This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/animation/anim_ipo_utils.c

248 lines
7.5 KiB
C
Raw Normal View History

/**
* $Id:
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation, 2005. Full recode
* Joshua Leung
*
* ***** END GPL LICENSE BLOCK *****
*/
/* This file contains code for presenting F-Curves and other animation data
* in the UI (especially for use in the Animation Editors).
*
* -- Joshua Leung, Dec 2008
*/
#include <math.h>
#include <stdio.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
#include "DNA_anim_types.h"
#include "DNA_key_types.h"
#include "DNA_object_types.h"
#include "DNA_space_types.h"
#include "DNA_scene_types.h"
#include "DNA_view3d_types.h"
#include "BKE_animsys.h"
#include "BKE_key.h"
#include "BKE_utildefines.h"
#include "UI_resources.h"
#include "ED_anim_api.h"
#include "RNA_access.h"
#include "RNA_types.h"
/* ----------------------- Getter functions ----------------------- */
/* gets the appropriate icon for the given blocktype */
// XXX some of these will be depreceated?
int geticon_anim_blocktype(short blocktype)
{
switch (blocktype) {
case ID_OB:
return ICON_OBJECT_DATA;
case ID_PO:
return ICON_POSE_HLT;
case ID_KE:
return ICON_SHAPEKEY_DATA;
case ID_MA:
return ICON_MATERIAL;
case ID_WO:
return ICON_WORLD;
case ID_CU:
return ICON_CURVE_DATA;
case ID_CA:
return ICON_CAMERA;
case ID_LA:
return ICON_LAMP;
case ID_TE:
return ICON_TEXTURE;
case ID_CO:
return ICON_CONSTRAINT;
case ID_FLUIDSIM:
return ICON_WORLD; // uggh
default:
return 0; // what about blank icon?
}
}
/* Write into "name" buffer, the name of the property (retrieved using RNA from the curve's settings)
* WARNING: name buffer we're writing to cannot exceed 256 chars (check anim_channels_defines.c for details)
*/
void getname_anim_fcurve(char *name, ID *id, FCurve *fcu)
{
/* sanity checks */
if (name == NULL)
return;
else if ELEM3(NULL, id, fcu, fcu->rna_path) {
if (fcu == NULL)
sprintf(name, "<invalid>");
else if (fcu->rna_path == NULL)
sprintf(name, "<no path>");
else /* id == NULL */
BLI_snprintf(name, 128, "%s[%d]", fcu->rna_path, fcu->array_index);
}
else {
PointerRNA id_ptr, ptr;
PropertyRNA *prop;
/* get RNA pointer, and resolve the path */
RNA_id_pointer_create(id, &id_ptr);
/* try to resolve the path */
if (RNA_path_resolve(&id_ptr, fcu->rna_path, &ptr, &prop)) {
char *structname=NULL, *propname=NULL, *arrayname=NULL, arrayindbuf[16];
PropertyRNA *nameprop;
/* For now, name will consist of 3 parts: struct-name, property name, array index
* There are several options possible:
* 1) <struct-name>.<property-name>.<array-index>
* i.e. Bone1.Location.X, or Object.Location.X
* 2) <array-index> <property-name> (<struct name>)
* i.e. X Location (Bone1), or X Location (Object)
*
* Currently, option 2 is in use, to try and make it easier to quickly identify F-Curves (it does have
* problems with looking rather odd though). Option 1 is better in terms of revealing a consistent sense of
* hierarchy though, which isn't so clear with option 2.
*/
/* for structname, we use a custom name if one is available */
// xxx we might want an icon from types?
// xxx it is hard to differentiate between object and bone channels then, if ob + bone motion occur together...
nameprop= RNA_struct_name_property(ptr.type);
if (nameprop) {
/* this gets a string which will need to be freed */
structname= RNA_property_string_get_alloc(&ptr, nameprop, NULL, 0);
}
else
structname= (char *)RNA_struct_ui_name(ptr.type);
/* Property Name is straightforward */
propname= (char *)RNA_property_ui_name(prop);
/* Array Index - only if applicable */
if (RNA_property_array_length(prop)) {
char c= RNA_property_array_item_char(prop, fcu->array_index);
/* we need to write the index to a temp buffer (in py syntax) */
if(c) sprintf(arrayindbuf, "%c ", c);
else sprintf(arrayindbuf, "[%d]", fcu->array_index);
arrayname= &arrayindbuf[0];
}
else {
/* no array index */
arrayname= "";
}
/* putting this all together into the buffer */
// XXX we need to check for invalid names...
BLI_snprintf(name, 128, "%s%s (%s)", arrayname, propname, structname);
/* free temp name if nameprop is set */
if (nameprop)
MEM_freeN(structname);
}
else {
/* invalid path */
BLI_snprintf(name, 128, "\"%s[%d]\"", fcu->rna_path, fcu->array_index);
}
}
}
/* ------------------------------- Color Codes for F-Curve Channels ---------------------------- */
#if 0
/* used for FCURVE_COLOR_AUTO_RAINBOW */
// XXX this still doesn't work too great when there are more than 32 curves (which happens most of the time)
void ipo_rainbow (int cur, int tot, float *out)
{
float dfac, fac, sat;
dfac= (float)(1.0/( (float)tot+1.0));
/* this calculation makes 2 or 4 different cycles of rainbow colors */
// 2 different cycles - for hue
if(cur< tot/2) fac= (float)(cur*2.0f*dfac);
else fac= (float)((cur-tot/2)*2.0f*dfac +dfac);
// third cycle with altered hue
if(tot > 32) fac= fac*1.95f;
// clamping for excessive ranges
if(fac>1.0f) fac-= 1.0f;
// saturation adjustments for more visible range
if(fac>0.5f && fac<0.8f) sat= 0.5f;
else sat= 0.6f;
hsv_to_rgb(fac, sat, 1.0f, out, out+1, out+2);
}
#endif
/* step between the major distinguishable color bands of the primary colors */
#define HSV_BANDWIDTH 0.3f
/* testbed for FCURVE_COLOR_AUTO_RAINBOW determination methods */
//void fcurve_rainbow (unsigned int cur, unsigned int tot, float *out)
void ipo_rainbow (int cur, int tot, float *out)
{
float hue, val, sat, fac;
int grouping;
/* we try to divide the colours into groupings of n colors,
* where n is:
* 3 - for 'odd' numbers of curves - there should be a majority of triplets of curves
* 4 - for 'even' numbers of curves - there should be a majority of quartets of curves
* so the base color is simply one of the three primary colors
*/
grouping= (4 - (tot % 2));
hue= HSV_BANDWIDTH * (float)(cur % grouping);
/* 'Value' (i.e. darkness) needs to vary so that larger sets of three will be
* 'darker' (i.e. smaller value), so that they don't look that similar to previous ones.
* However, only a range of 0.3 to 1.0 is really usable to avoid clashing
* with some other stuff
*/
fac = ((float)cur / (float)tot) * 0.7f;
/* the base color can get offset a bit so that the colors aren't so identical */
hue += fac * HSV_BANDWIDTH;
if (hue > 1.0f) hue= fmod(hue, 1.0f);
/* saturation adjustments for more visible range */
if ((hue > 0.5f) && (hue < 0.8f)) sat= 0.5f;
else sat= 0.6f;
/* value is fixed at 1.0f, otherwise we cannot clearly see the curves... */
val= 1.0f;
/* finally, conver this to RGB colors */
hsv_to_rgb(hue, sat, val, out, out+1, out+2);
}