_v3_v3(v[1], orcodata[mface->v2]);
copy_v3_v3(v[2], orcodata[mface->v3]);
/* ugly hack to use non-transformed orcos, since only those
* give symmetric results for mirroring in particle mode */
if (DM_get_vert_data_layer(dm, CD_ORIGINDEX))
BKE_mesh_orco_verts_transform(ob->data, v, 3, 1);
}
else {
dm->getVertCo(dm, mface->v1, v[0]);
dm->getVertCo(dm, mface->v2, v[1]);
dm->getVertCo(dm, mface->v3, v[2]);
}
triatomat(v[0], v[1], v[2], (osface) ? osface->uv : NULL, mat);
}
void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float vec[3];
/* can happen when called from a different object's modifier */
if (!dm) {
unit_m4(hairmat);
return;
}
psys_face_mat(0, dm, pa, hairmat, 0);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0);
copy_v3_v3(hairmat[3], vec);
}
void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float vec[3], orco[3];
psys_face_mat(ob, dm, pa, hairmat, 1);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0);
/* see psys_face_mat for why this function is called */
if (DM_get_vert_data_layer(dm, CD_ORIGINDEX))
BKE_mesh_orco_verts_transform(ob->data, &orco, 1, 1);
copy_v3_v3(hairmat[3], orco);
}
void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float vec[3])
{
float mat[4][4];
psys_face_mat(0, dm, pa, mat, 0);
transpose_m4(mat); /* cheap inverse for rotation matrix */
mul_mat3_m4_v3(mat, vec);
}
void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float facemat[4][4];
psys_mat_hair_to_object(ob, dm, from, pa, facemat);
mul_m4_m4m4(hairmat, ob->obmat, facemat);
}
/************************************************/
/* ParticleSettings handling */
/************************************************/
ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name)
{
ParticleSystem *psys;
ModifierData *md;
ParticleSystemModifierData *psmd;
if (!ob || ob->type != OB_MESH)
return NULL;
psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag &= ~PSYS_CURRENT;
psys = MEM_callocN(sizeof(ParticleSystem), "particle_system");
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
BLI_addtail(&ob->particlesystem, psys);
psys->part = psys_new_settings(DATA_("ParticleSettings"), NULL);
if (BLI_listbase_count_ex(&ob->particlesystem, 2) > 1)
BLI_snprintf(psys->name, sizeof(psys->name), DATA_("ParticleSystem %i"), BLI_listbase_count(&ob->particlesystem));
else
BLI_strncpy(psys->name, DATA_("ParticleSystem"), sizeof(psys->name));
md = modifier_new(eModifierType_ParticleSystem);
if (name)
BLI_strncpy_utf8(md->name, name, sizeof(md->name));
else
BLI_snprintf(md->name, sizeof(md->name), DATA_("ParticleSystem %i"), BLI_listbase_count(&ob->particlesystem));
modifier_unique_name(&ob->modifiers, md);
psmd = (ParticleSystemModifierData *) md;
psmd->psys = psys;
BLI_addtail(&ob->modifiers, md);
psys->totpart = 0;
psys->flag = PSYS_CURRENT;
psys->cfra = BKE_scene_frame_get_from_ctime(scene, CFRA + 1);
DAG_relations_tag_update(G.main);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
return md;
}
void object_remove_particle_system(Scene *UNUSED(scene), Object *ob)
{
ParticleSystem *psys = psys_get_current(ob);
ParticleSystemModifierData *psmd;
ModifierData *md;
if (!psys)
return;
/* clear all other appearances of this pointer (like on smoke flow modifier) */
if ((md = modifiers_findByType(ob, eModifierType_Smoke))) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if ((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys)
if (smd->flow->psys == psys)
smd->flow->psys = NULL;
}
if ((md = modifiers_findByType(ob, eModifierType_DynamicPaint))) {
DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md;
if (pmd->brush && pmd->brush->psys)
if (pmd->brush->psys == psys)
pmd->brush->psys = NULL;
}
/* clear modifier */
psmd = psys_get_modifier(ob, psys);
BLI_remlink(&ob->modifiers, psmd);
modifier_free((ModifierData *)psmd);
/* clear particle system */
BLI_remlink(&ob->particlesystem, psys);
if (psys->part) {
id_us_min(&psys->part->id);
}
psys_free(ob, psys);
if (ob->particlesystem.first)
((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT;
else
ob->mode &= ~OB_MODE_PARTICLE_EDIT;
DAG_relations_tag_update(G.main);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
}
static void default_particle_settings(ParticleSettings *part)
{
part->type = PART_EMITTER;
part->distr = PART_DISTR_JIT;
part->draw_as = PART_DRAW_REND;
part->ren_as = PART_DRAW_HALO;
part->bb_uv_split = 1;
part->bb_align = PART_BB_VIEW;
part->bb_split_offset = PART_BB_OFF_LINEAR;
part->flag = PART_EDISTR | PART_TRAND | PART_HIDE_ADVANCED_HAIR;
part->sta = 1.0;
part->end = 200.0;
part->lifetime = 50.0;
part->jitfac = 1.0;
part->totpart = 1000;
part->grid_res = 10;
part->timetweak = 1.0;
part->courant_target = 0.2;
part->integrator = PART_INT_MIDPOINT;
part->phystype = PART_PHYS_NEWTON;
part->hair_step = 5;
part->keys_step = 5;
part->draw_step = 2;
part->ren_step = 3;
part->adapt_angle = 5;
part->adapt_pix = 3;
part->kink_axis = 2;
part->kink_amp_clump = 1.f;
part->kink_extra_steps = 4;
part->clump_noise_size = 1.0f;
part->reactevent = PART_EVENT_DEATH;
part->disp = 100;
part->from = PART_FROM_FACE;
part->normfac = 1.0f;
part->mass = 1.0;
part->size = 0.05;
part->childsize = 1.0;
part->rotmode = PART_ROT_VEL;
part->avemode = PART_AVE_VELOCITY;
part->child_nbr = 10;
part->ren_child_nbr = 100;
part->childrad = 0.2f;
part->childflat = 0.0f;
part->clumppow = 0.0f;
part->kink_amp = 0.2f;
part->kink_freq = 2.0;
part->rough1_size = 1.0;
part->rough2_size = 1.0;
part->rough_end_shape = 1.0;
part->clength = 1.0f;
part->clength_thres = 0.0f;
part->draw = PART_DRAW_EMITTER;
part->draw_line[0] = 0.5;
part->path_start = 0.0f;
part->path_end = 1.0f;
part->bb_size[0] = part->bb_size[1] = 1.0f;
part->keyed_loops = 1;
part->color_vec_max = 1.f;
part->draw_col = PART_DRAW_COL_MAT;
part->simplify_refsize = 1920;
part->simplify_rate = 1.0f;
part->simplify_transition = 0.1f;
part->simplify_viewport = 0.8;
if (!part->effector_weights)
part->effector_weights = BKE_add_effector_weights(NULL);
part->omat = 1;
part->use_modifier_stack = false;
}
ParticleSettings *psys_new_settings(const char *name, Main *main)
{
ParticleSettings *part;
if (main == NULL)
main = G.main;
part = BKE_libblock_alloc(main, ID_PA, name);
default_particle_settings(part);
return part;
}
void BKE_particlesettings_clump_curve_init(ParticleSettings *part)
{
CurveMapping *cumap = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
cumap->cm[0].curve[0].x = 0.0f;
cumap->cm[0].curve[0].y = 1.0f;
cumap->cm[0].curve[1].x = 1.0f;
cumap->cm[0].curve[1].y = 1.0f;
part->clumpcurve = cumap;
}
void BKE_particlesettings_rough_curve_init(ParticleSettings *part)
{
CurveMapping *cumap = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
cumap->cm[0].curve[0].x = 0.0f;
cumap->cm[0].curve[0].y = 1.0f;
cumap->cm[0].curve[1].x = 1.0f;
cumap->cm[0].curve[1].y = 1.0f;
part->roughcurve = cumap;
}
ParticleSettings *BKE_particlesettings_copy(Main *bmain, ParticleSettings *part)
{
ParticleSettings *partn;
int a;
partn = BKE_libblock_copy(bmain, &part->id);
partn->pd = MEM_dupallocN(part->pd);
partn->pd2 = MEM_dupallocN(part->pd2);
partn->effector_weights = MEM_dupallocN(part->effector_weights);
partn->fluid = MEM_dupallocN(part->fluid);
if (part->clumpcurve)
partn->clumpcurve = curvemapping_copy(part->clumpcurve);
if (part->roughcurve)
partn->roughcurve = curvemapping_copy(part->roughcurve);
partn->boids = boid_copy_settings(part->boids);
for (a = 0; a < MAX_MTEX; a++) {
if (part->mtex[a]) {
partn->mtex[a] = MEM_mallocN(sizeof(MTex), "psys_copy_tex");
memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex));
id_us_plus((ID *)partn->mtex[a]->tex);
}
}
BLI_duplicatelist(&partn->dupliweights, &part->dupliweights);
BKE_id_copy_ensure_local(bmain, &part->id, &partn->id);
return partn;
}
void BKE_particlesettings_make_local(Main *bmain, ParticleSettings *part, const bool lib_local)
{
BKE_id_make_local_generic(bmain, &part->id, true, lib_local);
}
/************************************************/
/* Textures */
/************************************************/
static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, const float fuv[4], char *name, float *texco)
{
MFace *mf;
MTFace *tf;
int i;
tf = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name);
if (tf == NULL)
tf = CustomData_get_layer(&dm->faceData, CD_MTFACE);
if (tf == NULL)
return 0;
if (pa) {
i = ELEM(pa->num_dmcache, DMCACHE_NOTFOUND, DMCACHE_ISCHILD) ? pa->num : pa->num_dmcache;
if (i >= dm->getNumTessFaces(dm))
i = -1;
}
else
i = face_index;
if (i == -1) {
texco[0] = 0.0f;
texco[1] = 0.0f;
texco[2] = 0.0f;
}
else {
mf = dm->getTessFaceData(dm, i, CD_MFACE);
psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco);
texco[0] = texco[0] * 2.0f - 1.0f;
texco[1] = texco[1] * 2.0f - 1.0f;
texco[2] = 0.0f;
}
return 1;
}
#define SET_PARTICLE_TEXTURE(type, pvalue, texfac) \
if ((event & mtex->mapto) & type) { \
pvalue = texture_value_blend(def, pvalue, value, texfac, blend); \
} (void)0
#define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) \
if (event & type) { \
CLAMP(pvalue, 0.0f, 1.0f); \
} (void)0
#define CLAMP_WARP_PARTICLE_TEXTURE_POS(type, pvalue) \
if (event & type) { \
if (pvalue < 0.0f) \
pvalue = 1.0f + pvalue; \
CLAMP(pvalue, 0.0f, 1.0f); \
} (void)0
#define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) \
if (event & type) { \
CLAMP(pvalue, -1.0f, 1.0f); \
} (void)0
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra)
{
MTex *mtex, **mtexp = part->mtex;
int m;
float value, rgba[4], texvec[3];
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink_freq = ptex->kink_amp =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f;
ptex->length = 1.0f - part->randlength * psys_frand(psys, child_index + 26);
ptex->length *= part->clength_thres < psys_frand(psys, child_index + 27) ? part->clength : 1.0f;
for (m = 0; m < MAX_MTEX; m++, mtexp++) {
mtex = *mtexp;
if (mtex && mtex->tex && mtex->mapto) {
float def = mtex->def_var;
short blend = mtex->blendtype;
short texco = mtex->texco;
if (ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch (texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, par->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, par->state.co);
if (mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if (fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
copy_v3_v3(texvec, orco);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1, 1] */
texvec[0] = 2.f * (cfra - par->time) / (par->dietime - par->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL, false, false);
if ((event & mtex->mapto) & PAMAP_ROUGH)
ptex->rough1 = ptex->rough2 = ptex->roughe = texture_value_blend(def, ptex->rough1, value, mtex->roughfac, blend);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK_AMP, ptex->kink_amp, mtex->kinkampfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK_FREQ, ptex->kink_freq, mtex->kinkfac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_AMP, ptex->kink_amp);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_FREQ, ptex->kink_freq);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
}
void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra)
{
Object *ob = sim->ob;
Mesh *me = (Mesh *)ob->data;
ParticleSettings *part = sim->psys->part;
MTex **mtexp = part->mtex;
MTex *mtex;
int m;
float value, rgba[4], co[3], texvec[3];
int setvars = 0;
/* initialize ptex */
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink_freq = ptex->kink_amp =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f;
ptex->time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
for (m = 0; m < MAX_MTEX; m++, mtexp++) {
mtex = *mtexp;
if (mtex && mtex->tex && mtex->mapto) {
float def = mtex->def_var;
short blend = mtex->blendtype;
short texco = mtex->texco;
if (texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch (texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, pa->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, pa->state.co);
if (mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if (get_particle_uv(sim->psmd->dm_final, pa, 0, pa->fuv, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, 0, 0, 0, texvec, 0);
if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) {
BKE_mesh_texspace_calc(me);
}
sub_v3_v3(texvec, me->loc);
if (me->size[0] != 0.0f) texvec[0] /= me->size[0];
if (me->size[1] != 0.0f) texvec[1] /= me->size[1];
if (me->size[2] != 0.0f) texvec[2] /= me->size[2];
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1, 1] */
texvec[0] = 2.f * (cfra - pa->time) / (pa->dietime - pa->time) - 1.f;
if (sim->psys->totpart > 0)
texvec[1] = 2.f * (float)(pa - sim->psys->particles) / (float)sim->psys->totpart - 1.f;
else
texvec[1] = 0.0f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL, false, false);
if ((event & mtex->mapto) & PAMAP_TIME) {
/* the first time has to set the base value for time regardless of blend mode */
if ((setvars & MAP_PA_TIME) == 0) {
int flip = (mtex->timefac < 0.0f);
float timefac = fabsf(mtex->timefac);
ptex->time *= 1.0f - timefac;
ptex->time += timefac * ((flip) ? 1.0f - value : value);
setvars |= MAP_PA_TIME;
}
else
ptex->time = texture_value_blend(def, ptex->time, value, mtex->timefac, blend);
}
SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac);
SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac);
SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac);
SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac);
SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
}
}
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
}
/************************************************/
/* Particle State */
/************************************************/
float psys_get_timestep(ParticleSimulationData *sim)
{
return 0.04f * sim->psys->part->timetweak;
}
float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime)
{
ParticleSettings *part = psys->part;
float time, life;
if (part->childtype == PART_CHILD_FACES) {
int w = 0;
time = 0.0;
while (w < 4 && cpa->pa[w] >= 0) {
time += cpa->w[w] * (psys->particles + cpa->pa[w])->time;
w++;
}
life = part->lifetime * (1.0f - part->randlife * psys_frand(psys, cpa - psys->child + 25));
}
else {
ParticleData *pa = psys->particles + cpa->parent;
time = pa->time;
life = pa->lifetime;
}
if (birthtime)
*birthtime = time;
if (dietime)
*dietime = time + life;
return (cfra - time) / life;
}
float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time))
{
ParticleSettings *part = psys->part;
float size; // time XXX
if (part->childtype == PART_CHILD_FACES)
size = part->size;
else
size = psys->particles[cpa->parent].size;
size *= part->childsize;
if (part->childrandsize != 0.0f)
size *= 1.0f - part->childrandsize * psys_frand(psys, cpa - psys->child + 26);
return size;
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex)
{
ParticleSystem *psys = ctx->sim.psys;
int i = cpa - psys->child;
get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra);
if (ptex->exist < psys_frand(psys, i + 24))
return;
if (ctx->vg_length)
ptex->length *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_length);
if (ctx->vg_clump)
ptex->clump *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_clump);
if (ctx->vg_kink)
ptex->kink_freq *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_kink);
if (ctx->vg_rough1)
ptex->rough1 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough1);
if (ctx->vg_rough2)
ptex->rough2 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough2);
if (ctx->vg_roughe)
ptex->roughe *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_roughe);
if (ctx->vg_effector)
ptex->effector *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_effector);
}
/* get's hair (or keyed) particles state at the "path time" specified in state->time */
void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, const bool vel)
{
PARTICLE_PSMD;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
Material *ma = give_current_material(sim->ob, part->omat);
ParticleData *pa;
ChildParticle *cpa;
ParticleTexture ptex;
ParticleKey *par = 0, keys[4], tstate;
ParticleThreadContext ctx; /* fake thread context for child modifiers */
ParticleInterpolationData pind;
float t;
float co[3], orco[3];
float hairmat[4][4];
int totpart = psys->totpart;
int totchild = psys->totchild;
short between = 0, edit = 0;
int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED;
int cached = !keyed && part->type != PART_HAIR;
float *cpa_fuv; int cpa_num; short cpa_from;
/* initialize keys to zero */
memset(keys, 0, 4 * sizeof(ParticleKey));
t = state->time;
CLAMP(t, 0.0f, 1.0f);
if (p < totpart) {
/* interpolate pathcache directly if it exist */
if (psys->pathcache) {
ParticleCacheKey result;
interpolate_pathcache(psys->pathcache[p], t, &result);
copy_v3_v3(state->co, result.co);
copy_v3_v3(state->vel, result.vel);
copy_qt_qt(state->rot, result.rot);
}
/* otherwise interpolate with other means */
else {
pa = psys->particles + p;
pind.keyed = keyed;
pind.cache = cached ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
/* pind.dm disabled in editmode means we don't get effectors taken into
* account when subdividing for instance */
pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm;
init_particle_interpolation(sim->ob, psys, pa, &pind);
do_particle_interpolation(psys, p, pa, t, &pind, state);
if (pind.dm) {
mul_m4_v3(sim->ob->obmat, state->co);
mul_mat3_m4_v3(sim->ob->obmat, state->vel);
}
else if (!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) {
if ((pa->flag & PARS_REKEY) == 0) {
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, part->from, pa, hairmat);
mul_m4_v3(hairmat, state->co);
mul_mat3_m4_v3(hairmat, state->vel);
if (sim->psys->effectors && (part->flag & PART_CHILD_GUIDE) == 0) {
do_guides(sim->psys->part, sim->psys->effectors, state, p, state->time);
/* TODO: proper velocity handling */
}
if (psys->lattice_deform_data && edit == 0)
calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f);
}
}
}
}
else if (totchild) {
//invert_m4_m4(imat, ob->obmat);
/* interpolate childcache directly if it exists */
if (psys->childcache) {
ParticleCacheKey result;
interpolate_pathcache(psys->childcache[p - totpart], t, &result);
copy_v3_v3(state->co, result.co);
copy_v3_v3(state->vel, result.vel);
copy_qt_qt(state->rot, result.rot);
}
else {
float par_co[3], par_orco[3];
cpa = psys->child + p - totpart;
if (state->time < 0.0f)
t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL);
if (totchild && part->childtype == PART_CHILD_FACES) {
/* part->parents could still be 0 so we can't test with totparent */
between = 1;
}
if (between) {
int w = 0;
float foffset;
/* get parent states */
while (w < 4 && cpa->pa[w] >= 0) {
keys[w].time = state->time;
psys_get_particle_on_path(sim, cpa->pa[w], keys + w, 1);
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, 0, 0, 0, orco, 0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
//copy_v3_v3(cpa_1st, co);
//mul_m4_v3(ob->obmat, cpa_1st);
pa = psys->particles + cpa->parent;
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco, 0);
if (part->type == PART_HAIR)
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, psys->part->from, pa, hairmat);
else
unit_m4(hairmat);
pa = 0;
}
else {
/* get the parent state */
keys->time = state->time;
psys_get_particle_on_path(sim, cpa->parent, keys, 1);
/* get the original coordinates (orco) for texture usage */
pa = psys->particles + cpa->parent;
cpa_from = part->from;
cpa_num = pa->num;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco, 0);
if (part->type == PART_HAIR) {
psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, 0, 0, 0, orco, 0);
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, psys->part->from, pa, hairmat);
}
else {
copy_v3_v3(orco, cpa->fuv);
unit_m4(hairmat);
}
}
/* correct child ipo timing */
#if 0 // XXX old animation system
if ((part->flag & PART_ABS_TIME) == 0 && part->ipo) {
calc_ipo(part->ipo, 100.0f * t);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
/* get different child parameters from textures & vgroups */
memset(&ctx, 0, sizeof(ParticleThreadContext));
ctx.sim = *sim;
ctx.dm = psmd->dm_final;
ctx.ma = ma;
/* TODO: assign vertex groups */
get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if (between) {
int w = 0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
/* child position is the weighted sum of parent positions */
while (w < 4 && cpa->pa[w] >= 0) {
state->co[0] += cpa->w[w] * keys[w].co[0];
state->co[1] += cpa->w[w] * keys[w].co[1];
state->co[2] += cpa->w[w] * keys[w].co[2];
state->vel[0] += cpa->w[w] * keys[w].vel[0];
state->vel[1] += cpa->w[w] * keys[w].vel[1];
state->vel[2] += cpa->w[w] * keys[w].vel[2];
w++;
}
/* apply offset for correct positioning */
//add_v3_v3(state->co, cpa_1st);
}
else {
/* offset the child from the parent position */
offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad);
}
par = keys;
if (vel)
copy_particle_key(&tstate, state, 1);
/* apply different deformations to the child path */
do_child_modifiers(NULL, sim, &ptex, par->co, par->vel, par->rot, par_orco, cpa, orco, hairmat, state, t);
/* try to estimate correct velocity */
if (vel) {
ParticleKey tstate_tmp;
float length = len_v3(state->vel);
if (t >= 0.001f) {
tstate_tmp.time = t - 0.001f;
psys_get_particle_on_path(sim, p, &tstate_tmp, 0);
sub_v3_v3v3(state->vel, state->co, tstate_tmp.co);
normalize_v3(state->vel);
}
else {
tstate_tmp.time = t + 0.001f;
psys_get_particle_on_path(sim, p, &tstate_tmp, 0);
sub_v3_v3v3(state->vel, tstate_tmp.co, state->co);
normalize_v3(state->vel);
}
mul_v3_fl(state->vel, length);
}
}
}
}
/* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */
int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *pa = NULL;
ChildParticle *cpa = NULL;
float cfra;
int totpart = psys->totpart;
float timestep = psys_get_timestep(sim);
/* negative time means "use current time" */
cfra = state->time > 0 ? state->time : BKE_scene_frame_get(sim->scene);
if (p >= totpart) {
if (!psys->totchild)
return 0;
if (part->childtype == PART_CHILD_FACES) {
if (!(psys->flag & PSYS_KEYED))
return 0;
cpa = psys->child + p - totpart;
state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL);
if (!always) {
if ((state->time < 0.0f && !(part->flag & PART_UNBORN)) ||
(state->time > 1.0f && !(part->flag & PART_DIED)))
{
return 0;
}
}
state->time = (cfra - (part->sta + (part->end - part->sta) * psys_frand(psys, p + 23))) / (part->lifetime * psys_frand(psys, p + 24));
psys_get_particle_on_path(sim, p, state, 1);
return 1;
}
else {
cpa = sim->psys->child + p - totpart;
pa = sim->psys->particles + cpa->parent;
}
}
else {
pa = sim->psys->particles + p;
}
if (pa) {
if (!always) {
if ((cfra < pa->time && (part->flag & PART_UNBORN) == 0) ||
(cfra >= pa->dietime && (part->flag & PART_DIED) == 0))
{
return 0;
}
}
cfra = MIN2(cfra, pa->dietime);
}
if (sim->psys->flag & PSYS_KEYED) {
state->time = -cfra;
psys_get_particle_on_path(sim, p, state, 1);
return 1;
}
else {
if (cpa) {
float mat[4][4];
ParticleKey *key1;
float t = (cfra - pa->time) / pa->lifetime;
float par_orco[3] = {0.0f, 0.0f, 0.0f};
key1 = &pa->state;
offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad);
CLAMP(t, 0.0f, 1.0f);
unit_m4(mat);
do_child_modifiers(NULL, sim, NULL, key1->co, key1->vel, key1->rot, par_orco, cpa, cpa->fuv, mat, state, t);
if (psys->lattice_deform_data)
calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f);
}
else {
if (pa->state.time == cfra || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
copy_particle_key(state, &pa->state, 1);
else if (pa->prev_state.time == cfra)
copy_particle_key(state, &pa->prev_state, 1);
else {
float dfra, frs_sec = sim->scene->r.frs_sec;
/* let's interpolate to try to be as accurate as possible */
if (pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) {
if (pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) {
/* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec);
}
else {
ParticleKey keys[4];
float keytime;
copy_particle_key(keys + 1, &pa->prev_state, 1);
copy_particle_key(keys + 2, &pa->state, 1);
dfra = keys[2].time - keys[1].time;
keytime = (state->time - keys[1].time) / dfra;
/* convert velocity to timestep size */
mul_v3_fl(keys[1].vel, dfra * timestep);
mul_v3_fl(keys[2].vel, dfra * timestep);
psys_interpolate_particle(-1, keys, keytime, state, 1);
/* convert back to real velocity */
mul_v3_fl(state->vel, 1.f / (dfra * timestep));
interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime);
interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime);
}
}
else if (pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) {
/* linear interpolation using only pa->state */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec);
}
else {
/* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */
copy_particle_key(state, &pa->state, 0);
}
}
if (sim->psys->lattice_deform_data)
calc_latt_deform(sim->psys->lattice_deform_data, state->co, 1.0f);
}
return 1;
}
}
void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part,
ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa,
float uv[2], float orco[3])
{
MFace *mface;
MTFace *mtface;
float loc[3];
int num;
/* XXX: on checking '(psmd->dm != NULL)'
* This is incorrect but needed for metaball evaluation.
* Ideally this would be calculated via the depsgraph, however with metaballs,
* the entire scenes dupli's are scanned, which also looks into uncalculated data.
*
* For now just include this workaround as an alternative to crashing,
* but longer term metaballs should behave in a more manageable way, see: T46622. */
uv[0] = uv[1] = 0.f;
/* Grid distribution doesn't support UV or emit from vertex mode */
bool is_grid = (part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT);
if (cpa) {
if ((part->childtype == PART_CHILD_FACES) && (psmd->dm_final != NULL)) {
CustomData *mtf_data = psmd->dm_final->getTessFaceDataLayout(psmd->dm_final);
const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE);
mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx);
if (mtface && !is_grid) {
mface = psmd->dm_final->getTessFaceData(psmd->dm_final, cpa->num, CD_MFACE);
mtface += cpa->num;
psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv);
}
psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, 0, 0, 0, orco, 0);
return;
}
else {
pa = psys->particles + cpa->pa[0];
}
}
if ((part->from == PART_FROM_FACE) && (psmd->dm_final != NULL) && !is_grid) {
CustomData *mtf_data = psmd->dm_final->getTessFaceDataLayout(psmd->dm_final);
const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE);
mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx);
num = pa->num_dmcache;
if (num == DMCACHE_NOTFOUND)
num = pa->num;
if (num >= psmd->dm_final->getNumTessFaces(psmd->dm_final)) {
/* happens when simplify is enabled
* gives invalid coords but would crash otherwise */
num = DMCACHE_NOTFOUND;
}
if (mtface && !ELEM(num, DMCACHE_NOTFOUND, DMCACHE_ISCHILD)) {
mface = psmd->dm_final->getTessFaceData(psmd->dm_final, num, CD_MFACE);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv);
}
}
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, 0, 0, 0, orco, 0);
}
void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[4][4], float *scale)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSystemModifierData *psmd = sim->psmd;
float loc[3], nor[3], vec[3], side[3], len;
float xvec[3] = {-1.0, 0.0, 0.0}, nmat[3][3];
sub_v3_v3v3(vec, (cache + cache->segments)->co, cache->co);
len = normalize_v3(vec);
if (pa == NULL && psys->part->childflat != PART_CHILD_FACES)
pa = psys->particles + cpa->pa[0];
if (pa)
psys_particle_on_emitter(psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0, 0);
else
psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, nor, 0, 0, 0, 0);
if (psys->part->rotmode == PART_ROT_VEL) {
transpose_m3_m4(nmat, ob->imat);
mul_m3_v3(nmat, nor);
normalize_v3(nor);
/* make sure that we get a proper side vector */
if (fabsf(dot_v3v3(nor, vec)) > 0.999999f) {
if (fabsf(dot_v3v3(nor, xvec)) > 0.999999f) {
nor[0] = 0.0f;
nor[1] = 1.0f;
nor[2] = 0.0f;
}
else {
nor[0] = 1.0f;
nor[1] = 0.0f;
nor[2] = 0.0f;
}
}
cross_v3_v3v3(side, nor, vec);
normalize_v3(side);
/* rotate side vector around vec */
if (psys->part->phasefac != 0) {
float q_phase[4];
float phasefac = psys->part->phasefac;
if (psys->part->randphasefac != 0.0f)
phasefac += psys->part->randphasefac * psys_frand(psys, (pa - psys->particles) + 20);
axis_angle_to_quat(q_phase, vec, phasefac * (float)M_PI);
mul_qt_v3(q_phase, side);
}
cross_v3_v3v3(nor, vec, side);
unit_m4(mat);
copy_v3_v3(mat[0], vec);
copy_v3_v3(mat[1], side);
copy_v3_v3(mat[2], nor);
}
else {
quat_to_mat4(mat, pa->state.rot);
}
*scale = len;
}
void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3])
{
float onevec[3] = {0.0f, 0.0f, 0.0f}, tvec[3], tvec2[3];
xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f;
yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f;
/* can happen with bad pointcache or physics calculation
* since this becomes geometry, nan's and inf's crash raytrace code.
* better not allow this. */
if ((!isfinite(bb->vec[0])) || (!isfinite(bb->vec[1])) || (!isfinite(bb->vec[2])) ||
(!isfinite(bb->vel[0])) || (!isfinite(bb->vel[1])) || (!isfinite(bb->vel[2])) )
{
zero_v3(bb->vec);
zero_v3(bb->vel);
zero_v3(xvec);
zero_v3(yvec);
zero_v3(zvec);
zero_v3(center);
return;
}
if (bb->align < PART_BB_VIEW)
onevec[bb->align] = 1.0f;
if (bb->lock && (bb->align == PART_BB_VIEW)) {
normalize_v3_v3(xvec, bb->ob->obmat[0]);
normalize_v3_v3(yvec, bb->ob->obmat[1]);
normalize_v3_v3(zvec, bb->ob->obmat[2]);
}
else if (bb->align == PART_BB_VEL) {
float temp[3];
normalize_v3_v3(temp, bb->vel);
sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec);
if (bb->lock) {
float fac = -dot_v3v3(zvec, temp);
madd_v3_v3fl(zvec, temp, fac);
}
normalize_v3(zvec);
cross_v3_v3v3(xvec, temp, zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec, zvec, xvec);
}
else {
sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec);
if (bb->lock)
zvec[bb->align] = 0.0f;
normalize_v3(zvec);
if (bb->align < PART_BB_VIEW)
cross_v3_v3v3(xvec, onevec, zvec);
else
cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec, zvec, xvec);
}
copy_v3_v3(tvec, xvec);
copy_v3_v3(tvec2, yvec);
mul_v3_fl(xvec, cosf(bb->tilt * (float)M_PI));
mul_v3_fl(tvec2, sinf(bb->tilt * (float)M_PI));
add_v3_v3(xvec, tvec2);
mul_v3_fl(yvec, cosf(bb->tilt * (float)M_PI));
mul_v3_fl(tvec, -sinf(bb->tilt * (float)M_PI));
add_v3_v3(yvec, tvec);
mul_v3_fl(xvec, bb->size[0]);
mul_v3_fl(yvec, bb->size[1]);
madd_v3_v3v3fl(center, bb->vec, xvec, bb->offset[0]);
madd_v3_v3fl(center, yvec, bb->offset[1]);
}
void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys)
{
ParticleSimulationData sim = {0};
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
if (psys->lattice_deform_data) {
ParticleData *pa = psys->particles;
HairKey *hkey;
int p, h;
float hairmat[4][4], imat[4][4];
for (p = 0; p < psys->totpart; p++, pa++) {
psys_mat_hair_to_global(sim.ob, sim.psmd->dm_final, psys->part->from, pa, hairmat);
invert_m4_m4(imat, hairmat);
hkey = pa->hair;
for (h = 0; h < pa->totkey; h++, hkey++) {
mul_m4_v3(hairmat, hkey->co);
calc_latt_deform(psys->lattice_deform_data, hkey->co, 1.0f);
mul_m4_v3(imat, hkey->co);
}
}
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
/* protect the applied shape */
psys->flag |= PSYS_EDITED;
}
}