This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/particle.c
Lukas Tönne 6ecab6dd8e Revert particle system and point cache removal in blender2.8 branch.
This reverts commit 5aa19be912 and b4a721af69.

Due to postponement of particle system rewrite it was decided to put particle code
back into the 2.8 branch for the time being.
2016-12-28 17:30:58 +01:00

4305 lines
123 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2007 by Janne Karhu.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/particle.c
* \ingroup bke
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "DNA_curve_types.h"
#include "DNA_group_types.h"
#include "DNA_key_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_particle_types.h"
#include "DNA_smoke_types.h"
#include "DNA_scene_types.h"
#include "DNA_dynamicpaint_types.h"
#include "BLI_blenlib.h"
#include "BLI_noise.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_kdtree.h"
#include "BLI_rand.h"
#include "BLI_task.h"
#include "BLI_threads.h"
#include "BLI_linklist.h"
#include "BLT_translation.h"
#include "BKE_anim.h"
#include "BKE_animsys.h"
#include "BKE_boids.h"
#include "BKE_cloth.h"
#include "BKE_colortools.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_main.h"
#include "BKE_lattice.h"
#include "BKE_displist.h"
#include "BKE_particle.h"
#include "BKE_material.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_library_query.h"
#include "BKE_library_remap.h"
#include "BKE_depsgraph.h"
#include "BKE_modifier.h"
#include "BKE_mesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_pointcache.h"
#include "BKE_scene.h"
#include "BKE_deform.h"
#include "RE_render_ext.h"
unsigned int PSYS_FRAND_SEED_OFFSET[PSYS_FRAND_COUNT];
unsigned int PSYS_FRAND_SEED_MULTIPLIER[PSYS_FRAND_COUNT];
float PSYS_FRAND_BASE[PSYS_FRAND_COUNT];
void psys_init_rng(void)
{
int i;
BLI_srandom(5831); /* arbitrary */
for (i = 0; i < PSYS_FRAND_COUNT; ++i) {
PSYS_FRAND_BASE[i] = BLI_frand();
PSYS_FRAND_SEED_OFFSET[i] = (unsigned int)BLI_rand();
PSYS_FRAND_SEED_MULTIPLIER[i] = (unsigned int)BLI_rand();
}
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx,
ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex);
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par,
int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra);
extern void do_child_modifiers(ParticleThreadContext *ctx, ParticleSimulationData *sim,
ParticleTexture *ptex, const float par_co[3], const float par_vel[3], const float par_rot[4], const float par_orco[3],
ChildParticle *cpa, const float orco[3], float mat[4][4], ParticleKey *state, float t);
/* few helpers for countall etc. */
int count_particles(ParticleSystem *psys)
{
ParticleSettings *part = psys->part;
PARTICLE_P;
int tot = 0;
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {}
else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {}
else tot++;
}
return tot;
}
int count_particles_mod(ParticleSystem *psys, int totgr, int cur)
{
ParticleSettings *part = psys->part;
PARTICLE_P;
int tot = 0;
LOOP_SHOWN_PARTICLES {
if (pa->alive == PARS_UNBORN && (part->flag & PART_UNBORN) == 0) {}
else if (pa->alive == PARS_DEAD && (part->flag & PART_DIED) == 0) {}
else if (p % totgr == cur) tot++;
}
return tot;
}
/* we allocate path cache memory in chunks instead of a big contiguous
* chunk, windows' memory allocater fails to find big blocks of memory often */
#define PATH_CACHE_BUF_SIZE 1024
static ParticleCacheKey *pcache_key_segment_endpoint_safe(ParticleCacheKey *key)
{
return (key->segments > 0) ? (key + (key->segments - 1)) : key;
}
static ParticleCacheKey **psys_alloc_path_cache_buffers(ListBase *bufs, int tot, int totkeys)
{
LinkData *buf;
ParticleCacheKey **cache;
int i, totkey, totbufkey;
tot = MAX2(tot, 1);
totkey = 0;
cache = MEM_callocN(tot * sizeof(void *), "PathCacheArray");
while (totkey < tot) {
totbufkey = MIN2(tot - totkey, PATH_CACHE_BUF_SIZE);
buf = MEM_callocN(sizeof(LinkData), "PathCacheLinkData");
buf->data = MEM_callocN(sizeof(ParticleCacheKey) * totbufkey * totkeys, "ParticleCacheKey");
for (i = 0; i < totbufkey; i++)
cache[totkey + i] = ((ParticleCacheKey *)buf->data) + i * totkeys;
totkey += totbufkey;
BLI_addtail(bufs, buf);
}
return cache;
}
static void psys_free_path_cache_buffers(ParticleCacheKey **cache, ListBase *bufs)
{
LinkData *buf;
if (cache)
MEM_freeN(cache);
for (buf = bufs->first; buf; buf = buf->next)
MEM_freeN(buf->data);
BLI_freelistN(bufs);
}
/************************************************/
/* Getting stuff */
/************************************************/
/* get object's active particle system safely */
ParticleSystem *psys_get_current(Object *ob)
{
ParticleSystem *psys;
if (ob == NULL) return NULL;
for (psys = ob->particlesystem.first; psys; psys = psys->next) {
if (psys->flag & PSYS_CURRENT)
return psys;
}
return NULL;
}
short psys_get_current_num(Object *ob)
{
ParticleSystem *psys;
short i;
if (ob == NULL) return 0;
for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++)
if (psys->flag & PSYS_CURRENT)
return i;
return i;
}
void psys_set_current_num(Object *ob, int index)
{
ParticleSystem *psys;
short i;
if (ob == NULL) return;
for (psys = ob->particlesystem.first, i = 0; psys; psys = psys->next, i++) {
if (i == index)
psys->flag |= PSYS_CURRENT;
else
psys->flag &= ~PSYS_CURRENT;
}
}
#if 0 /* UNUSED */
Object *psys_find_object(Scene *scene, ParticleSystem *psys)
{
Base *base;
ParticleSystem *tpsys;
for (base = scene->base.first; base; base = base->next) {
for (tpsys = base->object->particlesystem.first; psys; psys = psys->next) {
if (tpsys == psys)
return base->object;
}
}
return NULL;
}
#endif
struct LatticeDeformData *psys_create_lattice_deform_data(ParticleSimulationData *sim)
{
struct LatticeDeformData *lattice_deform_data = NULL;
if (psys_in_edit_mode(sim->scene, sim->psys) == 0) {
Object *lattice = NULL;
ModifierData *md = (ModifierData *)psys_get_modifier(sim->ob, sim->psys);
for (; md; md = md->next) {
if (md->type == eModifierType_Lattice) {
LatticeModifierData *lmd = (LatticeModifierData *)md;
lattice = lmd->object;
break;
}
}
if (lattice)
lattice_deform_data = init_latt_deform(lattice, NULL);
}
return lattice_deform_data;
}
void psys_disable_all(Object *ob)
{
ParticleSystem *psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag |= PSYS_DISABLED;
}
void psys_enable_all(Object *ob)
{
ParticleSystem *psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag &= ~PSYS_DISABLED;
}
bool psys_in_edit_mode(Scene *scene, ParticleSystem *psys)
{
return (scene->basact && (scene->basact->object->mode & OB_MODE_PARTICLE_EDIT) && psys == psys_get_current((scene->basact)->object) && (psys->edit || psys->pointcache->edit) && !psys->renderdata);
}
bool psys_check_enabled(Object *ob, ParticleSystem *psys, const bool use_render_params)
{
ParticleSystemModifierData *psmd;
if (psys->flag & PSYS_DISABLED || psys->flag & PSYS_DELETE || !psys->part)
return 0;
psmd = psys_get_modifier(ob, psys);
if (psys->renderdata || use_render_params) {
if (!(psmd->modifier.mode & eModifierMode_Render))
return 0;
}
else if (!(psmd->modifier.mode & eModifierMode_Realtime))
return 0;
return 1;
}
bool psys_check_edited(ParticleSystem *psys)
{
if (psys->part && psys->part->type == PART_HAIR)
return (psys->flag & PSYS_EDITED || (psys->edit && psys->edit->edited));
else
return (psys->pointcache->edit && psys->pointcache->edit->edited);
}
void psys_check_group_weights(ParticleSettings *part)
{
ParticleDupliWeight *dw, *tdw;
GroupObject *go;
int current = 0;
if (part->ren_as == PART_DRAW_GR && part->dup_group && part->dup_group->gobject.first) {
/* First try to find NULL objects from their index,
* and remove all weights that don't have an object in the group. */
dw = part->dupliweights.first;
while (dw) {
if (dw->ob == NULL || !BKE_group_object_exists(part->dup_group, dw->ob)) {
go = (GroupObject *)BLI_findlink(&part->dup_group->gobject, dw->index);
if (go) {
dw->ob = go->ob;
}
else {
tdw = dw->next;
BLI_freelinkN(&part->dupliweights, dw);
dw = tdw;
}
}
else {
dw = dw->next;
}
}
/* then add objects in the group to new list */
go = part->dup_group->gobject.first;
while (go) {
dw = part->dupliweights.first;
while (dw && dw->ob != go->ob)
dw = dw->next;
if (!dw) {
dw = MEM_callocN(sizeof(ParticleDupliWeight), "ParticleDupliWeight");
dw->ob = go->ob;
dw->count = 1;
BLI_addtail(&part->dupliweights, dw);
}
go = go->next;
}
dw = part->dupliweights.first;
for (; dw; dw = dw->next) {
if (dw->flag & PART_DUPLIW_CURRENT) {
current = 1;
break;
}
}
if (!current) {
dw = part->dupliweights.first;
if (dw)
dw->flag |= PART_DUPLIW_CURRENT;
}
}
else {
BLI_freelistN(&part->dupliweights);
}
}
int psys_uses_gravity(ParticleSimulationData *sim)
{
return sim->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY && sim->psys->part && sim->psys->part->effector_weights->global_gravity != 0.0f;
}
/************************************************/
/* Freeing stuff */
/************************************************/
static void fluid_free_settings(SPHFluidSettings *fluid)
{
if (fluid)
MEM_freeN(fluid);
}
/** Free (or release) any data used by this particle settings (does not free the partsett itself). */
void BKE_particlesettings_free(ParticleSettings *part)
{
int a;
BKE_animdata_free((ID *)part, false);
for (a = 0; a < MAX_MTEX; a++) {
MEM_SAFE_FREE(part->mtex[a]);
}
if (part->clumpcurve)
curvemapping_free(part->clumpcurve);
if (part->roughcurve)
curvemapping_free(part->roughcurve);
free_partdeflect(part->pd);
free_partdeflect(part->pd2);
MEM_SAFE_FREE(part->effector_weights);
BLI_freelistN(&part->dupliweights);
boid_free_settings(part->boids);
fluid_free_settings(part->fluid);
}
void free_hair(Object *UNUSED(ob), ParticleSystem *psys, int dynamics)
{
PARTICLE_P;
LOOP_PARTICLES {
if (pa->hair)
MEM_freeN(pa->hair);
pa->hair = NULL;
pa->totkey = 0;
}
psys->flag &= ~PSYS_HAIR_DONE;
if (psys->clmd) {
if (dynamics) {
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
modifier_free((ModifierData *)psys->clmd);
psys->clmd = NULL;
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
}
else {
cloth_free_modifier(psys->clmd);
}
}
if (psys->hair_in_dm)
psys->hair_in_dm->release(psys->hair_in_dm);
psys->hair_in_dm = NULL;
if (psys->hair_out_dm)
psys->hair_out_dm->release(psys->hair_out_dm);
psys->hair_out_dm = NULL;
}
void free_keyed_keys(ParticleSystem *psys)
{
PARTICLE_P;
if (psys->part->type == PART_HAIR)
return;
if (psys->particles && psys->particles->keys) {
MEM_freeN(psys->particles->keys);
LOOP_PARTICLES {
if (pa->keys) {
pa->keys = NULL;
pa->totkey = 0;
}
}
}
}
static void free_child_path_cache(ParticleSystem *psys)
{
psys_free_path_cache_buffers(psys->childcache, &psys->childcachebufs);
psys->childcache = NULL;
psys->totchildcache = 0;
}
void psys_free_path_cache(ParticleSystem *psys, PTCacheEdit *edit)
{
if (edit) {
psys_free_path_cache_buffers(edit->pathcache, &edit->pathcachebufs);
edit->pathcache = NULL;
edit->totcached = 0;
}
if (psys) {
psys_free_path_cache_buffers(psys->pathcache, &psys->pathcachebufs);
psys->pathcache = NULL;
psys->totcached = 0;
free_child_path_cache(psys);
}
}
void psys_free_children(ParticleSystem *psys)
{
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
free_child_path_cache(psys);
}
void psys_free_particles(ParticleSystem *psys)
{
PARTICLE_P;
if (psys->particles) {
/* Even though psys->part should never be NULL, this can happen as an exception during deletion.
* See ID_REMAP_SKIP/FORCE/FLAG_NEVER_NULL_USAGE in BKE_library_remap. */
if (psys->part && psys->part->type == PART_HAIR) {
LOOP_PARTICLES {
if (pa->hair)
MEM_freeN(pa->hair);
}
}
if (psys->particles->keys)
MEM_freeN(psys->particles->keys);
if (psys->particles->boid)
MEM_freeN(psys->particles->boid);
MEM_freeN(psys->particles);
psys->particles = NULL;
psys->totpart = 0;
}
}
void psys_free_pdd(ParticleSystem *psys)
{
if (psys->pdd) {
if (psys->pdd->cdata)
MEM_freeN(psys->pdd->cdata);
psys->pdd->cdata = NULL;
if (psys->pdd->vdata)
MEM_freeN(psys->pdd->vdata);
psys->pdd->vdata = NULL;
if (psys->pdd->ndata)
MEM_freeN(psys->pdd->ndata);
psys->pdd->ndata = NULL;
if (psys->pdd->vedata)
MEM_freeN(psys->pdd->vedata);
psys->pdd->vedata = NULL;
psys->pdd->totpoint = 0;
psys->pdd->tot_vec_size = 0;
}
}
/* free everything */
void psys_free(Object *ob, ParticleSystem *psys)
{
if (psys) {
int nr = 0;
ParticleSystem *tpsys;
psys_free_path_cache(psys, NULL);
free_hair(ob, psys, 1);
psys_free_particles(psys);
if (psys->edit && psys->free_edit)
psys->free_edit(psys->edit);
if (psys->child) {
MEM_freeN(psys->child);
psys->child = NULL;
psys->totchild = 0;
}
/* check if we are last non-visible particle system */
for (tpsys = ob->particlesystem.first; tpsys; tpsys = tpsys->next) {
if (tpsys->part) {
if (ELEM(tpsys->part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
nr++;
break;
}
}
}
/* clear do-not-draw-flag */
if (!nr)
ob->transflag &= ~OB_DUPLIPARTS;
psys->part = NULL;
BKE_ptcache_free_list(&psys->ptcaches);
psys->pointcache = NULL;
BLI_freelistN(&psys->targets);
BLI_bvhtree_free(psys->bvhtree);
BLI_kdtree_free(psys->tree);
if (psys->fluid_springs)
MEM_freeN(psys->fluid_springs);
pdEndEffectors(&psys->effectors);
if (psys->pdd) {
psys_free_pdd(psys);
MEM_freeN(psys->pdd);
}
MEM_freeN(psys);
}
}
/************************************************/
/* Rendering */
/************************************************/
/* these functions move away particle data and bring it back after
* rendering, to make different render settings possible without
* removing the previous data. this should be solved properly once */
void psys_render_set(Object *ob, ParticleSystem *psys, float viewmat[4][4], float winmat[4][4], int winx, int winy, int timeoffset)
{
ParticleRenderData *data;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
if (psys->renderdata)
return;
data = MEM_callocN(sizeof(ParticleRenderData), "ParticleRenderData");
data->child = psys->child;
data->totchild = psys->totchild;
data->pathcache = psys->pathcache;
data->pathcachebufs.first = psys->pathcachebufs.first;
data->pathcachebufs.last = psys->pathcachebufs.last;
data->totcached = psys->totcached;
data->childcache = psys->childcache;
data->childcachebufs.first = psys->childcachebufs.first;
data->childcachebufs.last = psys->childcachebufs.last;
data->totchildcache = psys->totchildcache;
if (psmd->dm_final)
data->dm = CDDM_copy(psmd->dm_final);
data->totdmvert = psmd->totdmvert;
data->totdmedge = psmd->totdmedge;
data->totdmface = psmd->totdmface;
psys->child = NULL;
psys->pathcache = NULL;
psys->childcache = NULL;
psys->totchild = psys->totcached = psys->totchildcache = 0;
BLI_listbase_clear(&psys->pathcachebufs);
BLI_listbase_clear(&psys->childcachebufs);
copy_m4_m4(data->winmat, winmat);
mul_m4_m4m4(data->viewmat, viewmat, ob->obmat);
mul_m4_m4m4(data->mat, winmat, data->viewmat);
data->winx = winx;
data->winy = winy;
data->timeoffset = timeoffset;
psys->renderdata = data;
/* Hair can and has to be recalculated if everything isn't displayed. */
if (psys->part->disp != 100 && psys->part->type == PART_HAIR)
psys->recalc |= PSYS_RECALC_RESET;
}
void psys_render_restore(Object *ob, ParticleSystem *psys)
{
ParticleRenderData *data;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
float render_disp = psys_get_current_display_percentage(psys);
float disp;
data = psys->renderdata;
if (!data)
return;
if (data->elems)
MEM_freeN(data->elems);
if (psmd->dm_final) {
psmd->dm_final->needsFree = 1;
psmd->dm_final->release(psmd->dm_final);
}
if (psmd->dm_deformed) {
psmd->dm_deformed->needsFree = 1;
psmd->dm_deformed->release(psmd->dm_deformed);
psmd->dm_deformed = NULL;
}
psys_free_path_cache(psys, NULL);
if (psys->child) {
MEM_freeN(psys->child);
psys->child = 0;
psys->totchild = 0;
}
psys->child = data->child;
psys->totchild = data->totchild;
psys->pathcache = data->pathcache;
psys->pathcachebufs.first = data->pathcachebufs.first;
psys->pathcachebufs.last = data->pathcachebufs.last;
psys->totcached = data->totcached;
psys->childcache = data->childcache;
psys->childcachebufs.first = data->childcachebufs.first;
psys->childcachebufs.last = data->childcachebufs.last;
psys->totchildcache = data->totchildcache;
psmd->dm_final = data->dm;
psmd->totdmvert = data->totdmvert;
psmd->totdmedge = data->totdmedge;
psmd->totdmface = data->totdmface;
psmd->flag &= ~eParticleSystemFlag_psys_updated;
if (psmd->dm_final) {
if (!psmd->dm_final->deformedOnly) {
if (ob->derivedDeform) {
psmd->dm_deformed = CDDM_copy(ob->derivedDeform);
}
else {
psmd->dm_deformed = CDDM_from_mesh((Mesh *)ob->data);
}
DM_ensure_tessface(psmd->dm_deformed);
}
psys_calc_dmcache(ob, psmd->dm_final, psmd->dm_deformed, psys);
}
MEM_freeN(data);
psys->renderdata = NULL;
/* restore particle display percentage */
disp = psys_get_current_display_percentage(psys);
if (disp != render_disp) {
/* Hair can and has to be recalculated if everything isn't displayed. */
if (psys->part->type == PART_HAIR) {
psys->recalc |= PSYS_RECALC_RESET;
}
else {
PARTICLE_P;
LOOP_PARTICLES {
if (psys_frand(psys, p) > disp)
pa->flag |= PARS_NO_DISP;
else
pa->flag &= ~PARS_NO_DISP;
}
}
}
}
bool psys_render_simplify_params(ParticleSystem *psys, ChildParticle *cpa, float *params)
{
ParticleRenderData *data;
ParticleRenderElem *elem;
float x, w, scale, alpha, lambda, t, scalemin, scalemax;
int b;
if (!(psys->renderdata && (psys->part->simplify_flag & PART_SIMPLIFY_ENABLE)))
return false;
data = psys->renderdata;
if (!data->do_simplify)
return false;
b = (data->index_mf_to_mpoly) ? DM_origindex_mface_mpoly(data->index_mf_to_mpoly, data->index_mp_to_orig, cpa->num) : cpa->num;
if (b == ORIGINDEX_NONE) {
return false;
}
elem = &data->elems[b];
lambda = elem->lambda;
t = elem->t;
scalemin = elem->scalemin;
scalemax = elem->scalemax;
if (!elem->reduce) {
scale = scalemin;
alpha = 1.0f;
}
else {
x = (elem->curchild + 0.5f) / elem->totchild;
if (x < lambda - t) {
scale = scalemax;
alpha = 1.0f;
}
else if (x >= lambda + t) {
scale = scalemin;
alpha = 0.0f;
}
else {
w = (lambda + t - x) / (2.0f * t);
scale = scalemin + (scalemax - scalemin) * w;
alpha = w;
}
}
params[0] = scale;
params[1] = alpha;
elem->curchild++;
return 1;
}
/************************************************/
/* Interpolation */
/************************************************/
static float interpolate_particle_value(float v1, float v2, float v3, float v4, const float w[4], int four)
{
float value;
value = w[0] * v1 + w[1] * v2 + w[2] * v3;
if (four)
value += w[3] * v4;
CLAMP(value, 0.f, 1.f);
return value;
}
void psys_interpolate_particle(short type, ParticleKey keys[4], float dt, ParticleKey *result, bool velocity)
{
float t[4];
if (type < 0) {
interp_cubic_v3(result->co, result->vel, keys[1].co, keys[1].vel, keys[2].co, keys[2].vel, dt);
}
else {
key_curve_position_weights(dt, t, type);
interp_v3_v3v3v3v3(result->co, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
if (velocity) {
float temp[3];
if (dt > 0.999f) {
key_curve_position_weights(dt - 0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
sub_v3_v3v3(result->vel, result->co, temp);
}
else {
key_curve_position_weights(dt + 0.001f, t, type);
interp_v3_v3v3v3v3(temp, keys[0].co, keys[1].co, keys[2].co, keys[3].co, t);
sub_v3_v3v3(result->vel, temp, result->co);
}
}
}
}
typedef struct ParticleInterpolationData {
HairKey *hkey[2];
DerivedMesh *dm;
MVert *mvert[2];
int keyed;
ParticleKey *kkey[2];
PointCache *cache;
PTCacheMem *pm;
PTCacheEditPoint *epoint;
PTCacheEditKey *ekey[2];
float birthtime, dietime;
int bspline;
} ParticleInterpolationData;
/* Assumes pointcache->mem_cache exists, so for disk cached particles call psys_make_temp_pointcache() before use */
/* It uses ParticleInterpolationData->pm to store the current memory cache frame so it's thread safe. */
static void get_pointcache_keys_for_time(Object *UNUSED(ob), PointCache *cache, PTCacheMem **cur, int index, float t, ParticleKey *key1, ParticleKey *key2)
{
static PTCacheMem *pm = NULL;
int index1, index2;
if (index < 0) { /* initialize */
*cur = cache->mem_cache.first;
if (*cur)
*cur = (*cur)->next;
}
else {
if (*cur) {
while (*cur && (*cur)->next && (float)(*cur)->frame < t)
*cur = (*cur)->next;
pm = *cur;
index2 = BKE_ptcache_mem_index_find(pm, index);
index1 = BKE_ptcache_mem_index_find(pm->prev, index);
if (index2 < 0) {
return;
}
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
if (index1 < 0)
copy_particle_key(key1, key2, 1);
else
BKE_ptcache_make_particle_key(key1, index1, pm->prev->data, (float)pm->prev->frame);
}
else if (cache->mem_cache.first) {
pm = cache->mem_cache.first;
index2 = BKE_ptcache_mem_index_find(pm, index);
if (index2 < 0) {
return;
}
BKE_ptcache_make_particle_key(key2, index2, pm->data, (float)pm->frame);
copy_particle_key(key1, key2, 1);
}
}
}
static int get_pointcache_times_for_particle(PointCache *cache, int index, float *start, float *end)
{
PTCacheMem *pm;
int ret = 0;
for (pm = cache->mem_cache.first; pm; pm = pm->next) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0) {
*start = pm->frame;
ret++;
break;
}
}
for (pm = cache->mem_cache.last; pm; pm = pm->prev) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0) {
*end = pm->frame;
ret++;
break;
}
}
return ret == 2;
}
float psys_get_dietime_from_cache(PointCache *cache, int index)
{
PTCacheMem *pm;
int dietime = 10000000; /* some max value so that we can default to pa->time+lifetime */
for (pm = cache->mem_cache.last; pm; pm = pm->prev) {
if (BKE_ptcache_mem_index_find(pm, index) >= 0)
return (float)pm->frame;
}
return (float)dietime;
}
static void init_particle_interpolation(Object *ob, ParticleSystem *psys, ParticleData *pa, ParticleInterpolationData *pind)
{
if (pind->epoint) {
PTCacheEditPoint *point = pind->epoint;
pind->ekey[0] = point->keys;
pind->ekey[1] = point->totkey > 1 ? point->keys + 1 : NULL;
pind->birthtime = *(point->keys->time);
pind->dietime = *((point->keys + point->totkey - 1)->time);
}
else if (pind->keyed) {
ParticleKey *key = pa->keys;
pind->kkey[0] = key;
pind->kkey[1] = pa->totkey > 1 ? key + 1 : NULL;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
}
else if (pind->cache) {
float start = 0.0f, end = 0.0f;
get_pointcache_keys_for_time(ob, pind->cache, &pind->pm, -1, 0.0f, NULL, NULL);
pind->birthtime = pa ? pa->time : pind->cache->startframe;
pind->dietime = pa ? pa->dietime : pind->cache->endframe;
if (get_pointcache_times_for_particle(pind->cache, pa - psys->particles, &start, &end)) {
pind->birthtime = MAX2(pind->birthtime, start);
pind->dietime = MIN2(pind->dietime, end);
}
}
else {
HairKey *key = pa->hair;
pind->hkey[0] = key;
pind->hkey[1] = key + 1;
pind->birthtime = key->time;
pind->dietime = (key + pa->totkey - 1)->time;
if (pind->dm) {
pind->mvert[0] = CDDM_get_vert(pind->dm, pa->hair_index);
pind->mvert[1] = pind->mvert[0] + 1;
}
}
}
static void edit_to_particle(ParticleKey *key, PTCacheEditKey *ekey)
{
copy_v3_v3(key->co, ekey->co);
if (ekey->vel) {
copy_v3_v3(key->vel, ekey->vel);
}
key->time = *(ekey->time);
}
static void hair_to_particle(ParticleKey *key, HairKey *hkey)
{
copy_v3_v3(key->co, hkey->co);
key->time = hkey->time;
}
static void mvert_to_particle(ParticleKey *key, MVert *mvert, HairKey *hkey)
{
copy_v3_v3(key->co, mvert->co);
key->time = hkey->time;
}
static void do_particle_interpolation(ParticleSystem *psys, int p, ParticleData *pa, float t, ParticleInterpolationData *pind, ParticleKey *result)
{
PTCacheEditPoint *point = pind->epoint;
ParticleKey keys[4];
int point_vel = (point && point->keys->vel);
float real_t, dfra, keytime, invdt = 1.f;
/* billboards wont fill in all of these, so start cleared */
memset(keys, 0, sizeof(keys));
/* interpret timing and find keys */
if (point) {
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = *(pind->ekey[0]->time) + t * (*(pind->ekey[0][point->totkey - 1].time) - *(pind->ekey[0]->time));
while (*(pind->ekey[1]->time) < real_t)
pind->ekey[1]++;
pind->ekey[0] = pind->ekey[1] - 1;
}
else if (pind->keyed) {
/* we have only one key, so let's use that */
if (pind->kkey[1] == NULL) {
copy_particle_key(result, pind->kkey[0], 1);
return;
}
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->kkey[0]->time + t * (pind->kkey[0][pa->totkey - 1].time - pind->kkey[0]->time);
if (psys->part->phystype == PART_PHYS_KEYED && psys->flag & PSYS_KEYED_TIMING) {
ParticleTarget *pt = psys->targets.first;
pt = pt->next;
while (pt && pa->time + pt->time < real_t)
pt = pt->next;
if (pt) {
pt = pt->prev;
if (pa->time + pt->time + pt->duration > real_t)
real_t = pa->time + pt->time;
}
else
real_t = pa->time + ((ParticleTarget *)psys->targets.last)->time;
}
CLAMP(real_t, pa->time, pa->dietime);
while (pind->kkey[1]->time < real_t)
pind->kkey[1]++;
pind->kkey[0] = pind->kkey[1] - 1;
}
else if (pind->cache) {
if (result->time < 0.0f) /* flag for time in frames */
real_t = -result->time;
else
real_t = pa->time + t * (pa->dietime - pa->time);
}
else {
if (result->time < 0.0f)
real_t = -result->time;
else
real_t = pind->hkey[0]->time + t * (pind->hkey[0][pa->totkey - 1].time - pind->hkey[0]->time);
while (pind->hkey[1]->time < real_t) {
pind->hkey[1]++;
pind->mvert[1]++;
}
pind->hkey[0] = pind->hkey[1] - 1;
}
/* set actual interpolation keys */
if (point) {
edit_to_particle(keys + 1, pind->ekey[0]);
edit_to_particle(keys + 2, pind->ekey[1]);
}
else if (pind->dm) {
pind->mvert[0] = pind->mvert[1] - 1;
mvert_to_particle(keys + 1, pind->mvert[0], pind->hkey[0]);
mvert_to_particle(keys + 2, pind->mvert[1], pind->hkey[1]);
}
else if (pind->keyed) {
memcpy(keys + 1, pind->kkey[0], sizeof(ParticleKey));
memcpy(keys + 2, pind->kkey[1], sizeof(ParticleKey));
}
else if (pind->cache) {
get_pointcache_keys_for_time(NULL, pind->cache, &pind->pm, p, real_t, keys + 1, keys + 2);
}
else {
hair_to_particle(keys + 1, pind->hkey[0]);
hair_to_particle(keys + 2, pind->hkey[1]);
}
/* set secondary interpolation keys for hair */
if (!pind->keyed && !pind->cache && !point_vel) {
if (point) {
if (pind->ekey[0] != point->keys)
edit_to_particle(keys, pind->ekey[0] - 1);
else
edit_to_particle(keys, pind->ekey[0]);
}
else if (pind->dm) {
if (pind->hkey[0] != pa->hair)
mvert_to_particle(keys, pind->mvert[0] - 1, pind->hkey[0] - 1);
else
mvert_to_particle(keys, pind->mvert[0], pind->hkey[0]);
}
else {
if (pind->hkey[0] != pa->hair)
hair_to_particle(keys, pind->hkey[0] - 1);
else
hair_to_particle(keys, pind->hkey[0]);
}
if (point) {
if (pind->ekey[1] != point->keys + point->totkey - 1)
edit_to_particle(keys + 3, pind->ekey[1] + 1);
else
edit_to_particle(keys + 3, pind->ekey[1]);
}
else if (pind->dm) {
if (pind->hkey[1] != pa->hair + pa->totkey - 1)
mvert_to_particle(keys + 3, pind->mvert[1] + 1, pind->hkey[1] + 1);
else
mvert_to_particle(keys + 3, pind->mvert[1], pind->hkey[1]);
}
else {
if (pind->hkey[1] != pa->hair + pa->totkey - 1)
hair_to_particle(keys + 3, pind->hkey[1] + 1);
else
hair_to_particle(keys + 3, pind->hkey[1]);
}
}
dfra = keys[2].time - keys[1].time;
keytime = (real_t - keys[1].time) / dfra;
/* convert velocity to timestep size */
if (pind->keyed || pind->cache || point_vel) {
invdt = dfra * 0.04f * (psys ? psys->part->timetweak : 1.f);
mul_v3_fl(keys[1].vel, invdt);
mul_v3_fl(keys[2].vel, invdt);
interp_qt_qtqt(result->rot, keys[1].rot, keys[2].rot, keytime);
}
/* now we should have in chronologiacl order k1<=k2<=t<=k3<=k4 with keytime between [0, 1]->[k2, k3] (k1 & k4 used for cardinal & bspline interpolation)*/
psys_interpolate_particle((pind->keyed || pind->cache || point_vel) ? -1 /* signal for cubic interpolation */
: (pind->bspline ? KEY_BSPLINE : KEY_CARDINAL),
keys, keytime, result, 1);
/* the velocity needs to be converted back from cubic interpolation */
if (pind->keyed || pind->cache || point_vel)
mul_v3_fl(result->vel, 1.f / invdt);
}
static void interpolate_pathcache(ParticleCacheKey *first, float t, ParticleCacheKey *result)
{
int i = 0;
ParticleCacheKey *cur = first;
/* scale the requested time to fit the entire path even if the path is cut early */
t *= (first + first->segments)->time;
while (i < first->segments && cur->time < t)
cur++;
if (cur->time == t)
*result = *cur;
else {
float dt = (t - (cur - 1)->time) / (cur->time - (cur - 1)->time);
interp_v3_v3v3(result->co, (cur - 1)->co, cur->co, dt);
interp_v3_v3v3(result->vel, (cur - 1)->vel, cur->vel, dt);
interp_qt_qtqt(result->rot, (cur - 1)->rot, cur->rot, dt);
result->time = t;
}
/* first is actual base rotation, others are incremental from first */
if (cur == first || cur - 1 == first)
copy_qt_qt(result->rot, first->rot);
else
mul_qt_qtqt(result->rot, first->rot, result->rot);
}
/************************************************/
/* Particles on a dm */
/************************************************/
/* interpolate a location on a face based on face coordinates */
void psys_interpolate_face(MVert *mvert, MFace *mface, MTFace *tface, float (*orcodata)[3],
float w[4], float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
float *v1 = 0, *v2 = 0, *v3 = 0, *v4 = 0;
float e1[3], e2[3], s1, s2, t1, t2;
float *uv1, *uv2, *uv3, *uv4;
float n1[3], n2[3], n3[3], n4[3];
float tuv[4][2];
float *o1, *o2, *o3, *o4;
v1 = mvert[mface->v1].co;
v2 = mvert[mface->v2].co;
v3 = mvert[mface->v3].co;
normal_short_to_float_v3(n1, mvert[mface->v1].no);
normal_short_to_float_v3(n2, mvert[mface->v2].no);
normal_short_to_float_v3(n3, mvert[mface->v3].no);
if (mface->v4) {
v4 = mvert[mface->v4].co;
normal_short_to_float_v3(n4, mvert[mface->v4].no);
interp_v3_v3v3v3v3(vec, v1, v2, v3, v4, w);
if (nor) {
if (mface->flag & ME_SMOOTH)
interp_v3_v3v3v3v3(nor, n1, n2, n3, n4, w);
else
normal_quad_v3(nor, v1, v2, v3, v4);
}
}
else {
interp_v3_v3v3v3(vec, v1, v2, v3, w);
if (nor) {
if (mface->flag & ME_SMOOTH)
interp_v3_v3v3v3(nor, n1, n2, n3, w);
else
normal_tri_v3(nor, v1, v2, v3);
}
}
/* calculate tangent vectors */
if (utan && vtan) {
if (tface) {
uv1 = tface->uv[0];
uv2 = tface->uv[1];
uv3 = tface->uv[2];
uv4 = tface->uv[3];
}
else {
uv1 = tuv[0]; uv2 = tuv[1]; uv3 = tuv[2]; uv4 = tuv[3];
map_to_sphere(uv1, uv1 + 1, v1[0], v1[1], v1[2]);
map_to_sphere(uv2, uv2 + 1, v2[0], v2[1], v2[2]);
map_to_sphere(uv3, uv3 + 1, v3[0], v3[1], v3[2]);
if (v4)
map_to_sphere(uv4, uv4 + 1, v4[0], v4[1], v4[2]);
}
if (v4) {
s1 = uv3[0] - uv1[0];
s2 = uv4[0] - uv1[0];
t1 = uv3[1] - uv1[1];
t2 = uv4[1] - uv1[1];
sub_v3_v3v3(e1, v3, v1);
sub_v3_v3v3(e2, v4, v1);
}
else {
s1 = uv2[0] - uv1[0];
s2 = uv3[0] - uv1[0];
t1 = uv2[1] - uv1[1];
t2 = uv3[1] - uv1[1];
sub_v3_v3v3(e1, v2, v1);
sub_v3_v3v3(e2, v3, v1);
}
vtan[0] = (s1 * e2[0] - s2 * e1[0]);
vtan[1] = (s1 * e2[1] - s2 * e1[1]);
vtan[2] = (s1 * e2[2] - s2 * e1[2]);
utan[0] = (t1 * e2[0] - t2 * e1[0]);
utan[1] = (t1 * e2[1] - t2 * e1[1]);
utan[2] = (t1 * e2[2] - t2 * e1[2]);
}
if (orco) {
if (orcodata) {
o1 = orcodata[mface->v1];
o2 = orcodata[mface->v2];
o3 = orcodata[mface->v3];
if (mface->v4) {
o4 = orcodata[mface->v4];
interp_v3_v3v3v3v3(orco, o1, o2, o3, o4, w);
if (ornor)
normal_quad_v3(ornor, o1, o2, o3, o4);
}
else {
interp_v3_v3v3v3(orco, o1, o2, o3, w);
if (ornor)
normal_tri_v3(ornor, o1, o2, o3);
}
}
else {
copy_v3_v3(orco, vec);
if (ornor && nor)
copy_v3_v3(ornor, nor);
}
}
}
void psys_interpolate_uvs(const MTFace *tface, int quad, const float w[4], float uvco[2])
{
float v10 = tface->uv[0][0];
float v11 = tface->uv[0][1];
float v20 = tface->uv[1][0];
float v21 = tface->uv[1][1];
float v30 = tface->uv[2][0];
float v31 = tface->uv[2][1];
float v40, v41;
if (quad) {
v40 = tface->uv[3][0];
v41 = tface->uv[3][1];
uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30 + w[3] * v40;
uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31 + w[3] * v41;
}
else {
uvco[0] = w[0] * v10 + w[1] * v20 + w[2] * v30;
uvco[1] = w[0] * v11 + w[1] * v21 + w[2] * v31;
}
}
void psys_interpolate_mcol(const MCol *mcol, int quad, const float w[4], MCol *mc)
{
const char *cp1, *cp2, *cp3, *cp4;
char *cp;
cp = (char *)mc;
cp1 = (const char *)&mcol[0];
cp2 = (const char *)&mcol[1];
cp3 = (const char *)&mcol[2];
if (quad) {
cp4 = (char *)&mcol[3];
cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0] + w[3] * cp4[0]);
cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1] + w[3] * cp4[1]);
cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2] + w[3] * cp4[2]);
cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3] + w[3] * cp4[3]);
}
else {
cp[0] = (int)(w[0] * cp1[0] + w[1] * cp2[0] + w[2] * cp3[0]);
cp[1] = (int)(w[0] * cp1[1] + w[1] * cp2[1] + w[2] * cp3[1]);
cp[2] = (int)(w[0] * cp1[2] + w[1] * cp2[2] + w[2] * cp3[2]);
cp[3] = (int)(w[0] * cp1[3] + w[1] * cp2[3] + w[2] * cp3[3]);
}
}
static float psys_interpolate_value_from_verts(DerivedMesh *dm, short from, int index, const float fw[4], const float *values)
{
if (values == 0 || index == -1)
return 0.0;
switch (from) {
case PART_FROM_VERT:
return values[index];
case PART_FROM_FACE:
case PART_FROM_VOLUME:
{
MFace *mf = dm->getTessFaceData(dm, index, CD_MFACE);
return interpolate_particle_value(values[mf->v1], values[mf->v2], values[mf->v3], values[mf->v4], fw, mf->v4);
}
}
return 0.0f;
}
/* conversion of pa->fw to origspace layer coordinates */
static void psys_w_to_origspace(const float w[4], float uv[2])
{
uv[0] = w[1] + w[2];
uv[1] = w[2] + w[3];
}
/* conversion of pa->fw to weights in face from origspace */
static void psys_origspace_to_w(OrigSpaceFace *osface, int quad, const float w[4], float neww[4])
{
float v[4][3], co[3];
v[0][0] = osface->uv[0][0]; v[0][1] = osface->uv[0][1]; v[0][2] = 0.0f;
v[1][0] = osface->uv[1][0]; v[1][1] = osface->uv[1][1]; v[1][2] = 0.0f;
v[2][0] = osface->uv[2][0]; v[2][1] = osface->uv[2][1]; v[2][2] = 0.0f;
psys_w_to_origspace(w, co);
co[2] = 0.0f;
if (quad) {
v[3][0] = osface->uv[3][0]; v[3][1] = osface->uv[3][1]; v[3][2] = 0.0f;
interp_weights_poly_v3(neww, v, 4, co);
}
else {
interp_weights_poly_v3(neww, v, 3, co);
neww[3] = 0.0f;
}
}
/**
* Find the final derived mesh tessface for a particle, from its original tessface index.
* This is slow and can be optimized but only for many lookups.
*
* \param dm_final final DM, it may not have the same topology as original mesh.
* \param dm_deformed deformed-only DM, it has the exact same topology as original mesh.
* \param findex_orig the input tessface index.
* \param fw face weights (position of the particle inside the \a findex_orig tessface).
* \param poly_nodes may be NULL, otherwise an array of linked list, one for each final DM polygon, containing all
* its tessfaces indices.
* \return the DM tessface index.
*/
int psys_particle_dm_face_lookup(
DerivedMesh *dm_final, DerivedMesh *dm_deformed,
int findex_orig, const float fw[4], struct LinkNode **poly_nodes)
{
MFace *mtessface_final;
OrigSpaceFace *osface_final;
int pindex_orig;
float uv[2], (*faceuv)[2];
const int *index_mf_to_mpoly_deformed = NULL;
const int *index_mf_to_mpoly = NULL;
const int *index_mp_to_orig = NULL;
const int totface_final = dm_final->getNumTessFaces(dm_final);
const int totface_deformed = dm_deformed ? dm_deformed->getNumTessFaces(dm_deformed) : totface_final;
if (ELEM(0, totface_final, totface_deformed)) {
return DMCACHE_NOTFOUND;
}
index_mf_to_mpoly = dm_final->getTessFaceDataArray(dm_final, CD_ORIGINDEX);
index_mp_to_orig = dm_final->getPolyDataArray(dm_final, CD_ORIGINDEX);
BLI_assert(index_mf_to_mpoly);
if (dm_deformed) {
index_mf_to_mpoly_deformed = dm_deformed->getTessFaceDataArray(dm_deformed, CD_ORIGINDEX);
}
else {
BLI_assert(dm_final->deformedOnly);
index_mf_to_mpoly_deformed = index_mf_to_mpoly;
}
BLI_assert(index_mf_to_mpoly_deformed);
pindex_orig = index_mf_to_mpoly_deformed[findex_orig];
if (dm_deformed == NULL) {
dm_deformed = dm_final;
}
index_mf_to_mpoly_deformed = NULL;
mtessface_final = dm_final->getTessFaceArray(dm_final);
osface_final = dm_final->getTessFaceDataArray(dm_final, CD_ORIGSPACE);
if (osface_final == NULL) {
/* Assume we don't need osface_final data, and we get a direct 1-1 mapping... */
if (findex_orig < totface_final) {
//printf("\tNO CD_ORIGSPACE, assuming not needed\n");
return findex_orig;
}
else {
printf("\tNO CD_ORIGSPACE, error out of range\n");
return DMCACHE_NOTFOUND;
}
}
else if (findex_orig >= dm_deformed->getNumTessFaces(dm_deformed)) {
return DMCACHE_NOTFOUND; /* index not in the original mesh */
}
psys_w_to_origspace(fw, uv);
if (poly_nodes) {
/* we can have a restricted linked list of faces to check, faster! */
LinkNode *tessface_node = poly_nodes[pindex_orig];
for (; tessface_node; tessface_node = tessface_node->next) {
int findex_dst = GET_INT_FROM_POINTER(tessface_node->link);
faceuv = osface_final[findex_dst].uv;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if (mtessface_final[findex_dst].v4) {
if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) {
return findex_dst;
}
}
else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) {
return findex_dst;
}
}
}
else { /* if we have no node, try every face */
for (int findex_dst = 0; findex_dst < totface_final; findex_dst++) {
/* If current tessface from 'final' DM and orig tessface (given by index) map to the same orig poly... */
if (DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, findex_dst) == pindex_orig) {
faceuv = osface_final[findex_dst].uv;
/* check that this intersects - Its possible this misses :/ -
* could also check its not between */
if (mtessface_final[findex_dst].v4) {
if (isect_point_quad_v2(uv, faceuv[0], faceuv[1], faceuv[2], faceuv[3])) {
return findex_dst;
}
}
else if (isect_point_tri_v2(uv, faceuv[0], faceuv[1], faceuv[2])) {
return findex_dst;
}
}
}
}
return DMCACHE_NOTFOUND;
}
static int psys_map_index_on_dm(DerivedMesh *dm, int from, int index, int index_dmcache, const float fw[4], float UNUSED(foffset), int *mapindex, float mapfw[4])
{
if (index < 0)
return 0;
if (dm->deformedOnly || index_dmcache == DMCACHE_ISCHILD) {
/* for meshes that are either only deformed or for child particles, the
* index and fw do not require any mapping, so we can directly use it */
if (from == PART_FROM_VERT) {
if (index >= dm->getNumVerts(dm))
return 0;
*mapindex = index;
}
else { /* FROM_FACE/FROM_VOLUME */
if (index >= dm->getNumTessFaces(dm))
return 0;
*mapindex = index;
copy_v4_v4(mapfw, fw);
}
}
else {
/* for other meshes that have been modified, we try to map the particle
* to their new location, which means a different index, and for faces
* also a new face interpolation weights */
if (from == PART_FROM_VERT) {
if (index_dmcache == DMCACHE_NOTFOUND || index_dmcache > dm->getNumVerts(dm))
return 0;
*mapindex = index_dmcache;
}
else { /* FROM_FACE/FROM_VOLUME */
/* find a face on the derived mesh that uses this face */
MFace *mface;
OrigSpaceFace *osface;
int i;
i = index_dmcache;
if (i == DMCACHE_NOTFOUND || i >= dm->getNumTessFaces(dm))
return 0;
*mapindex = i;
/* modify the original weights to become
* weights for the derived mesh face */
osface = dm->getTessFaceDataArray(dm, CD_ORIGSPACE);
mface = dm->getTessFaceData(dm, i, CD_MFACE);
if (osface == NULL)
mapfw[0] = mapfw[1] = mapfw[2] = mapfw[3] = 0.0f;
else
psys_origspace_to_w(&osface[i], mface->v4, fw, mapfw);
}
}
return 1;
}
/* interprets particle data to get a point on a mesh in object space */
void psys_particle_on_dm(DerivedMesh *dm_final, int from, int index, int index_dmcache,
const float fw[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
float tmpnor[3], mapfw[4];
float (*orcodata)[3];
int mapindex;
if (!psys_map_index_on_dm(dm_final, from, index, index_dmcache, fw, foffset, &mapindex, mapfw)) {
if (vec) { vec[0] = vec[1] = vec[2] = 0.0; }
if (nor) { nor[0] = nor[1] = 0.0; nor[2] = 1.0; }
if (orco) { orco[0] = orco[1] = orco[2] = 0.0; }
if (ornor) { ornor[0] = ornor[1] = 0.0; ornor[2] = 1.0; }
if (utan) { utan[0] = utan[1] = utan[2] = 0.0; }
if (vtan) { vtan[0] = vtan[1] = vtan[2] = 0.0; }
return;
}
orcodata = dm_final->getVertDataArray(dm_final, CD_ORCO);
if (from == PART_FROM_VERT) {
dm_final->getVertCo(dm_final, mapindex, vec);
if (nor) {
dm_final->getVertNo(dm_final, mapindex, nor);
normalize_v3(nor);
}
if (orco) {
if (orcodata) {
copy_v3_v3(orco, orcodata[mapindex]);
}
else {
copy_v3_v3(orco, vec);
}
}
if (ornor) {
dm_final->getVertNo(dm_final, mapindex, ornor);
normalize_v3(ornor);
}
if (utan && vtan) {
utan[0] = utan[1] = utan[2] = 0.0f;
vtan[0] = vtan[1] = vtan[2] = 0.0f;
}
}
else { /* PART_FROM_FACE / PART_FROM_VOLUME */
MFace *mface;
MTFace *mtface;
MVert *mvert;
mface = dm_final->getTessFaceData(dm_final, mapindex, CD_MFACE);
mvert = dm_final->getVertDataArray(dm_final, CD_MVERT);
mtface = CustomData_get_layer(&dm_final->faceData, CD_MTFACE);
if (mtface)
mtface += mapindex;
if (from == PART_FROM_VOLUME) {
psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, tmpnor, utan, vtan, orco, ornor);
if (nor)
copy_v3_v3(nor, tmpnor);
normalize_v3(tmpnor); /* XXX Why not normalize tmpnor before copying it into nor??? -- mont29 */
mul_v3_fl(tmpnor, -foffset);
add_v3_v3(vec, tmpnor);
}
else
psys_interpolate_face(mvert, mface, mtface, orcodata, mapfw, vec, nor, utan, vtan, orco, ornor);
}
}
float psys_particle_value_from_verts(DerivedMesh *dm, short from, ParticleData *pa, float *values)
{
float mapfw[4];
int mapindex;
if (!psys_map_index_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, &mapindex, mapfw))
return 0.0f;
return psys_interpolate_value_from_verts(dm, from, mapindex, mapfw, values);
}
ParticleSystemModifierData *psys_get_modifier(Object *ob, ParticleSystem *psys)
{
ModifierData *md;
ParticleSystemModifierData *psmd;
for (md = ob->modifiers.first; md; md = md->next) {
if (md->type == eModifierType_ParticleSystem) {
psmd = (ParticleSystemModifierData *) md;
if (psmd->psys == psys) {
return psmd;
}
}
}
return NULL;
}
/************************************************/
/* Particles on a shape */
/************************************************/
/* ready for future use */
static void psys_particle_on_shape(int UNUSED(distr), int UNUSED(index),
float *UNUSED(fuv), float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
/* TODO */
float zerovec[3] = {0.0f, 0.0f, 0.0f};
if (vec) {
copy_v3_v3(vec, zerovec);
}
if (nor) {
copy_v3_v3(nor, zerovec);
}
if (utan) {
copy_v3_v3(utan, zerovec);
}
if (vtan) {
copy_v3_v3(vtan, zerovec);
}
if (orco) {
copy_v3_v3(orco, zerovec);
}
if (ornor) {
copy_v3_v3(ornor, zerovec);
}
}
/************************************************/
/* Particles on emitter */
/************************************************/
CustomDataMask psys_emitter_customdata_mask(ParticleSystem *psys)
{
CustomDataMask dataMask = 0;
MTex *mtex;
int i;
if (!psys->part)
return 0;
for (i = 0; i < MAX_MTEX; i++) {
mtex = psys->part->mtex[i];
if (mtex && mtex->mapto && (mtex->texco & TEXCO_UV))
dataMask |= CD_MASK_MTFACE;
}
if (psys->part->tanfac != 0.0f)
dataMask |= CD_MASK_MTFACE;
/* ask for vertexgroups if we need them */
for (i = 0; i < PSYS_TOT_VG; i++) {
if (psys->vgroup[i]) {
dataMask |= CD_MASK_MDEFORMVERT;
break;
}
}
/* particles only need this if they are after a non deform modifier, and
* the modifier stack will only create them in that case. */
dataMask |= CD_MASK_ORIGSPACE_MLOOP | CD_MASK_ORIGINDEX;
dataMask |= CD_MASK_ORCO;
return dataMask;
}
void psys_particle_on_emitter(ParticleSystemModifierData *psmd, int from, int index, int index_dmcache,
float fuv[4], float foffset, float vec[3], float nor[3], float utan[3], float vtan[3],
float orco[3], float ornor[3])
{
if (psmd && psmd->dm_final) {
if (psmd->psys->part->distr == PART_DISTR_GRID && psmd->psys->part->from != PART_FROM_VERT) {
if (vec)
copy_v3_v3(vec, fuv);
if (orco)
copy_v3_v3(orco, fuv);
return;
}
/* we cant use the num_dmcache */
psys_particle_on_dm(psmd->dm_final, from, index, index_dmcache, fuv, foffset, vec, nor, utan, vtan, orco, ornor);
}
else
psys_particle_on_shape(from, index, fuv, vec, nor, utan, vtan, orco, ornor);
}
/************************************************/
/* Path Cache */
/************************************************/
extern void do_kink(ParticleKey *state, const float par_co[3], const float par_vel[3], const float par_rot[4], float time, float freq, float shape, float amplitude, float flat,
short type, short axis, float obmat[4][4], int smooth_start);
extern float do_clump(ParticleKey *state, const float par_co[3], float time, const float orco_offset[3], float clumpfac, float clumppow, float pa_clump,
bool use_clump_noise, float clump_noise_size, CurveMapping *clumpcurve);
void precalc_guides(ParticleSimulationData *sim, ListBase *effectors)
{
EffectedPoint point;
ParticleKey state;
EffectorData efd;
EffectorCache *eff;
ParticleSystem *psys = sim->psys;
EffectorWeights *weights = sim->psys->part->effector_weights;
GuideEffectorData *data;
PARTICLE_P;
if (!effectors)
return;
LOOP_PARTICLES {
psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, state.co, 0, 0, 0, 0, 0);
mul_m4_v3(sim->ob->obmat, state.co);
mul_mat3_m4_v3(sim->ob->obmat, state.vel);
pd_point_from_particle(sim, pa, &state, &point);
for (eff = effectors->first; eff; eff = eff->next) {
if (eff->pd->forcefield != PFIELD_GUIDE)
continue;
if (!eff->guide_data)
eff->guide_data = MEM_callocN(sizeof(GuideEffectorData) * psys->totpart, "GuideEffectorData");
data = eff->guide_data + p;
sub_v3_v3v3(efd.vec_to_point, state.co, eff->guide_loc);
copy_v3_v3(efd.nor, eff->guide_dir);
efd.distance = len_v3(efd.vec_to_point);
copy_v3_v3(data->vec_to_point, efd.vec_to_point);
data->strength = effector_falloff(eff, &efd, &point, weights);
}
}
}
int do_guides(ParticleSettings *part, ListBase *effectors, ParticleKey *state, int index, float time)
{
CurveMapping *clumpcurve = (part->child_flag & PART_CHILD_USE_CLUMP_CURVE) ? part->clumpcurve : NULL;
CurveMapping *roughcurve = (part->child_flag & PART_CHILD_USE_ROUGH_CURVE) ? part->roughcurve : NULL;
EffectorCache *eff;
PartDeflect *pd;
Curve *cu;
GuideEffectorData *data;
float effect[3] = {0.0f, 0.0f, 0.0f}, veffect[3] = {0.0f, 0.0f, 0.0f};
float guidevec[4], guidedir[3], rot2[4], temp[3];
float guidetime, radius, weight, angle, totstrength = 0.0f;
float vec_to_point[3];
if (effectors) for (eff = effectors->first; eff; eff = eff->next) {
pd = eff->pd;
if (pd->forcefield != PFIELD_GUIDE)
continue;
data = eff->guide_data + index;
if (data->strength <= 0.0f)
continue;
guidetime = time / (1.0f - pd->free_end);
if (guidetime > 1.0f)
continue;
cu = (Curve *)eff->ob->data;
if (pd->flag & PFIELD_GUIDE_PATH_ADD) {
if (where_on_path(eff->ob, data->strength * guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0)
return 0;
}
else {
if (where_on_path(eff->ob, guidetime, guidevec, guidedir, NULL, &radius, &weight) == 0)
return 0;
}
mul_m4_v3(eff->ob->obmat, guidevec);
mul_mat3_m4_v3(eff->ob->obmat, guidedir);
normalize_v3(guidedir);
copy_v3_v3(vec_to_point, data->vec_to_point);
if (guidetime != 0.0f) {
/* curve direction */
cross_v3_v3v3(temp, eff->guide_dir, guidedir);
angle = dot_v3v3(eff->guide_dir, guidedir) / (len_v3(eff->guide_dir));
angle = saacos(angle);
axis_angle_to_quat(rot2, temp, angle);
mul_qt_v3(rot2, vec_to_point);
/* curve tilt */
axis_angle_to_quat(rot2, guidedir, guidevec[3] - eff->guide_loc[3]);
mul_qt_v3(rot2, vec_to_point);
}
/* curve taper */
if (cu->taperobj)
mul_v3_fl(vec_to_point, BKE_displist_calc_taper(eff->scene, cu->taperobj, (int)(data->strength * guidetime * 100.0f), 100));
else { /* curve size*/
if (cu->flag & CU_PATH_RADIUS) {
mul_v3_fl(vec_to_point, radius);
}
}
if (clumpcurve)
curvemapping_changed_all(clumpcurve);
if (roughcurve)
curvemapping_changed_all(roughcurve);
{
ParticleKey key;
float par_co[3] = {0.0f, 0.0f, 0.0f};
float par_vel[3] = {0.0f, 0.0f, 0.0f};
float par_rot[4] = {1.0f, 0.0f, 0.0f, 0.0f};
float orco_offset[3] = {0.0f, 0.0f, 0.0f};
copy_v3_v3(key.co, vec_to_point);
do_kink(&key, par_co, par_vel, par_rot, guidetime, pd->kink_freq, pd->kink_shape, pd->kink_amp, 0.f, pd->kink, pd->kink_axis, 0, 0);
do_clump(&key, par_co, guidetime, orco_offset, pd->clump_fac, pd->clump_pow, 1.0f,
part->child_flag & PART_CHILD_USE_CLUMP_NOISE, part->clump_noise_size, clumpcurve);
copy_v3_v3(vec_to_point, key.co);
}
add_v3_v3(vec_to_point, guidevec);
//sub_v3_v3v3(pa_loc, pa_loc, pa_zero);
madd_v3_v3fl(effect, vec_to_point, data->strength);
madd_v3_v3fl(veffect, guidedir, data->strength);
totstrength += data->strength;
if (pd->flag & PFIELD_GUIDE_PATH_WEIGHT)
totstrength *= weight;
}
if (totstrength != 0.0f) {
if (totstrength > 1.0f)
mul_v3_fl(effect, 1.0f / totstrength);
CLAMP(totstrength, 0.0f, 1.0f);
//add_v3_v3(effect, pa_zero);
interp_v3_v3v3(state->co, state->co, effect, totstrength);
normalize_v3(veffect);
mul_v3_fl(veffect, len_v3(state->vel));
copy_v3_v3(state->vel, veffect);
return 1;
}
return 0;
}
static void do_path_effectors(ParticleSimulationData *sim, int i, ParticleCacheKey *ca, int k, int steps, float *UNUSED(rootco), float effector, float UNUSED(dfra), float UNUSED(cfra), float *length, float *vec)
{
float force[3] = {0.0f, 0.0f, 0.0f};
ParticleKey eff_key;
EffectedPoint epoint;
/* Don't apply effectors for dynamic hair, otherwise the effectors don't get applied twice. */
if (sim->psys->flag & PSYS_HAIR_DYNAMICS)
return;
copy_v3_v3(eff_key.co, (ca - 1)->co);
copy_v3_v3(eff_key.vel, (ca - 1)->vel);
copy_qt_qt(eff_key.rot, (ca - 1)->rot);
pd_point_from_particle(sim, sim->psys->particles + i, &eff_key, &epoint);
pdDoEffectors(sim->psys->effectors, sim->colliders, sim->psys->part->effector_weights, &epoint, force, NULL);
mul_v3_fl(force, effector * powf((float)k / (float)steps, 100.0f * sim->psys->part->eff_hair) / (float)steps);
add_v3_v3(force, vec);
normalize_v3(force);
if (k < steps)
sub_v3_v3v3(vec, (ca + 1)->co, ca->co);
madd_v3_v3v3fl(ca->co, (ca - 1)->co, force, *length);
if (k < steps)
*length = len_v3(vec);
}
static void offset_child(ChildParticle *cpa, ParticleKey *par, float *par_rot, ParticleKey *child, float flat, float radius)
{
copy_v3_v3(child->co, cpa->fuv);
mul_v3_fl(child->co, radius);
child->co[0] *= flat;
copy_v3_v3(child->vel, par->vel);
if (par_rot) {
mul_qt_v3(par_rot, child->co);
copy_qt_qt(child->rot, par_rot);
}
else
unit_qt(child->rot);
add_v3_v3(child->co, par->co);
}
float *psys_cache_vgroup(DerivedMesh *dm, ParticleSystem *psys, int vgroup)
{
float *vg = 0;
if (vgroup < 0) {
/* hair dynamics pinning vgroup */
}
else if (psys->vgroup[vgroup]) {
MDeformVert *dvert = dm->getVertDataArray(dm, CD_MDEFORMVERT);
if (dvert) {
int totvert = dm->getNumVerts(dm), i;
vg = MEM_callocN(sizeof(float) * totvert, "vg_cache");
if (psys->vg_neg & (1 << vgroup)) {
for (i = 0; i < totvert; i++)
vg[i] = 1.0f - defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1);
}
else {
for (i = 0; i < totvert; i++)
vg[i] = defvert_find_weight(&dvert[i], psys->vgroup[vgroup] - 1);
}
}
}
return vg;
}
void psys_find_parents(ParticleSimulationData *sim, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
KDTree *tree;
ChildParticle *cpa;
ParticleTexture ptex;
int p, totparent, totchild = sim->psys->totchild;
float co[3], orco[3];
int from = PART_FROM_FACE;
totparent = (int)(totchild * part->parents * 0.3f);
if ((sim->psys->renderdata || use_render_params) && part->child_nbr && part->ren_child_nbr)
totparent *= (float)part->child_nbr / (float)part->ren_child_nbr;
/* hard limit, workaround for it being ignored above */
if (sim->psys->totpart < totparent) {
totparent = sim->psys->totpart;
}
tree = BLI_kdtree_new(totparent);
for (p = 0, cpa = sim->psys->child; p < totparent; p++, cpa++) {
psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0);
/* Check if particle doesn't exist because of texture influence. Insert only existing particles into kdtree. */
get_cpa_texture(sim->psmd->dm_final, psys, part, psys->particles + cpa->pa[0], p, cpa->num, cpa->fuv, orco, &ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra);
if (ptex.exist >= psys_frand(psys, p + 24)) {
BLI_kdtree_insert(tree, p, orco);
}
}
BLI_kdtree_balance(tree);
for (; p < totchild; p++, cpa++) {
psys_particle_on_emitter(sim->psmd, from, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, co, 0, 0, 0, orco, 0);
cpa->parent = BLI_kdtree_find_nearest(tree, orco, NULL);
}
BLI_kdtree_free(tree);
}
static bool psys_thread_context_init_path(
ParticleThreadContext *ctx, ParticleSimulationData *sim, Scene *scene,
float cfra, const bool editupdate, const bool use_render_params)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
int totparent = 0, between = 0;
int segments = 1 << part->draw_step;
int totchild = psys->totchild;
psys_thread_context_init(ctx, sim);
/*---start figuring out what is actually wanted---*/
if (psys_in_edit_mode(scene, psys)) {
ParticleEditSettings *pset = &scene->toolsettings->particle;
if ((psys->renderdata == 0 && use_render_params == 0) && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0)
totchild = 0;
segments = 1 << pset->draw_step;
}
if (totchild && part->childtype == PART_CHILD_FACES) {
totparent = (int)(totchild * part->parents * 0.3f);
if ((psys->renderdata || use_render_params) && part->child_nbr && part->ren_child_nbr)
totparent *= (float)part->child_nbr / (float)part->ren_child_nbr;
/* part->parents could still be 0 so we can't test with totparent */
between = 1;
}
if (psys->renderdata || use_render_params)
segments = 1 << part->ren_step;
else {
totchild = (int)((float)totchild * (float)part->disp / 100.0f);
totparent = MIN2(totparent, totchild);
}
if (totchild == 0)
return false;
/* fill context values */
ctx->between = between;
ctx->segments = segments;
if (ELEM(part->kink, PART_KINK_SPIRAL))
ctx->extra_segments = max_ii(part->kink_extra_steps, 1);
else
ctx->extra_segments = 0;
ctx->totchild = totchild;
ctx->totparent = totparent;
ctx->parent_pass = 0;
ctx->cfra = cfra;
ctx->editupdate = editupdate;
psys->lattice_deform_data = psys_create_lattice_deform_data(&ctx->sim);
/* cache all relevant vertex groups if they exist */
ctx->vg_length = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_LENGTH);
ctx->vg_clump = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_CLUMP);
ctx->vg_kink = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_KINK);
ctx->vg_rough1 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH1);
ctx->vg_rough2 = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGH2);
ctx->vg_roughe = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_ROUGHE);
if (psys->part->flag & PART_CHILD_EFFECT)
ctx->vg_effector = psys_cache_vgroup(ctx->dm, psys, PSYS_VG_EFFECTOR);
/* prepare curvemapping tables */
if ((part->child_flag & PART_CHILD_USE_CLUMP_CURVE) && part->clumpcurve) {
ctx->clumpcurve = curvemapping_copy(part->clumpcurve);
curvemapping_changed_all(ctx->clumpcurve);
}
else {
ctx->clumpcurve = NULL;
}
if ((part->child_flag & PART_CHILD_USE_ROUGH_CURVE) && part->roughcurve) {
ctx->roughcurve = curvemapping_copy(part->roughcurve);
curvemapping_changed_all(ctx->roughcurve);
}
else {
ctx->roughcurve = NULL;
}
return true;
}
static void psys_task_init_path(ParticleTask *task, ParticleSimulationData *sim)
{
/* init random number generator */
int seed = 31415926 + sim->psys->seed;
task->rng_path = BLI_rng_new(seed);
}
/* note: this function must be thread safe, except for branching! */
static void psys_thread_create_path(ParticleTask *task, struct ChildParticle *cpa, ParticleCacheKey *child_keys, int i)
{
ParticleThreadContext *ctx = task->ctx;
Object *ob = ctx->sim.ob;
ParticleSystem *psys = ctx->sim.psys;
ParticleSettings *part = psys->part;
ParticleCacheKey **cache = psys->childcache;
ParticleCacheKey **pcache = psys_in_edit_mode(ctx->sim.scene, psys) && psys->edit ? psys->edit->pathcache : psys->pathcache;
ParticleCacheKey *child, *key[4];
ParticleTexture ptex;
float *cpa_fuv = 0, *par_rot = 0, rot[4];
float orco[3], ornor[3], hairmat[4][4], dvec[3], off1[4][3], off2[4][3];
float eff_length, eff_vec[3], weight[4];
int k, cpa_num;
short cpa_from;
if (!pcache)
return;
if (ctx->between) {
ParticleData *pa = psys->particles + cpa->pa[0];
int w, needupdate;
float foffset, wsum = 0.f;
float co[3];
float p_min = part->parting_min;
float p_max = part->parting_max;
/* Virtual parents don't work nicely with parting. */
float p_fac = part->parents > 0.f ? 0.f : part->parting_fac;
if (ctx->editupdate) {
needupdate = 0;
w = 0;
while (w < 4 && cpa->pa[w] >= 0) {
if (psys->edit->points[cpa->pa[w]].flag & PEP_EDIT_RECALC) {
needupdate = 1;
break;
}
w++;
}
if (!needupdate)
return;
else
memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1));
}
/* get parent paths */
for (w = 0; w < 4; w++) {
if (cpa->pa[w] >= 0) {
key[w] = pcache[cpa->pa[w]];
weight[w] = cpa->w[w];
}
else {
key[w] = pcache[0];
weight[w] = 0.f;
}
}
/* modify weights to create parting */
if (p_fac > 0.f) {
const ParticleCacheKey *key_0_last = pcache_key_segment_endpoint_safe(key[0]);
for (w = 0; w < 4; w++) {
if (w && (weight[w] > 0.f)) {
const ParticleCacheKey *key_w_last = pcache_key_segment_endpoint_safe(key[w]);
float d;
if (part->flag & PART_CHILD_LONG_HAIR) {
/* For long hair use tip distance/root distance as parting factor instead of root to tip angle. */
float d1 = len_v3v3(key[0]->co, key[w]->co);
float d2 = len_v3v3(key_0_last->co, key_w_last->co);
d = d1 > 0.f ? d2 / d1 - 1.f : 10000.f;
}
else {
float v1[3], v2[3];
sub_v3_v3v3(v1, key_0_last->co, key[0]->co);
sub_v3_v3v3(v2, key_w_last->co, key[w]->co);
normalize_v3(v1);
normalize_v3(v2);
d = RAD2DEGF(saacos(dot_v3v3(v1, v2)));
}
if (p_max > p_min)
d = (d - p_min) / (p_max - p_min);
else
d = (d - p_min) <= 0.f ? 0.f : 1.f;
CLAMP(d, 0.f, 1.f);
if (d > 0.f)
weight[w] *= (1.f - d);
}
wsum += weight[w];
}
for (w = 0; w < 4; w++)
weight[w] /= wsum;
interp_v4_v4v4(weight, cpa->w, weight, p_fac);
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, ornor, 0, 0, orco, 0);
mul_m4_v3(ob->obmat, co);
for (w = 0; w < 4; w++)
sub_v3_v3v3(off1[w], co, key[w]->co);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm_final, psys->part->from, pa, hairmat);
}
else {
ParticleData *pa = psys->particles + cpa->parent;
float co[3];
if (ctx->editupdate) {
if (!(psys->edit->points[cpa->parent].flag & PEP_EDIT_RECALC))
return;
memset(child_keys, 0, sizeof(*child_keys) * (ctx->segments + 1));
}
/* get the parent path */
key[0] = pcache[cpa->parent];
/* get the original coordinates (orco) for texture usage */
cpa_from = part->from;
cpa_num = pa->num;
/* XXX hack to avoid messed up particle num and subsequent crash (#40733) */
if (cpa_num > ctx->sim.psmd->dm_final->getNumTessFaces(ctx->sim.psmd->dm_final))
cpa_num = 0;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(ctx->sim.psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, ornor, 0, 0, orco, 0);
psys_mat_hair_to_global(ob, ctx->sim.psmd->dm_final, psys->part->from, pa, hairmat);
}
child_keys->segments = ctx->segments;
/* get different child parameters from textures & vgroups */
get_child_modifier_parameters(part, ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if (ptex.exist < psys_frand(psys, i + 24)) {
child_keys->segments = -1;
return;
}
/* create the child path */
for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) {
if (ctx->between) {
int w = 0;
zero_v3(child->co);
zero_v3(child->vel);
unit_qt(child->rot);
for (w = 0; w < 4; w++) {
copy_v3_v3(off2[w], off1[w]);
if (part->flag & PART_CHILD_LONG_HAIR) {
/* Use parent rotation (in addition to emission location) to determine child offset. */
if (k)
mul_qt_v3((key[w] + k)->rot, off2[w]);
/* Fade the effect of rotation for even lengths in the end */
project_v3_v3v3(dvec, off2[w], (key[w] + k)->vel);
madd_v3_v3fl(off2[w], dvec, -(float)k / (float)ctx->segments);
}
add_v3_v3(off2[w], (key[w] + k)->co);
}
/* child position is the weighted sum of parent positions */
interp_v3_v3v3v3v3(child->co, off2[0], off2[1], off2[2], off2[3], weight);
interp_v3_v3v3v3v3(child->vel, (key[0] + k)->vel, (key[1] + k)->vel, (key[2] + k)->vel, (key[3] + k)->vel, weight);
copy_qt_qt(child->rot, (key[0] + k)->rot);
}
else {
if (k) {
mul_qt_qtqt(rot, (key[0] + k)->rot, key[0]->rot);
par_rot = rot;
}
else {
par_rot = key[0]->rot;
}
/* offset the child from the parent position */
offset_child(cpa, (ParticleKey *)(key[0] + k), par_rot, (ParticleKey *)child, part->childflat, part->childrad);
}
child->time = (float)k / (float)ctx->segments;
}
/* apply effectors */
if (part->flag & PART_CHILD_EFFECT) {
for (k = 0, child = child_keys; k <= ctx->segments; k++, child++) {
if (k) {
do_path_effectors(&ctx->sim, cpa->pa[0], child, k, ctx->segments, child_keys->co, ptex.effector, 0.0f, ctx->cfra, &eff_length, eff_vec);
}
else {
sub_v3_v3v3(eff_vec, (child + 1)->co, child->co);
eff_length = len_v3(eff_vec);
}
}
}
{
ParticleData *pa = NULL;
ParticleCacheKey *par = NULL;
float par_co[3];
float par_orco[3];
if (ctx->totparent) {
if (i >= ctx->totparent) {
pa = &psys->particles[cpa->parent];
/* this is now threadsafe, virtual parents are calculated before rest of children */
BLI_assert(cpa->parent < psys->totchildcache);
par = cache[cpa->parent];
}
}
else if (cpa->parent >= 0) {
pa = &psys->particles[cpa->parent];
par = pcache[cpa->parent];
/* If particle is unexisting, try to pick a viable parent from particles used for interpolation. */
for (k = 0; k < 4 && pa && (pa->flag & PARS_UNEXIST); k++) {
if (cpa->pa[k] >= 0) {
pa = &psys->particles[cpa->pa[k]];
par = pcache[cpa->pa[k]];
}
}
if (pa->flag & PARS_UNEXIST) pa = NULL;
}
if (pa) {
ListBase modifiers;
BLI_listbase_clear(&modifiers);
psys_particle_on_emitter(ctx->sim.psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset,
par_co, NULL, NULL, NULL, par_orco, NULL);
psys_apply_child_modifiers(ctx, &modifiers, cpa, &ptex, orco, ornor, hairmat, child_keys, par, par_orco);
}
else
zero_v3(par_orco);
}
/* Hide virtual parents */
if (i < ctx->totparent)
child_keys->segments = -1;
}
static void exec_child_path_cache(TaskPool * __restrict UNUSED(pool), void *taskdata, int UNUSED(threadid))
{
ParticleTask *task = taskdata;
ParticleThreadContext *ctx = task->ctx;
ParticleSystem *psys = ctx->sim.psys;
ParticleCacheKey **cache = psys->childcache;
ChildParticle *cpa;
int i;
cpa = psys->child + task->begin;
for (i = task->begin; i < task->end; ++i, ++cpa) {
BLI_assert(i < psys->totchildcache);
psys_thread_create_path(task, cpa, cache[i], i);
}
}
void psys_cache_child_paths(
ParticleSimulationData *sim, float cfra,
const bool editupdate, const bool use_render_params)
{
TaskScheduler *task_scheduler;
TaskPool *task_pool;
ParticleThreadContext ctx;
ParticleTask *tasks_parent, *tasks_child;
int numtasks_parent, numtasks_child;
int i, totchild, totparent;
if (sim->psys->flag & PSYS_GLOBAL_HAIR)
return;
/* create a task pool for child path tasks */
if (!psys_thread_context_init_path(&ctx, sim, sim->scene, cfra, editupdate, use_render_params))
return;
task_scheduler = BLI_task_scheduler_get();
task_pool = BLI_task_pool_create(task_scheduler, &ctx);
totchild = ctx.totchild;
totparent = ctx.totparent;
if (editupdate && sim->psys->childcache && totchild == sim->psys->totchildcache) {
; /* just overwrite the existing cache */
}
else {
/* clear out old and create new empty path cache */
free_child_path_cache(sim->psys);
sim->psys->childcache = psys_alloc_path_cache_buffers(&sim->psys->childcachebufs, totchild, ctx.segments + ctx.extra_segments + 1);
sim->psys->totchildcache = totchild;
}
/* cache parent paths */
ctx.parent_pass = 1;
psys_tasks_create(&ctx, 0, totparent, &tasks_parent, &numtasks_parent);
for (i = 0; i < numtasks_parent; ++i) {
ParticleTask *task = &tasks_parent[i];
psys_task_init_path(task, sim);
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
}
BLI_task_pool_work_and_wait(task_pool);
/* cache child paths */
ctx.parent_pass = 0;
psys_tasks_create(&ctx, totparent, totchild, &tasks_child, &numtasks_child);
for (i = 0; i < numtasks_child; ++i) {
ParticleTask *task = &tasks_child[i];
psys_task_init_path(task, sim);
BLI_task_pool_push(task_pool, exec_child_path_cache, task, false, TASK_PRIORITY_LOW);
}
BLI_task_pool_work_and_wait(task_pool);
BLI_task_pool_free(task_pool);
psys_tasks_free(tasks_parent, numtasks_parent);
psys_tasks_free(tasks_child, numtasks_child);
psys_thread_context_free(&ctx);
}
/* figure out incremental rotations along path starting from unit quat */
static void cache_key_incremental_rotation(ParticleCacheKey *key0, ParticleCacheKey *key1, ParticleCacheKey *key2, float *prev_tangent, int i)
{
float cosangle, angle, tangent[3], normal[3], q[4];
switch (i) {
case 0:
/* start from second key */
break;
case 1:
/* calculate initial tangent for incremental rotations */
sub_v3_v3v3(prev_tangent, key0->co, key1->co);
normalize_v3(prev_tangent);
unit_qt(key1->rot);
break;
default:
sub_v3_v3v3(tangent, key0->co, key1->co);
normalize_v3(tangent);
cosangle = dot_v3v3(tangent, prev_tangent);
/* note we do the comparison on cosangle instead of
* angle, since floating point accuracy makes it give
* different results across platforms */
if (cosangle > 0.999999f) {
copy_v4_v4(key1->rot, key2->rot);
}
else {
angle = saacos(cosangle);
cross_v3_v3v3(normal, prev_tangent, tangent);
axis_angle_to_quat(q, normal, angle);
mul_qt_qtqt(key1->rot, q, key2->rot);
}
copy_v3_v3(prev_tangent, tangent);
}
}
/**
* Calculates paths ready for drawing/rendering
* - Useful for making use of opengl vertex arrays for super fast strand drawing.
* - Makes child strands possible and creates them too into the cache.
* - Cached path data is also used to determine cut position for the editmode tool. */
void psys_cache_paths(ParticleSimulationData *sim, float cfra, const bool use_render_params)
{
PARTICLE_PSMD;
ParticleEditSettings *pset = &sim->scene->toolsettings->particle;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleCacheKey *ca, **cache;
DerivedMesh *hair_dm = (psys->part->type == PART_HAIR && psys->flag & PSYS_HAIR_DYNAMICS) ? psys->hair_out_dm : NULL;
ParticleKey result;
Material *ma;
ParticleInterpolationData pind;
ParticleTexture ptex;
PARTICLE_P;
float birthtime = 0.0, dietime = 0.0;
float t, time = 0.0, dfra = 1.0 /* , frs_sec = sim->scene->r.frs_sec*/ /*UNUSED*/;
float col[4] = {0.5f, 0.5f, 0.5f, 1.0f};
float prev_tangent[3] = {0.0f, 0.0f, 0.0f}, hairmat[4][4];
float rotmat[3][3];
int k;
int segments = (int)pow(2.0, (double)((psys->renderdata || use_render_params) ? part->ren_step : part->draw_step));
int totpart = psys->totpart;
float length, vec[3];
float *vg_effector = NULL;
float *vg_length = NULL, pa_length = 1.0f;
int keyed, baked;
/* we don't have anything valid to create paths from so let's quit here */
if ((psys->flag & PSYS_HAIR_DONE || psys->flag & PSYS_KEYED || psys->pointcache) == 0)
return;
if (psys_in_edit_mode(sim->scene, psys))
if (psys->renderdata == 0 && (psys->edit == NULL || pset->flag & PE_DRAW_PART) == 0)
return;
keyed = psys->flag & PSYS_KEYED;
baked = psys->pointcache->mem_cache.first && psys->part->type != PART_HAIR;
/* clear out old and create new empty path cache */
psys_free_path_cache(psys, psys->edit);
cache = psys->pathcache = psys_alloc_path_cache_buffers(&psys->pathcachebufs, totpart, segments + 1);
psys->lattice_deform_data = psys_create_lattice_deform_data(sim);
ma = give_current_material(sim->ob, psys->part->omat);
if (ma && (psys->part->draw_col == PART_DRAW_COL_MAT))
copy_v3_v3(col, &ma->r);
if ((psys->flag & PSYS_GLOBAL_HAIR) == 0) {
if ((psys->part->flag & PART_CHILD_EFFECT) == 0)
vg_effector = psys_cache_vgroup(psmd->dm_final, psys, PSYS_VG_EFFECTOR);
if (!psys->totchild)
vg_length = psys_cache_vgroup(psmd->dm_final, psys, PSYS_VG_LENGTH);
}
/* ensure we have tessfaces to be used for mapping */
if (part->from != PART_FROM_VERT) {
DM_ensure_tessface(psmd->dm_final);
}
/*---first main loop: create all actual particles' paths---*/
LOOP_PARTICLES {
if (!psys->totchild) {
psys_get_texture(sim, pa, &ptex, PAMAP_LENGTH, 0.f);
pa_length = ptex.length * (1.0f - part->randlength * psys_frand(psys, psys->seed + p));
if (vg_length)
pa_length *= psys_particle_value_from_verts(psmd->dm_final, part->from, pa, vg_length);
}
pind.keyed = keyed;
pind.cache = baked ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
pind.dm = hair_dm;
memset(cache[p], 0, sizeof(*cache[p]) * (segments + 1));
cache[p]->segments = segments;
/*--get the first data points--*/
init_particle_interpolation(sim->ob, sim->psys, pa, &pind);
/* hairmat is needed for for non-hair particle too so we get proper rotations */
psys_mat_hair_to_global(sim->ob, psmd->dm_final, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
if (part->draw & PART_ABS_PATH_TIME) {
birthtime = MAX2(pind.birthtime, part->path_start);
dietime = MIN2(pind.dietime, part->path_end);
}
else {
float tb = pind.birthtime;
birthtime = tb + part->path_start * (pind.dietime - tb);
dietime = tb + part->path_end * (pind.dietime - tb);
}
if (birthtime >= dietime) {
cache[p]->segments = -1;
continue;
}
dietime = birthtime + pa_length * (dietime - birthtime);
/*--interpolate actual path from data points--*/
for (k = 0, ca = cache[p]; k <= segments; k++, ca++) {
time = (float)k / (float)segments;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, p, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* dynamic hair is in object space */
/* keyed and baked are already in global space */
if (hair_dm)
mul_m4_v3(sim->ob->obmat, ca->co);
else if (!keyed && !baked && !(psys->flag & PSYS_GLOBAL_HAIR))
mul_m4_v3(hairmat, ca->co);
copy_v3_v3(ca->col, col);
}
if (part->type == PART_HAIR) {
HairKey *hkey;
for (k = 0, hkey = pa->hair; k < pa->totkey; ++k, ++hkey) {
mul_v3_m4v3(hkey->world_co, hairmat, hkey->co);
}
}
/*--modify paths and calculate rotation & velocity--*/
if (!(psys->flag & PSYS_GLOBAL_HAIR)) {
/* apply effectors */
if ((psys->part->flag & PART_CHILD_EFFECT) == 0) {
float effector = 1.0f;
if (vg_effector)
effector *= psys_particle_value_from_verts(psmd->dm_final, psys->part->from, pa, vg_effector);
sub_v3_v3v3(vec, (cache[p] + 1)->co, cache[p]->co);
length = len_v3(vec);
for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++)
do_path_effectors(sim, p, ca, k, segments, cache[p]->co, effector, dfra, cfra, &length, vec);
}
/* apply guide curves to path data */
if (sim->psys->effectors && (psys->part->flag & PART_CHILD_EFFECT) == 0) {
for (k = 0, ca = cache[p]; k <= segments; k++, ca++)
/* ca is safe to cast, since only co and vel are used */
do_guides(sim->psys->part, sim->psys->effectors, (ParticleKey *)ca, p, (float)k / (float)segments);
}
/* lattices have to be calculated separately to avoid mixups between effector calculations */
if (psys->lattice_deform_data) {
for (k = 0, ca = cache[p]; k <= segments; k++, ca++)
calc_latt_deform(psys->lattice_deform_data, ca->co, 1.0f);
}
}
/* finally do rotation & velocity */
for (k = 1, ca = cache[p] + 1; k <= segments; k++, ca++) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if (k == segments)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if (k == 1)
copy_v3_v3((ca - 1)->vel, ca->vel);
ca->time = (float)k / (float)segments;
}
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[p]->rot, rotmat);
}
psys->totcached = totpart;
if (psys->lattice_deform_data) {
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
if (vg_effector)
MEM_freeN(vg_effector);
if (vg_length)
MEM_freeN(vg_length);
}
void psys_cache_edit_paths(Scene *scene, Object *ob, PTCacheEdit *edit, float cfra, const bool use_render_params)
{
ParticleCacheKey *ca, **cache = edit->pathcache;
ParticleEditSettings *pset = &scene->toolsettings->particle;
PTCacheEditPoint *point = NULL;
PTCacheEditKey *ekey = NULL;
ParticleSystem *psys = edit->psys;
ParticleSystemModifierData *psmd = psys_get_modifier(ob, psys);
ParticleData *pa = psys ? psys->particles : NULL;
ParticleInterpolationData pind;
ParticleKey result;
float birthtime = 0.0f, dietime = 0.0f;
float t, time = 0.0f, keytime = 0.0f /*, frs_sec */;
float hairmat[4][4], rotmat[3][3], prev_tangent[3] = {0.0f, 0.0f, 0.0f};
int k, i;
int segments = 1 << pset->draw_step;
int totpart = edit->totpoint, recalc_set = 0;
float sel_col[3];
float nosel_col[3];
segments = MAX2(segments, 4);
if (!cache || edit->totpoint != edit->totcached) {
/* clear out old and create new empty path cache */
psys_free_path_cache(edit->psys, edit);
cache = edit->pathcache = psys_alloc_path_cache_buffers(&edit->pathcachebufs, totpart, segments + 1);
/* set flag for update (child particles check this too) */
for (i = 0, point = edit->points; i < totpart; i++, point++)
point->flag |= PEP_EDIT_RECALC;
recalc_set = 1;
}
/* frs_sec = (psys || edit->pid.flag & PTCACHE_VEL_PER_SEC) ? 25.0f : 1.0f; */ /* UNUSED */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
; /* use weight painting colors now... */
}
else {
sel_col[0] = (float)edit->sel_col[0] / 255.0f;
sel_col[1] = (float)edit->sel_col[1] / 255.0f;
sel_col[2] = (float)edit->sel_col[2] / 255.0f;
nosel_col[0] = (float)edit->nosel_col[0] / 255.0f;
nosel_col[1] = (float)edit->nosel_col[1] / 255.0f;
nosel_col[2] = (float)edit->nosel_col[2] / 255.0f;
}
/*---first main loop: create all actual particles' paths---*/
for (i = 0, point = edit->points; i < totpart; i++, pa += pa ? 1 : 0, point++) {
if (edit->totcached && !(point->flag & PEP_EDIT_RECALC))
continue;
if (point->totkey == 0)
continue;
ekey = point->keys;
pind.keyed = 0;
pind.cache = NULL;
pind.epoint = point;
pind.bspline = psys ? (psys->part->flag & PART_HAIR_BSPLINE) : 0;
pind.dm = NULL;
/* should init_particle_interpolation set this ? */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
pind.hkey[0] = NULL;
/* pa != NULL since the weight brush is only available for hair */
pind.hkey[1] = pa->hair;
}
memset(cache[i], 0, sizeof(*cache[i]) * (segments + 1));
cache[i]->segments = segments;
/*--get the first data points--*/
init_particle_interpolation(ob, psys, pa, &pind);
if (psys) {
psys_mat_hair_to_global(ob, psmd->dm_final, psys->part->from, pa, hairmat);
copy_v3_v3(rotmat[0], hairmat[2]);
copy_v3_v3(rotmat[1], hairmat[1]);
copy_v3_v3(rotmat[2], hairmat[0]);
}
birthtime = pind.birthtime;
dietime = pind.dietime;
if (birthtime >= dietime) {
cache[i]->segments = -1;
continue;
}
/*--interpolate actual path from data points--*/
for (k = 0, ca = cache[i]; k <= segments; k++, ca++) {
time = (float)k / (float)segments;
t = birthtime + time * (dietime - birthtime);
result.time = -t;
do_particle_interpolation(psys, i, pa, t, &pind, &result);
copy_v3_v3(ca->co, result.co);
/* non-hair points are already in global space */
if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
mul_m4_v3(hairmat, ca->co);
if (k) {
cache_key_incremental_rotation(ca, ca - 1, ca - 2, prev_tangent, k);
if (k == segments)
copy_qt_qt(ca->rot, (ca - 1)->rot);
/* set velocity */
sub_v3_v3v3(ca->vel, ca->co, (ca - 1)->co);
if (k == 1)
copy_v3_v3((ca - 1)->vel, ca->vel);
}
}
else {
ca->vel[0] = ca->vel[1] = 0.0f;
ca->vel[2] = 1.0f;
}
/* selection coloring in edit mode */
if (pset->brushtype == PE_BRUSH_WEIGHT) {
float t2;
if (k == 0) {
weight_to_rgb(ca->col, pind.hkey[1]->weight);
}
else {
float w1[3], w2[3];
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
weight_to_rgb(w1, pind.hkey[0]->weight);
weight_to_rgb(w2, pind.hkey[1]->weight);
interp_v3_v3v3(ca->col, w1, w2, keytime);
}
/* at the moment this is only used for weight painting.
* will need to move out of this check if its used elsewhere. */
t2 = birthtime + ((float)k / (float)segments) * (dietime - birthtime);
while (pind.hkey[1]->time < t2) pind.hkey[1]++;
pind.hkey[0] = pind.hkey[1] - 1;
}
else {
if ((ekey + (pind.ekey[0] - point->keys))->flag & PEK_SELECT) {
if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) {
copy_v3_v3(ca->col, sel_col);
}
else {
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, sel_col, nosel_col, keytime);
}
}
else {
if ((ekey + (pind.ekey[1] - point->keys))->flag & PEK_SELECT) {
keytime = (t - (*pind.ekey[0]->time)) / ((*pind.ekey[1]->time) - (*pind.ekey[0]->time));
interp_v3_v3v3(ca->col, nosel_col, sel_col, keytime);
}
else {
copy_v3_v3(ca->col, nosel_col);
}
}
}
ca->time = t;
}
if (psys && !(psys->flag & PSYS_GLOBAL_HAIR)) {
/* First rotation is based on emitting face orientation.
* This is way better than having flipping rotations resulting
* from using a global axis as a rotation pole (vec_to_quat()).
* It's not an ideal solution though since it disregards the
* initial tangent, but taking that in to account will allow
* the possibility of flipping again. -jahka
*/
mat3_to_quat_is_ok(cache[i]->rot, rotmat);
}
}
edit->totcached = totpart;
if (psys) {
ParticleSimulationData sim = {0};
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
psys_cache_child_paths(&sim, cfra, true, use_render_params);
}
/* clear recalc flag if set here */
if (recalc_set) {
for (i = 0, point = edit->points; i < totpart; i++, point++)
point->flag &= ~PEP_EDIT_RECALC;
}
}
/************************************************/
/* Particle Key handling */
/************************************************/
void copy_particle_key(ParticleKey *to, ParticleKey *from, int time)
{
if (time) {
memcpy(to, from, sizeof(ParticleKey));
}
else {
float to_time = to->time;
memcpy(to, from, sizeof(ParticleKey));
to->time = to_time;
}
}
void psys_get_from_key(ParticleKey *key, float loc[3], float vel[3], float rot[4], float *time)
{
if (loc) copy_v3_v3(loc, key->co);
if (vel) copy_v3_v3(vel, key->vel);
if (rot) copy_qt_qt(rot, key->rot);
if (time) *time = key->time;
}
/*-------changing particle keys from space to another-------*/
#if 0
static void key_from_object(Object *ob, ParticleKey *key)
{
float q[4];
add_v3_v3(key->vel, key->co);
mul_m4_v3(ob->obmat, key->co);
mul_m4_v3(ob->obmat, key->vel);
mat4_to_quat(q, ob->obmat);
sub_v3_v3v3(key->vel, key->vel, key->co);
mul_qt_qtqt(key->rot, q, key->rot);
}
#endif
static void triatomat(float *v1, float *v2, float *v3, float (*uv)[2], float mat[4][4])
{
float det, w1, w2, d1[2], d2[2];
memset(mat, 0, sizeof(float) * 4 * 4);
mat[3][3] = 1.0f;
/* first axis is the normal */
normal_tri_v3(mat[2], v1, v2, v3);
/* second axis along (1, 0) in uv space */
if (uv) {
d1[0] = uv[1][0] - uv[0][0];
d1[1] = uv[1][1] - uv[0][1];
d2[0] = uv[2][0] - uv[0][0];
d2[1] = uv[2][1] - uv[0][1];
det = d2[0] * d1[1] - d2[1] * d1[0];
if (det != 0.0f) {
det = 1.0f / det;
w1 = -d2[1] * det;
w2 = d1[1] * det;
mat[1][0] = w1 * (v2[0] - v1[0]) + w2 * (v3[0] - v1[0]);
mat[1][1] = w1 * (v2[1] - v1[1]) + w2 * (v3[1] - v1[1]);
mat[1][2] = w1 * (v2[2] - v1[2]) + w2 * (v3[2] - v1[2]);
normalize_v3(mat[1]);
}
else
mat[1][0] = mat[1][1] = mat[1][2] = 0.0f;
}
else {
sub_v3_v3v3(mat[1], v2, v1);
normalize_v3(mat[1]);
}
/* third as a cross product */
cross_v3_v3v3(mat[0], mat[1], mat[2]);
}
static void psys_face_mat(Object *ob, DerivedMesh *dm, ParticleData *pa, float mat[4][4], int orco)
{
float v[3][3];
MFace *mface;
OrigSpaceFace *osface;
float (*orcodata)[3];
int i = (ELEM(pa->num_dmcache, DMCACHE_ISCHILD, DMCACHE_NOTFOUND)) ? pa->num : pa->num_dmcache;
if (i == -1 || i >= dm->getNumTessFaces(dm)) { unit_m4(mat); return; }
mface = dm->getTessFaceData(dm, i, CD_MFACE);
osface = dm->getTessFaceData(dm, i, CD_ORIGSPACE);
if (orco && (orcodata = dm->getVertDataArray(dm, CD_ORCO))) {
copy_v3_v3(v[0], orcodata[mface->v1]);
copy_v3_v3(v[1], orcodata[mface->v2]);
copy_v3_v3(v[2], orcodata[mface->v3]);
/* ugly hack to use non-transformed orcos, since only those
* give symmetric results for mirroring in particle mode */
if (DM_get_vert_data_layer(dm, CD_ORIGINDEX))
BKE_mesh_orco_verts_transform(ob->data, v, 3, 1);
}
else {
dm->getVertCo(dm, mface->v1, v[0]);
dm->getVertCo(dm, mface->v2, v[1]);
dm->getVertCo(dm, mface->v3, v[2]);
}
triatomat(v[0], v[1], v[2], (osface) ? osface->uv : NULL, mat);
}
void psys_mat_hair_to_object(Object *UNUSED(ob), DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float vec[3];
/* can happen when called from a different object's modifier */
if (!dm) {
unit_m4(hairmat);
return;
}
psys_face_mat(0, dm, pa, hairmat, 0);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, 0, 0);
copy_v3_v3(hairmat[3], vec);
}
void psys_mat_hair_to_orco(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float vec[3], orco[3];
psys_face_mat(ob, dm, pa, hairmat, 1);
psys_particle_on_dm(dm, from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, vec, 0, 0, 0, orco, 0);
/* see psys_face_mat for why this function is called */
if (DM_get_vert_data_layer(dm, CD_ORIGINDEX))
BKE_mesh_orco_verts_transform(ob->data, &orco, 1, 1);
copy_v3_v3(hairmat[3], orco);
}
void psys_vec_rot_to_face(DerivedMesh *dm, ParticleData *pa, float vec[3])
{
float mat[4][4];
psys_face_mat(0, dm, pa, mat, 0);
transpose_m4(mat); /* cheap inverse for rotation matrix */
mul_mat3_m4_v3(mat, vec);
}
void psys_mat_hair_to_global(Object *ob, DerivedMesh *dm, short from, ParticleData *pa, float hairmat[4][4])
{
float facemat[4][4];
psys_mat_hair_to_object(ob, dm, from, pa, facemat);
mul_m4_m4m4(hairmat, ob->obmat, facemat);
}
/************************************************/
/* ParticleSettings handling */
/************************************************/
ModifierData *object_add_particle_system(Scene *scene, Object *ob, const char *name)
{
ParticleSystem *psys;
ModifierData *md;
ParticleSystemModifierData *psmd;
if (!ob || ob->type != OB_MESH)
return NULL;
psys = ob->particlesystem.first;
for (; psys; psys = psys->next)
psys->flag &= ~PSYS_CURRENT;
psys = MEM_callocN(sizeof(ParticleSystem), "particle_system");
psys->pointcache = BKE_ptcache_add(&psys->ptcaches);
BLI_addtail(&ob->particlesystem, psys);
psys->part = psys_new_settings(DATA_("ParticleSettings"), NULL);
if (BLI_listbase_count_ex(&ob->particlesystem, 2) > 1)
BLI_snprintf(psys->name, sizeof(psys->name), DATA_("ParticleSystem %i"), BLI_listbase_count(&ob->particlesystem));
else
BLI_strncpy(psys->name, DATA_("ParticleSystem"), sizeof(psys->name));
md = modifier_new(eModifierType_ParticleSystem);
if (name)
BLI_strncpy_utf8(md->name, name, sizeof(md->name));
else
BLI_snprintf(md->name, sizeof(md->name), DATA_("ParticleSystem %i"), BLI_listbase_count(&ob->particlesystem));
modifier_unique_name(&ob->modifiers, md);
psmd = (ParticleSystemModifierData *) md;
psmd->psys = psys;
BLI_addtail(&ob->modifiers, md);
psys->totpart = 0;
psys->flag = PSYS_CURRENT;
psys->cfra = BKE_scene_frame_get_from_ctime(scene, CFRA + 1);
DAG_relations_tag_update(G.main);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
return md;
}
void object_remove_particle_system(Scene *UNUSED(scene), Object *ob)
{
ParticleSystem *psys = psys_get_current(ob);
ParticleSystemModifierData *psmd;
ModifierData *md;
if (!psys)
return;
/* clear all other appearances of this pointer (like on smoke flow modifier) */
if ((md = modifiers_findByType(ob, eModifierType_Smoke))) {
SmokeModifierData *smd = (SmokeModifierData *)md;
if ((smd->type == MOD_SMOKE_TYPE_FLOW) && smd->flow && smd->flow->psys)
if (smd->flow->psys == psys)
smd->flow->psys = NULL;
}
if ((md = modifiers_findByType(ob, eModifierType_DynamicPaint))) {
DynamicPaintModifierData *pmd = (DynamicPaintModifierData *)md;
if (pmd->brush && pmd->brush->psys)
if (pmd->brush->psys == psys)
pmd->brush->psys = NULL;
}
/* clear modifier */
psmd = psys_get_modifier(ob, psys);
BLI_remlink(&ob->modifiers, psmd);
modifier_free((ModifierData *)psmd);
/* clear particle system */
BLI_remlink(&ob->particlesystem, psys);
if (psys->part) {
id_us_min(&psys->part->id);
}
psys_free(ob, psys);
if (ob->particlesystem.first)
((ParticleSystem *) ob->particlesystem.first)->flag |= PSYS_CURRENT;
else
ob->mode &= ~OB_MODE_PARTICLE_EDIT;
DAG_relations_tag_update(G.main);
DAG_id_tag_update(&ob->id, OB_RECALC_DATA);
}
static void default_particle_settings(ParticleSettings *part)
{
part->type = PART_EMITTER;
part->distr = PART_DISTR_JIT;
part->draw_as = PART_DRAW_REND;
part->ren_as = PART_DRAW_HALO;
part->bb_uv_split = 1;
part->bb_align = PART_BB_VIEW;
part->bb_split_offset = PART_BB_OFF_LINEAR;
part->flag = PART_EDISTR | PART_TRAND | PART_HIDE_ADVANCED_HAIR;
part->sta = 1.0;
part->end = 200.0;
part->lifetime = 50.0;
part->jitfac = 1.0;
part->totpart = 1000;
part->grid_res = 10;
part->timetweak = 1.0;
part->courant_target = 0.2;
part->integrator = PART_INT_MIDPOINT;
part->phystype = PART_PHYS_NEWTON;
part->hair_step = 5;
part->keys_step = 5;
part->draw_step = 2;
part->ren_step = 3;
part->adapt_angle = 5;
part->adapt_pix = 3;
part->kink_axis = 2;
part->kink_amp_clump = 1.f;
part->kink_extra_steps = 4;
part->clump_noise_size = 1.0f;
part->reactevent = PART_EVENT_DEATH;
part->disp = 100;
part->from = PART_FROM_FACE;
part->normfac = 1.0f;
part->mass = 1.0;
part->size = 0.05;
part->childsize = 1.0;
part->rotmode = PART_ROT_VEL;
part->avemode = PART_AVE_VELOCITY;
part->child_nbr = 10;
part->ren_child_nbr = 100;
part->childrad = 0.2f;
part->childflat = 0.0f;
part->clumppow = 0.0f;
part->kink_amp = 0.2f;
part->kink_freq = 2.0;
part->rough1_size = 1.0;
part->rough2_size = 1.0;
part->rough_end_shape = 1.0;
part->clength = 1.0f;
part->clength_thres = 0.0f;
part->draw = PART_DRAW_EMITTER;
part->draw_line[0] = 0.5;
part->path_start = 0.0f;
part->path_end = 1.0f;
part->bb_size[0] = part->bb_size[1] = 1.0f;
part->keyed_loops = 1;
part->color_vec_max = 1.f;
part->draw_col = PART_DRAW_COL_MAT;
part->simplify_refsize = 1920;
part->simplify_rate = 1.0f;
part->simplify_transition = 0.1f;
part->simplify_viewport = 0.8;
if (!part->effector_weights)
part->effector_weights = BKE_add_effector_weights(NULL);
part->omat = 1;
part->use_modifier_stack = false;
}
ParticleSettings *psys_new_settings(const char *name, Main *main)
{
ParticleSettings *part;
if (main == NULL)
main = G.main;
part = BKE_libblock_alloc(main, ID_PA, name);
default_particle_settings(part);
return part;
}
void BKE_particlesettings_clump_curve_init(ParticleSettings *part)
{
CurveMapping *cumap = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
cumap->cm[0].curve[0].x = 0.0f;
cumap->cm[0].curve[0].y = 1.0f;
cumap->cm[0].curve[1].x = 1.0f;
cumap->cm[0].curve[1].y = 1.0f;
part->clumpcurve = cumap;
}
void BKE_particlesettings_rough_curve_init(ParticleSettings *part)
{
CurveMapping *cumap = curvemapping_add(1, 0.0f, 0.0f, 1.0f, 1.0f);
cumap->cm[0].curve[0].x = 0.0f;
cumap->cm[0].curve[0].y = 1.0f;
cumap->cm[0].curve[1].x = 1.0f;
cumap->cm[0].curve[1].y = 1.0f;
part->roughcurve = cumap;
}
ParticleSettings *BKE_particlesettings_copy(Main *bmain, ParticleSettings *part)
{
ParticleSettings *partn;
int a;
partn = BKE_libblock_copy(bmain, &part->id);
partn->pd = MEM_dupallocN(part->pd);
partn->pd2 = MEM_dupallocN(part->pd2);
partn->effector_weights = MEM_dupallocN(part->effector_weights);
partn->fluid = MEM_dupallocN(part->fluid);
if (part->clumpcurve)
partn->clumpcurve = curvemapping_copy(part->clumpcurve);
if (part->roughcurve)
partn->roughcurve = curvemapping_copy(part->roughcurve);
partn->boids = boid_copy_settings(part->boids);
for (a = 0; a < MAX_MTEX; a++) {
if (part->mtex[a]) {
partn->mtex[a] = MEM_mallocN(sizeof(MTex), "psys_copy_tex");
memcpy(partn->mtex[a], part->mtex[a], sizeof(MTex));
id_us_plus((ID *)partn->mtex[a]->tex);
}
}
BLI_duplicatelist(&partn->dupliweights, &part->dupliweights);
BKE_id_copy_ensure_local(bmain, &part->id, &partn->id);
return partn;
}
void BKE_particlesettings_make_local(Main *bmain, ParticleSettings *part, const bool lib_local)
{
BKE_id_make_local_generic(bmain, &part->id, true, lib_local);
}
/************************************************/
/* Textures */
/************************************************/
static int get_particle_uv(DerivedMesh *dm, ParticleData *pa, int face_index, const float fuv[4], char *name, float *texco)
{
MFace *mf;
MTFace *tf;
int i;
tf = CustomData_get_layer_named(&dm->faceData, CD_MTFACE, name);
if (tf == NULL)
tf = CustomData_get_layer(&dm->faceData, CD_MTFACE);
if (tf == NULL)
return 0;
if (pa) {
i = ELEM(pa->num_dmcache, DMCACHE_NOTFOUND, DMCACHE_ISCHILD) ? pa->num : pa->num_dmcache;
if (i >= dm->getNumTessFaces(dm))
i = -1;
}
else
i = face_index;
if (i == -1) {
texco[0] = 0.0f;
texco[1] = 0.0f;
texco[2] = 0.0f;
}
else {
mf = dm->getTessFaceData(dm, i, CD_MFACE);
psys_interpolate_uvs(&tf[i], mf->v4, fuv, texco);
texco[0] = texco[0] * 2.0f - 1.0f;
texco[1] = texco[1] * 2.0f - 1.0f;
texco[2] = 0.0f;
}
return 1;
}
#define SET_PARTICLE_TEXTURE(type, pvalue, texfac) \
if ((event & mtex->mapto) & type) { \
pvalue = texture_value_blend(def, pvalue, value, texfac, blend); \
} (void)0
#define CLAMP_PARTICLE_TEXTURE_POS(type, pvalue) \
if (event & type) { \
CLAMP(pvalue, 0.0f, 1.0f); \
} (void)0
#define CLAMP_WARP_PARTICLE_TEXTURE_POS(type, pvalue) \
if (event & type) { \
if (pvalue < 0.0f) \
pvalue = 1.0f + pvalue; \
CLAMP(pvalue, 0.0f, 1.0f); \
} (void)0
#define CLAMP_PARTICLE_TEXTURE_POSNEG(type, pvalue) \
if (event & type) { \
CLAMP(pvalue, -1.0f, 1.0f); \
} (void)0
static void get_cpa_texture(DerivedMesh *dm, ParticleSystem *psys, ParticleSettings *part, ParticleData *par, int child_index, int face_index, const float fw[4], float *orco, ParticleTexture *ptex, int event, float cfra)
{
MTex *mtex, **mtexp = part->mtex;
int m;
float value, rgba[4], texvec[3];
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->time = ptex->clump = ptex->kink_freq = ptex->kink_amp =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f;
ptex->length = 1.0f - part->randlength * psys_frand(psys, child_index + 26);
ptex->length *= part->clength_thres < psys_frand(psys, child_index + 27) ? part->clength : 1.0f;
for (m = 0; m < MAX_MTEX; m++, mtexp++) {
mtex = *mtexp;
if (mtex && mtex->tex && mtex->mapto) {
float def = mtex->def_var;
short blend = mtex->blendtype;
short texco = mtex->texco;
if (ELEM(texco, TEXCO_UV, TEXCO_ORCO) && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch (texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, par->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, par->state.co);
if (mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if (fw && get_particle_uv(dm, NULL, face_index, fw, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
copy_v3_v3(texvec, orco);
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1, 1] */
texvec[0] = 2.f * (cfra - par->time) / (par->dietime - par->time) - 1.f;
texvec[1] = 0.f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL, false, false);
if ((event & mtex->mapto) & PAMAP_ROUGH)
ptex->rough1 = ptex->rough2 = ptex->roughe = texture_value_blend(def, ptex->rough1, value, mtex->roughfac, blend);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
SET_PARTICLE_TEXTURE(PAMAP_CLUMP, ptex->clump, mtex->clumpfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK_AMP, ptex->kink_amp, mtex->kinkampfac);
SET_PARTICLE_TEXTURE(PAMAP_KINK_FREQ, ptex->kink_freq, mtex->kinkfac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
}
}
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_CLUMP, ptex->clump);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_AMP, ptex->kink_amp);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_KINK_FREQ, ptex->kink_freq);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_ROUGH, ptex->rough1);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
}
void psys_get_texture(ParticleSimulationData *sim, ParticleData *pa, ParticleTexture *ptex, int event, float cfra)
{
Object *ob = sim->ob;
Mesh *me = (Mesh *)ob->data;
ParticleSettings *part = sim->psys->part;
MTex **mtexp = part->mtex;
MTex *mtex;
int m;
float value, rgba[4], co[3], texvec[3];
int setvars = 0;
/* initialize ptex */
ptex->ivel = ptex->life = ptex->exist = ptex->size = ptex->damp =
ptex->gravity = ptex->field = ptex->length = ptex->clump = ptex->kink_freq = ptex->kink_amp =
ptex->effector = ptex->rough1 = ptex->rough2 = ptex->roughe = 1.0f;
ptex->time = (float)(pa - sim->psys->particles) / (float)sim->psys->totpart;
for (m = 0; m < MAX_MTEX; m++, mtexp++) {
mtex = *mtexp;
if (mtex && mtex->tex && mtex->mapto) {
float def = mtex->def_var;
short blend = mtex->blendtype;
short texco = mtex->texco;
if (texco == TEXCO_UV && (ELEM(part->from, PART_FROM_FACE, PART_FROM_VOLUME) == 0 || part->distr == PART_DISTR_GRID))
texco = TEXCO_GLOB;
switch (texco) {
case TEXCO_GLOB:
copy_v3_v3(texvec, pa->state.co);
break;
case TEXCO_OBJECT:
copy_v3_v3(texvec, pa->state.co);
if (mtex->object)
mul_m4_v3(mtex->object->imat, texvec);
break;
case TEXCO_UV:
if (get_particle_uv(sim->psmd->dm_final, pa, 0, pa->fuv, mtex->uvname, texvec))
break;
/* no break, failed to get uv's, so let's try orco's */
case TEXCO_ORCO:
psys_particle_on_emitter(sim->psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, 0, 0, 0, texvec, 0);
if (me->bb == NULL || (me->bb->flag & BOUNDBOX_DIRTY)) {
BKE_mesh_texspace_calc(me);
}
sub_v3_v3(texvec, me->loc);
if (me->size[0] != 0.0f) texvec[0] /= me->size[0];
if (me->size[1] != 0.0f) texvec[1] /= me->size[1];
if (me->size[2] != 0.0f) texvec[2] /= me->size[2];
break;
case TEXCO_PARTICLE:
/* texture coordinates in range [-1, 1] */
texvec[0] = 2.f * (cfra - pa->time) / (pa->dietime - pa->time) - 1.f;
if (sim->psys->totpart > 0)
texvec[1] = 2.f * (float)(pa - sim->psys->particles) / (float)sim->psys->totpart - 1.f;
else
texvec[1] = 0.0f;
texvec[2] = 0.f;
break;
}
externtex(mtex, texvec, &value, rgba, rgba + 1, rgba + 2, rgba + 3, 0, NULL, false, false);
if ((event & mtex->mapto) & PAMAP_TIME) {
/* the first time has to set the base value for time regardless of blend mode */
if ((setvars & MAP_PA_TIME) == 0) {
int flip = (mtex->timefac < 0.0f);
float timefac = fabsf(mtex->timefac);
ptex->time *= 1.0f - timefac;
ptex->time += timefac * ((flip) ? 1.0f - value : value);
setvars |= MAP_PA_TIME;
}
else
ptex->time = texture_value_blend(def, ptex->time, value, mtex->timefac, blend);
}
SET_PARTICLE_TEXTURE(PAMAP_LIFE, ptex->life, mtex->lifefac);
SET_PARTICLE_TEXTURE(PAMAP_DENS, ptex->exist, mtex->padensfac);
SET_PARTICLE_TEXTURE(PAMAP_SIZE, ptex->size, mtex->sizefac);
SET_PARTICLE_TEXTURE(PAMAP_IVEL, ptex->ivel, mtex->ivelfac);
SET_PARTICLE_TEXTURE(PAMAP_FIELD, ptex->field, mtex->fieldfac);
SET_PARTICLE_TEXTURE(PAMAP_GRAVITY, ptex->gravity, mtex->gravityfac);
SET_PARTICLE_TEXTURE(PAMAP_DAMP, ptex->damp, mtex->dampfac);
SET_PARTICLE_TEXTURE(PAMAP_LENGTH, ptex->length, mtex->lengthfac);
}
}
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_TIME, ptex->time);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_LIFE, ptex->life);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DENS, ptex->exist);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_SIZE, ptex->size);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_IVEL, ptex->ivel);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_FIELD, ptex->field);
CLAMP_PARTICLE_TEXTURE_POSNEG(PAMAP_GRAVITY, ptex->gravity);
CLAMP_WARP_PARTICLE_TEXTURE_POS(PAMAP_DAMP, ptex->damp);
CLAMP_PARTICLE_TEXTURE_POS(PAMAP_LENGTH, ptex->length);
}
/************************************************/
/* Particle State */
/************************************************/
float psys_get_timestep(ParticleSimulationData *sim)
{
return 0.04f * sim->psys->part->timetweak;
}
float psys_get_child_time(ParticleSystem *psys, ChildParticle *cpa, float cfra, float *birthtime, float *dietime)
{
ParticleSettings *part = psys->part;
float time, life;
if (part->childtype == PART_CHILD_FACES) {
int w = 0;
time = 0.0;
while (w < 4 && cpa->pa[w] >= 0) {
time += cpa->w[w] * (psys->particles + cpa->pa[w])->time;
w++;
}
life = part->lifetime * (1.0f - part->randlife * psys_frand(psys, cpa - psys->child + 25));
}
else {
ParticleData *pa = psys->particles + cpa->parent;
time = pa->time;
life = pa->lifetime;
}
if (birthtime)
*birthtime = time;
if (dietime)
*dietime = time + life;
return (cfra - time) / life;
}
float psys_get_child_size(ParticleSystem *psys, ChildParticle *cpa, float UNUSED(cfra), float *UNUSED(pa_time))
{
ParticleSettings *part = psys->part;
float size; // time XXX
if (part->childtype == PART_CHILD_FACES)
size = part->size;
else
size = psys->particles[cpa->parent].size;
size *= part->childsize;
if (part->childrandsize != 0.0f)
size *= 1.0f - part->childrandsize * psys_frand(psys, cpa - psys->child + 26);
return size;
}
static void get_child_modifier_parameters(ParticleSettings *part, ParticleThreadContext *ctx, ChildParticle *cpa, short cpa_from, int cpa_num, float *cpa_fuv, float *orco, ParticleTexture *ptex)
{
ParticleSystem *psys = ctx->sim.psys;
int i = cpa - psys->child;
get_cpa_texture(ctx->dm, psys, part, psys->particles + cpa->pa[0], i, cpa_num, cpa_fuv, orco, ptex, PAMAP_DENS | PAMAP_CHILD, psys->cfra);
if (ptex->exist < psys_frand(psys, i + 24))
return;
if (ctx->vg_length)
ptex->length *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_length);
if (ctx->vg_clump)
ptex->clump *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_clump);
if (ctx->vg_kink)
ptex->kink_freq *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_kink);
if (ctx->vg_rough1)
ptex->rough1 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough1);
if (ctx->vg_rough2)
ptex->rough2 *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_rough2);
if (ctx->vg_roughe)
ptex->roughe *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_roughe);
if (ctx->vg_effector)
ptex->effector *= psys_interpolate_value_from_verts(ctx->dm, cpa_from, cpa_num, cpa_fuv, ctx->vg_effector);
}
/* get's hair (or keyed) particles state at the "path time" specified in state->time */
void psys_get_particle_on_path(ParticleSimulationData *sim, int p, ParticleKey *state, const bool vel)
{
PARTICLE_PSMD;
ParticleSystem *psys = sim->psys;
ParticleSettings *part = sim->psys->part;
Material *ma = give_current_material(sim->ob, part->omat);
ParticleData *pa;
ChildParticle *cpa;
ParticleTexture ptex;
ParticleKey *par = 0, keys[4], tstate;
ParticleThreadContext ctx; /* fake thread context for child modifiers */
ParticleInterpolationData pind;
float t;
float co[3], orco[3];
float hairmat[4][4];
int totpart = psys->totpart;
int totchild = psys->totchild;
short between = 0, edit = 0;
int keyed = part->phystype & PART_PHYS_KEYED && psys->flag & PSYS_KEYED;
int cached = !keyed && part->type != PART_HAIR;
float *cpa_fuv; int cpa_num; short cpa_from;
/* initialize keys to zero */
memset(keys, 0, 4 * sizeof(ParticleKey));
t = state->time;
CLAMP(t, 0.0f, 1.0f);
if (p < totpart) {
/* interpolate pathcache directly if it exist */
if (psys->pathcache) {
ParticleCacheKey result;
interpolate_pathcache(psys->pathcache[p], t, &result);
copy_v3_v3(state->co, result.co);
copy_v3_v3(state->vel, result.vel);
copy_qt_qt(state->rot, result.rot);
}
/* otherwise interpolate with other means */
else {
pa = psys->particles + p;
pind.keyed = keyed;
pind.cache = cached ? psys->pointcache : NULL;
pind.epoint = NULL;
pind.bspline = (psys->part->flag & PART_HAIR_BSPLINE);
/* pind.dm disabled in editmode means we don't get effectors taken into
* account when subdividing for instance */
pind.dm = psys_in_edit_mode(sim->scene, psys) ? NULL : psys->hair_out_dm;
init_particle_interpolation(sim->ob, psys, pa, &pind);
do_particle_interpolation(psys, p, pa, t, &pind, state);
if (pind.dm) {
mul_m4_v3(sim->ob->obmat, state->co);
mul_mat3_m4_v3(sim->ob->obmat, state->vel);
}
else if (!keyed && !cached && !(psys->flag & PSYS_GLOBAL_HAIR)) {
if ((pa->flag & PARS_REKEY) == 0) {
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, part->from, pa, hairmat);
mul_m4_v3(hairmat, state->co);
mul_mat3_m4_v3(hairmat, state->vel);
if (sim->psys->effectors && (part->flag & PART_CHILD_GUIDE) == 0) {
do_guides(sim->psys->part, sim->psys->effectors, state, p, state->time);
/* TODO: proper velocity handling */
}
if (psys->lattice_deform_data && edit == 0)
calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f);
}
}
}
}
else if (totchild) {
//invert_m4_m4(imat, ob->obmat);
/* interpolate childcache directly if it exists */
if (psys->childcache) {
ParticleCacheKey result;
interpolate_pathcache(psys->childcache[p - totpart], t, &result);
copy_v3_v3(state->co, result.co);
copy_v3_v3(state->vel, result.vel);
copy_qt_qt(state->rot, result.rot);
}
else {
float par_co[3], par_orco[3];
cpa = psys->child + p - totpart;
if (state->time < 0.0f)
t = psys_get_child_time(psys, cpa, -state->time, NULL, NULL);
if (totchild && part->childtype == PART_CHILD_FACES) {
/* part->parents could still be 0 so we can't test with totparent */
between = 1;
}
if (between) {
int w = 0;
float foffset;
/* get parent states */
while (w < 4 && cpa->pa[w] >= 0) {
keys[w].time = state->time;
psys_get_particle_on_path(sim, cpa->pa[w], keys + w, 1);
w++;
}
/* get the original coordinates (orco) for texture usage */
cpa_num = cpa->num;
foffset = cpa->foffset;
cpa_fuv = cpa->fuv;
cpa_from = PART_FROM_FACE;
psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa->fuv, foffset, co, 0, 0, 0, orco, 0);
/* we need to save the actual root position of the child for positioning it accurately to the surface of the emitter */
//copy_v3_v3(cpa_1st, co);
//mul_m4_v3(ob->obmat, cpa_1st);
pa = psys->particles + cpa->parent;
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco, 0);
if (part->type == PART_HAIR)
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, psys->part->from, pa, hairmat);
else
unit_m4(hairmat);
pa = 0;
}
else {
/* get the parent state */
keys->time = state->time;
psys_get_particle_on_path(sim, cpa->parent, keys, 1);
/* get the original coordinates (orco) for texture usage */
pa = psys->particles + cpa->parent;
cpa_from = part->from;
cpa_num = pa->num;
cpa_fuv = pa->fuv;
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, par_co, 0, 0, 0, par_orco, 0);
if (part->type == PART_HAIR) {
psys_particle_on_emitter(psmd, cpa_from, cpa_num, DMCACHE_ISCHILD, cpa_fuv, pa->foffset, co, 0, 0, 0, orco, 0);
psys_mat_hair_to_global(sim->ob, sim->psmd->dm_final, psys->part->from, pa, hairmat);
}
else {
copy_v3_v3(orco, cpa->fuv);
unit_m4(hairmat);
}
}
/* correct child ipo timing */
#if 0 // XXX old animation system
if ((part->flag & PART_ABS_TIME) == 0 && part->ipo) {
calc_ipo(part->ipo, 100.0f * t);
execute_ipo((ID *)part, part->ipo);
}
#endif // XXX old animation system
/* get different child parameters from textures & vgroups */
memset(&ctx, 0, sizeof(ParticleThreadContext));
ctx.sim = *sim;
ctx.dm = psmd->dm_final;
ctx.ma = ma;
/* TODO: assign vertex groups */
get_child_modifier_parameters(part, &ctx, cpa, cpa_from, cpa_num, cpa_fuv, orco, &ptex);
if (between) {
int w = 0;
state->co[0] = state->co[1] = state->co[2] = 0.0f;
state->vel[0] = state->vel[1] = state->vel[2] = 0.0f;
/* child position is the weighted sum of parent positions */
while (w < 4 && cpa->pa[w] >= 0) {
state->co[0] += cpa->w[w] * keys[w].co[0];
state->co[1] += cpa->w[w] * keys[w].co[1];
state->co[2] += cpa->w[w] * keys[w].co[2];
state->vel[0] += cpa->w[w] * keys[w].vel[0];
state->vel[1] += cpa->w[w] * keys[w].vel[1];
state->vel[2] += cpa->w[w] * keys[w].vel[2];
w++;
}
/* apply offset for correct positioning */
//add_v3_v3(state->co, cpa_1st);
}
else {
/* offset the child from the parent position */
offset_child(cpa, keys, keys->rot, state, part->childflat, part->childrad);
}
par = keys;
if (vel)
copy_particle_key(&tstate, state, 1);
/* apply different deformations to the child path */
do_child_modifiers(NULL, sim, &ptex, par->co, par->vel, par->rot, par_orco, cpa, orco, hairmat, state, t);
/* try to estimate correct velocity */
if (vel) {
ParticleKey tstate_tmp;
float length = len_v3(state->vel);
if (t >= 0.001f) {
tstate_tmp.time = t - 0.001f;
psys_get_particle_on_path(sim, p, &tstate_tmp, 0);
sub_v3_v3v3(state->vel, state->co, tstate_tmp.co);
normalize_v3(state->vel);
}
else {
tstate_tmp.time = t + 0.001f;
psys_get_particle_on_path(sim, p, &tstate_tmp, 0);
sub_v3_v3v3(state->vel, tstate_tmp.co, state->co);
normalize_v3(state->vel);
}
mul_v3_fl(state->vel, length);
}
}
}
}
/* gets particle's state at a time, returns 1 if particle exists and can be seen and 0 if not */
int psys_get_particle_state(ParticleSimulationData *sim, int p, ParticleKey *state, int always)
{
ParticleSystem *psys = sim->psys;
ParticleSettings *part = psys->part;
ParticleData *pa = NULL;
ChildParticle *cpa = NULL;
float cfra;
int totpart = psys->totpart;
float timestep = psys_get_timestep(sim);
/* negative time means "use current time" */
cfra = state->time > 0 ? state->time : BKE_scene_frame_get(sim->scene);
if (p >= totpart) {
if (!psys->totchild)
return 0;
if (part->childtype == PART_CHILD_FACES) {
if (!(psys->flag & PSYS_KEYED))
return 0;
cpa = psys->child + p - totpart;
state->time = psys_get_child_time(psys, cpa, cfra, NULL, NULL);
if (!always) {
if ((state->time < 0.0f && !(part->flag & PART_UNBORN)) ||
(state->time > 1.0f && !(part->flag & PART_DIED)))
{
return 0;
}
}
state->time = (cfra - (part->sta + (part->end - part->sta) * psys_frand(psys, p + 23))) / (part->lifetime * psys_frand(psys, p + 24));
psys_get_particle_on_path(sim, p, state, 1);
return 1;
}
else {
cpa = sim->psys->child + p - totpart;
pa = sim->psys->particles + cpa->parent;
}
}
else {
pa = sim->psys->particles + p;
}
if (pa) {
if (!always) {
if ((cfra < pa->time && (part->flag & PART_UNBORN) == 0) ||
(cfra >= pa->dietime && (part->flag & PART_DIED) == 0))
{
return 0;
}
}
cfra = MIN2(cfra, pa->dietime);
}
if (sim->psys->flag & PSYS_KEYED) {
state->time = -cfra;
psys_get_particle_on_path(sim, p, state, 1);
return 1;
}
else {
if (cpa) {
float mat[4][4];
ParticleKey *key1;
float t = (cfra - pa->time) / pa->lifetime;
float par_orco[3] = {0.0f, 0.0f, 0.0f};
key1 = &pa->state;
offset_child(cpa, key1, key1->rot, state, part->childflat, part->childrad);
CLAMP(t, 0.0f, 1.0f);
unit_m4(mat);
do_child_modifiers(NULL, sim, NULL, key1->co, key1->vel, key1->rot, par_orco, cpa, cpa->fuv, mat, state, t);
if (psys->lattice_deform_data)
calc_latt_deform(psys->lattice_deform_data, state->co, 1.0f);
}
else {
if (pa->state.time == cfra || ELEM(part->phystype, PART_PHYS_NO, PART_PHYS_KEYED))
copy_particle_key(state, &pa->state, 1);
else if (pa->prev_state.time == cfra)
copy_particle_key(state, &pa->prev_state, 1);
else {
float dfra, frs_sec = sim->scene->r.frs_sec;
/* let's interpolate to try to be as accurate as possible */
if (pa->state.time + 2.f >= state->time && pa->prev_state.time - 2.f <= state->time) {
if (pa->prev_state.time >= pa->state.time || pa->prev_state.time < 0.f) {
/* prev_state is wrong so let's not use it, this can happen at frames 1, 0 or particle birth */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec);
}
else {
ParticleKey keys[4];
float keytime;
copy_particle_key(keys + 1, &pa->prev_state, 1);
copy_particle_key(keys + 2, &pa->state, 1);
dfra = keys[2].time - keys[1].time;
keytime = (state->time - keys[1].time) / dfra;
/* convert velocity to timestep size */
mul_v3_fl(keys[1].vel, dfra * timestep);
mul_v3_fl(keys[2].vel, dfra * timestep);
psys_interpolate_particle(-1, keys, keytime, state, 1);
/* convert back to real velocity */
mul_v3_fl(state->vel, 1.f / (dfra * timestep));
interp_v3_v3v3(state->ave, keys[1].ave, keys[2].ave, keytime);
interp_qt_qtqt(state->rot, keys[1].rot, keys[2].rot, keytime);
}
}
else if (pa->state.time + 1.f >= state->time && pa->state.time - 1.f <= state->time) {
/* linear interpolation using only pa->state */
dfra = state->time - pa->state.time;
copy_particle_key(state, &pa->state, 1);
madd_v3_v3v3fl(state->co, state->co, state->vel, dfra / frs_sec);
}
else {
/* extrapolating over big ranges is not accurate so let's just give something close to reasonable back */
copy_particle_key(state, &pa->state, 0);
}
}
if (sim->psys->lattice_deform_data)
calc_latt_deform(sim->psys->lattice_deform_data, state->co, 1.0f);
}
return 1;
}
}
void psys_get_dupli_texture(ParticleSystem *psys, ParticleSettings *part,
ParticleSystemModifierData *psmd, ParticleData *pa, ChildParticle *cpa,
float uv[2], float orco[3])
{
MFace *mface;
MTFace *mtface;
float loc[3];
int num;
/* XXX: on checking '(psmd->dm != NULL)'
* This is incorrect but needed for metaball evaluation.
* Ideally this would be calculated via the depsgraph, however with metaballs,
* the entire scenes dupli's are scanned, which also looks into uncalculated data.
*
* For now just include this workaround as an alternative to crashing,
* but longer term metaballs should behave in a more manageable way, see: T46622. */
uv[0] = uv[1] = 0.f;
/* Grid distribution doesn't support UV or emit from vertex mode */
bool is_grid = (part->distr == PART_DISTR_GRID && part->from != PART_FROM_VERT);
if (cpa) {
if ((part->childtype == PART_CHILD_FACES) && (psmd->dm_final != NULL)) {
CustomData *mtf_data = psmd->dm_final->getTessFaceDataLayout(psmd->dm_final);
const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE);
mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx);
if (mtface && !is_grid) {
mface = psmd->dm_final->getTessFaceData(psmd->dm_final, cpa->num, CD_MFACE);
mtface += cpa->num;
psys_interpolate_uvs(mtface, mface->v4, cpa->fuv, uv);
}
psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, 0, 0, 0, orco, 0);
return;
}
else {
pa = psys->particles + cpa->pa[0];
}
}
if ((part->from == PART_FROM_FACE) && (psmd->dm_final != NULL) && !is_grid) {
CustomData *mtf_data = psmd->dm_final->getTessFaceDataLayout(psmd->dm_final);
const int uv_idx = CustomData_get_render_layer(mtf_data, CD_MTFACE);
mtface = CustomData_get_layer_n(mtf_data, CD_MTFACE, uv_idx);
num = pa->num_dmcache;
if (num == DMCACHE_NOTFOUND)
num = pa->num;
if (num >= psmd->dm_final->getNumTessFaces(psmd->dm_final)) {
/* happens when simplify is enabled
* gives invalid coords but would crash otherwise */
num = DMCACHE_NOTFOUND;
}
if (mtface && !ELEM(num, DMCACHE_NOTFOUND, DMCACHE_ISCHILD)) {
mface = psmd->dm_final->getTessFaceData(psmd->dm_final, num, CD_MFACE);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, pa->fuv, uv);
}
}
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, 0, 0, 0, orco, 0);
}
void psys_get_dupli_path_transform(ParticleSimulationData *sim, ParticleData *pa, ChildParticle *cpa, ParticleCacheKey *cache, float mat[4][4], float *scale)
{
Object *ob = sim->ob;
ParticleSystem *psys = sim->psys;
ParticleSystemModifierData *psmd = sim->psmd;
float loc[3], nor[3], vec[3], side[3], len;
float xvec[3] = {-1.0, 0.0, 0.0}, nmat[3][3];
sub_v3_v3v3(vec, (cache + cache->segments)->co, cache->co);
len = normalize_v3(vec);
if (pa == NULL && psys->part->childflat != PART_CHILD_FACES)
pa = psys->particles + cpa->pa[0];
if (pa)
psys_particle_on_emitter(psmd, sim->psys->part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, loc, nor, 0, 0, 0, 0);
else
psys_particle_on_emitter(psmd, PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD, cpa->fuv, cpa->foffset, loc, nor, 0, 0, 0, 0);
if (psys->part->rotmode == PART_ROT_VEL) {
transpose_m3_m4(nmat, ob->imat);
mul_m3_v3(nmat, nor);
normalize_v3(nor);
/* make sure that we get a proper side vector */
if (fabsf(dot_v3v3(nor, vec)) > 0.999999f) {
if (fabsf(dot_v3v3(nor, xvec)) > 0.999999f) {
nor[0] = 0.0f;
nor[1] = 1.0f;
nor[2] = 0.0f;
}
else {
nor[0] = 1.0f;
nor[1] = 0.0f;
nor[2] = 0.0f;
}
}
cross_v3_v3v3(side, nor, vec);
normalize_v3(side);
/* rotate side vector around vec */
if (psys->part->phasefac != 0) {
float q_phase[4];
float phasefac = psys->part->phasefac;
if (psys->part->randphasefac != 0.0f)
phasefac += psys->part->randphasefac * psys_frand(psys, (pa - psys->particles) + 20);
axis_angle_to_quat(q_phase, vec, phasefac * (float)M_PI);
mul_qt_v3(q_phase, side);
}
cross_v3_v3v3(nor, vec, side);
unit_m4(mat);
copy_v3_v3(mat[0], vec);
copy_v3_v3(mat[1], side);
copy_v3_v3(mat[2], nor);
}
else {
quat_to_mat4(mat, pa->state.rot);
}
*scale = len;
}
void psys_make_billboard(ParticleBillboardData *bb, float xvec[3], float yvec[3], float zvec[3], float center[3])
{
float onevec[3] = {0.0f, 0.0f, 0.0f}, tvec[3], tvec2[3];
xvec[0] = 1.0f; xvec[1] = 0.0f; xvec[2] = 0.0f;
yvec[0] = 0.0f; yvec[1] = 1.0f; yvec[2] = 0.0f;
/* can happen with bad pointcache or physics calculation
* since this becomes geometry, nan's and inf's crash raytrace code.
* better not allow this. */
if ((!isfinite(bb->vec[0])) || (!isfinite(bb->vec[1])) || (!isfinite(bb->vec[2])) ||
(!isfinite(bb->vel[0])) || (!isfinite(bb->vel[1])) || (!isfinite(bb->vel[2])) )
{
zero_v3(bb->vec);
zero_v3(bb->vel);
zero_v3(xvec);
zero_v3(yvec);
zero_v3(zvec);
zero_v3(center);
return;
}
if (bb->align < PART_BB_VIEW)
onevec[bb->align] = 1.0f;
if (bb->lock && (bb->align == PART_BB_VIEW)) {
normalize_v3_v3(xvec, bb->ob->obmat[0]);
normalize_v3_v3(yvec, bb->ob->obmat[1]);
normalize_v3_v3(zvec, bb->ob->obmat[2]);
}
else if (bb->align == PART_BB_VEL) {
float temp[3];
normalize_v3_v3(temp, bb->vel);
sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec);
if (bb->lock) {
float fac = -dot_v3v3(zvec, temp);
madd_v3_v3fl(zvec, temp, fac);
}
normalize_v3(zvec);
cross_v3_v3v3(xvec, temp, zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec, zvec, xvec);
}
else {
sub_v3_v3v3(zvec, bb->ob->obmat[3], bb->vec);
if (bb->lock)
zvec[bb->align] = 0.0f;
normalize_v3(zvec);
if (bb->align < PART_BB_VIEW)
cross_v3_v3v3(xvec, onevec, zvec);
else
cross_v3_v3v3(xvec, bb->ob->obmat[1], zvec);
normalize_v3(xvec);
cross_v3_v3v3(yvec, zvec, xvec);
}
copy_v3_v3(tvec, xvec);
copy_v3_v3(tvec2, yvec);
mul_v3_fl(xvec, cosf(bb->tilt * (float)M_PI));
mul_v3_fl(tvec2, sinf(bb->tilt * (float)M_PI));
add_v3_v3(xvec, tvec2);
mul_v3_fl(yvec, cosf(bb->tilt * (float)M_PI));
mul_v3_fl(tvec, -sinf(bb->tilt * (float)M_PI));
add_v3_v3(yvec, tvec);
mul_v3_fl(xvec, bb->size[0]);
mul_v3_fl(yvec, bb->size[1]);
madd_v3_v3v3fl(center, bb->vec, xvec, bb->offset[0]);
madd_v3_v3fl(center, yvec, bb->offset[1]);
}
void psys_apply_hair_lattice(Scene *scene, Object *ob, ParticleSystem *psys)
{
ParticleSimulationData sim = {0};
sim.scene = scene;
sim.ob = ob;
sim.psys = psys;
sim.psmd = psys_get_modifier(ob, psys);
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
if (psys->lattice_deform_data) {
ParticleData *pa = psys->particles;
HairKey *hkey;
int p, h;
float hairmat[4][4], imat[4][4];
for (p = 0; p < psys->totpart; p++, pa++) {
psys_mat_hair_to_global(sim.ob, sim.psmd->dm_final, psys->part->from, pa, hairmat);
invert_m4_m4(imat, hairmat);
hkey = pa->hair;
for (h = 0; h < pa->totkey; h++, hkey++) {
mul_m4_v3(hairmat, hkey->co);
calc_latt_deform(psys->lattice_deform_data, hkey->co, 1.0f);
mul_m4_v3(imat, hkey->co);
}
}
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
/* protect the applied shape */
psys->flag |= PSYS_EDITED;
}
}