This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/collada/MeshImporter.cpp

913 lines
25 KiB
C++
Raw Normal View History

/**
2010-10-05 00:49:39 +00:00
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include <algorithm>
2010-10-09 21:31:32 +00:00
#if !defined(WIN32) || defined(FREE_WINDOWS)
#include <iostream>
#endif
#include "COLLADAFWMeshPrimitive.h"
#include "COLLADAFWMeshVertexData.h"
#include "COLLADAFWPolygons.h"
extern "C" {
#include "BKE_blender.h"
#include "BKE_customdata.h"
#include "BKE_displist.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "MEM_guardedalloc.h"
}
#include "ArmatureImporter.h"
#include "MeshImporter.h"
#include "collada_utils.h"
// works for COLLADAFW::Node, COLLADAFW::Geometry
template<class T>
static const char *bc_get_dae_name(T *node)
{
const std::string& name = node->getName();
return name.size() ? name.c_str() : node->getOriginalId().c_str();
}
static const char *bc_primTypeToStr(COLLADAFW::MeshPrimitive::PrimitiveType type)
{
switch (type) {
case COLLADAFW::MeshPrimitive::LINES:
return "LINES";
case COLLADAFW::MeshPrimitive::LINE_STRIPS:
return "LINESTRIPS";
case COLLADAFW::MeshPrimitive::POLYGONS:
return "POLYGONS";
case COLLADAFW::MeshPrimitive::POLYLIST:
return "POLYLIST";
case COLLADAFW::MeshPrimitive::TRIANGLES:
return "TRIANGLES";
case COLLADAFW::MeshPrimitive::TRIANGLE_FANS:
return "TRIANGLE_FANS";
case COLLADAFW::MeshPrimitive::TRIANGLE_STRIPS:
return "TRIANGLE_FANS";
case COLLADAFW::MeshPrimitive::POINTS:
return "POINTS";
case COLLADAFW::MeshPrimitive::UNDEFINED_PRIMITIVE_TYPE:
return "UNDEFINED_PRIMITIVE_TYPE";
}
return "UNKNOWN";
}
static const char *bc_geomTypeToStr(COLLADAFW::Geometry::GeometryType type)
{
switch (type) {
case COLLADAFW::Geometry::GEO_TYPE_MESH:
return "MESH";
case COLLADAFW::Geometry::GEO_TYPE_SPLINE:
return "SPLINE";
case COLLADAFW::Geometry::GEO_TYPE_CONVEX_MESH:
return "CONVEX_MESH";
case COLLADAFW::Geometry::GEO_TYPE_UNKNOWN:
default:
return "UNKNOWN";
}
}
UVDataWrapper::UVDataWrapper(COLLADAFW::MeshVertexData& vdata) : mVData(&vdata)
{}
#ifdef COLLADA_DEBUG
void WVDataWrapper::print()
{
fprintf(stderr, "UVs:\n");
switch(mVData->getType()) {
case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT:
{
COLLADAFW::ArrayPrimitiveType<float>* values = mVData->getFloatValues();
if (values->getCount()) {
for (int i = 0; i < values->getCount(); i += 2) {
fprintf(stderr, "%.1f, %.1f\n", (*values)[i], (*values)[i+1]);
}
}
}
break;
case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE:
{
COLLADAFW::ArrayPrimitiveType<double>* values = mVData->getDoubleValues();
if (values->getCount()) {
for (int i = 0; i < values->getCount(); i += 2) {
fprintf(stderr, "%.1f, %.1f\n", (float)(*values)[i], (float)(*values)[i+1]);
}
}
}
break;
}
fprintf(stderr, "\n");
}
#endif
void UVDataWrapper::getUV(int uv_index[2], float *uv)
{
switch(mVData->getType()) {
case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT:
{
COLLADAFW::ArrayPrimitiveType<float>* values = mVData->getFloatValues();
if (values->empty()) return;
uv[0] = (*values)[uv_index[0]];
uv[1] = (*values)[uv_index[1]];
}
break;
case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE:
{
COLLADAFW::ArrayPrimitiveType<double>* values = mVData->getDoubleValues();
if (values->empty()) return;
uv[0] = (float)(*values)[uv_index[0]];
uv[1] = (float)(*values)[uv_index[1]];
}
break;
case COLLADAFW::MeshVertexData::DATA_TYPE_UNKNOWN:
default:
fprintf(stderr, "MeshImporter.getUV(): unknown data type\n");
}
}
void MeshImporter::set_face_indices(MFace *mface, unsigned int *indices, bool quad)
{
mface->v1 = indices[0];
mface->v2 = indices[1];
mface->v3 = indices[2];
if (quad) mface->v4 = indices[3];
else mface->v4 = 0;
#ifdef COLLADA_DEBUG
// fprintf(stderr, "%u, %u, %u \n", indices[0], indices[1], indices[2]);
#endif
}
// not used anymore, test_index_face from blenkernel is better
#if 0
// change face indices order so that v4 is not 0
void MeshImporter::rotate_face_indices(MFace *mface) {
mface->v4 = mface->v1;
mface->v1 = mface->v2;
mface->v2 = mface->v3;
mface->v3 = 0;
}
#endif
void MeshImporter::set_face_uv(MTFace *mtface, UVDataWrapper &uvs,
COLLADAFW::IndexList& index_list, unsigned int *tris_indices)
{
int uv_indices[4][2];
// per face vertex indices, this means for quad we have 4 indices, not 8
COLLADAFW::UIntValuesArray& indices = index_list.getIndices();
// make indices into FloatOrDoubleArray
for (int i = 0; i < 3; i++) {
int uv_index = indices[tris_indices[i]];
uv_indices[i][0] = uv_index * 2;
uv_indices[i][1] = uv_index * 2 + 1;
}
uvs.getUV(uv_indices[0], mtface->uv[0]);
uvs.getUV(uv_indices[1], mtface->uv[1]);
uvs.getUV(uv_indices[2], mtface->uv[2]);
}
void MeshImporter::set_face_uv(MTFace *mtface, UVDataWrapper &uvs,
COLLADAFW::IndexList& index_list, int index, bool quad)
{
int uv_indices[4][2];
// per face vertex indices, this means for quad we have 4 indices, not 8
COLLADAFW::UIntValuesArray& indices = index_list.getIndices();
// make indices into FloatOrDoubleArray
for (int i = 0; i < (quad ? 4 : 3); i++) {
int uv_index = indices[index + i];
uv_indices[i][0] = uv_index * 2;
uv_indices[i][1] = uv_index * 2 + 1;
}
uvs.getUV(uv_indices[0], mtface->uv[0]);
uvs.getUV(uv_indices[1], mtface->uv[1]);
uvs.getUV(uv_indices[2], mtface->uv[2]);
if (quad) uvs.getUV(uv_indices[3], mtface->uv[3]);
#ifdef COLLADA_DEBUG
/*if (quad) {
fprintf(stderr, "face uv:\n"
"((%d, %d), (%d, %d), (%d, %d), (%d, %d))\n"
"((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n",
uv_indices[0][0], uv_indices[0][1],
uv_indices[1][0], uv_indices[1][1],
uv_indices[2][0], uv_indices[2][1],
uv_indices[3][0], uv_indices[3][1],
mtface->uv[0][0], mtface->uv[0][1],
mtface->uv[1][0], mtface->uv[1][1],
mtface->uv[2][0], mtface->uv[2][1],
mtface->uv[3][0], mtface->uv[3][1]);
}
else {
fprintf(stderr, "face uv:\n"
"((%d, %d), (%d, %d), (%d, %d))\n"
"((%.1f, %.1f), (%.1f, %.1f), (%.1f, %.1f))\n",
uv_indices[0][0], uv_indices[0][1],
uv_indices[1][0], uv_indices[1][1],
uv_indices[2][0], uv_indices[2][1],
mtface->uv[0][0], mtface->uv[0][1],
mtface->uv[1][0], mtface->uv[1][1],
mtface->uv[2][0], mtface->uv[2][1]);
}*/
#endif
}
#ifdef COLLADA_DEBUG
void MeshImporter::print_index_list(COLLADAFW::IndexList& index_list)
{
fprintf(stderr, "Index list for \"%s\":\n", index_list.getName().c_str());
for (int i = 0; i < index_list.getIndicesCount(); i += 2) {
fprintf(stderr, "%u, %u\n", index_list.getIndex(i), index_list.getIndex(i + 1));
}
fprintf(stderr, "\n");
}
#endif
bool MeshImporter::is_nice_mesh(COLLADAFW::Mesh *mesh)
{
COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives();
const char *name = bc_get_dae_name(mesh);
for (unsigned i = 0; i < prim_arr.getCount(); i++) {
COLLADAFW::MeshPrimitive *mp = prim_arr[i];
COLLADAFW::MeshPrimitive::PrimitiveType type = mp->getPrimitiveType();
const char *type_str = bc_primTypeToStr(type);
// OpenCollada passes POLYGONS type for <polylist>
if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) {
COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp;
COLLADAFW::Polygons::VertexCountArray& vca = mpvc->getGroupedVerticesVertexCountArray();
for(unsigned int j = 0; j < vca.getCount(); j++){
int count = vca[j];
if (count < 3) {
fprintf(stderr, "Primitive %s in %s has at least one face with vertex count < 3\n",
type_str, name);
return false;
}
}
}
else if(type != COLLADAFW::MeshPrimitive::TRIANGLES) {
fprintf(stderr, "Primitive type %s is not supported.\n", type_str);
return false;
}
}
if (mesh->getPositions().empty()) {
fprintf(stderr, "Mesh %s has no vertices.\n", name);
return false;
}
return true;
}
void MeshImporter::read_vertices(COLLADAFW::Mesh *mesh, Mesh *me)
{
// vertices
COLLADAFW::MeshVertexData& pos = mesh->getPositions();
int stride = pos.getStride(0);
if(stride==0) stride = 3;
me->totvert = mesh->getPositions().getFloatValues()->getCount() / stride;
me->mvert = (MVert*)CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, me->totvert);
MVert *mvert;
int i;
for (i = 0, mvert = me->mvert; i < me->totvert; i++, mvert++) {
get_vector(mvert->co, pos, i, stride);
}
}
int MeshImporter::triangulate_poly(unsigned int *indices, int totvert, MVert *verts, std::vector<unsigned int>& tri)
{
ListBase dispbase;
DispList *dl;
float *vert;
int i = 0;
dispbase.first = dispbase.last = NULL;
dl = (DispList*)MEM_callocN(sizeof(DispList), "poly disp");
dl->nr = totvert;
dl->type = DL_POLY;
dl->parts = 1;
dl->verts = vert = (float*)MEM_callocN(totvert * 3 * sizeof(float), "poly verts");
dl->index = (int*)MEM_callocN(sizeof(int) * 3 * totvert, "dl index");
BLI_addtail(&dispbase, dl);
for (i = 0; i < totvert; i++) {
copy_v3_v3(vert, verts[indices[i]].co);
vert += 3;
}
filldisplist(&dispbase, &dispbase, 0);
int tottri = 0;
dl= (DispList*)dispbase.first;
if (dl->type == DL_INDEX3) {
tottri = dl->parts;
int *index = dl->index;
for (i= 0; i < tottri; i++) {
int t[3]= {*index, *(index + 1), *(index + 2)};
std::sort(t, t + 3);
tri.push_back(t[0]);
tri.push_back(t[1]);
tri.push_back(t[2]);
index += 3;
}
}
freedisplist(&dispbase);
return tottri;
}
int MeshImporter::count_new_tris(COLLADAFW::Mesh *mesh, Mesh *me)
{
COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives();
unsigned int i;
int tottri = 0;
for (i = 0; i < prim_arr.getCount(); i++) {
COLLADAFW::MeshPrimitive *mp = prim_arr[i];
int type = mp->getPrimitiveType();
size_t prim_totface = mp->getFaceCount();
unsigned int *indices = mp->getPositionIndices().getData();
if (type == COLLADAFW::MeshPrimitive::POLYLIST ||
type == COLLADAFW::MeshPrimitive::POLYGONS) {
COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp;
COLLADAFW::Polygons::VertexCountArray& vcounta = mpvc->getGroupedVerticesVertexCountArray();
for (unsigned int j = 0; j < prim_totface; j++) {
int vcount = vcounta[j];
if (vcount > 4) {
std::vector<unsigned int> tri;
// tottri += triangulate_poly(indices, vcount, me->mvert, tri) - 1; // XXX why - 1?!
tottri += triangulate_poly(indices, vcount, me->mvert, tri);
}
indices += vcount;
}
}
}
return tottri;
}
// TODO: import uv set names
void MeshImporter::read_faces(COLLADAFW::Mesh *mesh, Mesh *me, int new_tris)
{
unsigned int i;
// allocate faces
me->totface = mesh->getFacesCount() + new_tris;
me->mface = (MFace*)CustomData_add_layer(&me->fdata, CD_MFACE, CD_CALLOC, NULL, me->totface);
// allocate UV layers
unsigned int totuvset = mesh->getUVCoords().getInputInfosArray().getCount();
for (i = 0; i < totuvset; i++) {
if (mesh->getUVCoords().getLength(i) == 0) {
totuvset = 0;
break;
}
}
for (i = 0; i < totuvset; i++) {
COLLADAFW::MeshVertexData::InputInfos *info = mesh->getUVCoords().getInputInfosArray()[i];
CustomData_add_layer_named(&me->fdata, CD_MTFACE, CD_CALLOC, NULL, me->totface, info->mName.c_str());
//this->set_layername_map[i] = CustomData_get_layer_name(&me->fdata, CD_MTFACE, i);
}
// activate the first uv layer
if (totuvset) me->mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, 0);
UVDataWrapper uvs(mesh->getUVCoords());
#ifdef COLLADA_DEBUG
// uvs.print();
#endif
MFace *mface = me->mface;
MaterialIdPrimitiveArrayMap mat_prim_map;
int face_index = 0;
COLLADAFW::MeshPrimitiveArray& prim_arr = mesh->getMeshPrimitives();
bool has_normals = mesh->hasNormals();
COLLADAFW::MeshVertexData& nor = mesh->getNormals();
for (i = 0; i < prim_arr.getCount(); i++) {
COLLADAFW::MeshPrimitive *mp = prim_arr[i];
// faces
size_t prim_totface = mp->getFaceCount();
unsigned int *indices = mp->getPositionIndices().getData();
unsigned int *nind = mp->getNormalIndices().getData();
unsigned int j, k;
int type = mp->getPrimitiveType();
int index = 0;
// since we cannot set mface->mat_nr here, we store a portion of me->mface in Primitive
Primitive prim = {mface, 0};
COLLADAFW::IndexListArray& index_list_array = mp->getUVCoordIndicesArray();
#ifdef COLLADA_DEBUG
/*
fprintf(stderr, "Primitive %d:\n", i);
for (int j = 0; j < totuvset; j++) {
print_index_list(*index_list_array[j]);
}
*/
#endif
if (type == COLLADAFW::MeshPrimitive::TRIANGLES) {
for (j = 0; j < prim_totface; j++){
set_face_indices(mface, indices, false);
indices += 3;
#if 0
for (k = 0; k < totuvset; k++) {
if (!index_list_array.empty() && index_list_array[k]) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, false);
}
}
#else
for (k = 0; k < index_list_array.getCount(); k++) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, *index_list_array[k], index, false);
}
#endif
test_index_face(mface, &me->fdata, face_index, 3);
if (has_normals) {
if (!flat_face(nind, nor, 3))
mface->flag |= ME_SMOOTH;
nind += 3;
}
index += 3;
mface++;
face_index++;
prim.totface++;
}
}
else if (type == COLLADAFW::MeshPrimitive::POLYLIST || type == COLLADAFW::MeshPrimitive::POLYGONS) {
COLLADAFW::Polygons *mpvc = (COLLADAFW::Polygons*)mp;
COLLADAFW::Polygons::VertexCountArray& vcounta = mpvc->getGroupedVerticesVertexCountArray();
for (j = 0; j < prim_totface; j++) {
// face
int vcount = vcounta[j];
if (vcount == 3 || vcount == 4) {
set_face_indices(mface, indices, vcount == 4);
// set mtface for each uv set
// it is assumed that all primitives have equal number of UV sets
#if 0
for (k = 0; k < totuvset; k++) {
if (!index_list_array.empty() && index_list_array[k]) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, k, *index_list_array[k], index, mface->v4 != 0);
}
}
#else
for (k = 0; k < index_list_array.getCount(); k++) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, k);
set_face_uv(&mtface[face_index], uvs, *index_list_array[k], index, mface->v4 != 0);
}
#endif
test_index_face(mface, &me->fdata, face_index, vcount);
if (has_normals) {
if (!flat_face(nind, nor, vcount))
mface->flag |= ME_SMOOTH;
nind += vcount;
}
mface++;
face_index++;
prim.totface++;
}
else {
std::vector<unsigned int> tri;
triangulate_poly(indices, vcount, me->mvert, tri);
for (k = 0; k < tri.size() / 3; k++) {
int v = k * 3;
unsigned int uv_indices[3] = {
index + tri[v],
index + tri[v + 1],
index + tri[v + 2]
};
unsigned int tri_indices[3] = {
indices[tri[v]],
indices[tri[v + 1]],
indices[tri[v + 2]]
};
set_face_indices(mface, tri_indices, false);
#if 0
for (unsigned int l = 0; l < totuvset; l++) {
if (!index_list_array.empty() && index_list_array[l]) {
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, l);
set_face_uv(&mtface[face_index], uvs, l, *index_list_array[l], uv_indices);
}
}
#else
for (unsigned int l = 0; l < index_list_array.getCount(); l++) {
int uvset_index = index_list_array[l]->getSetIndex();
// get mtface by face index and uv set index
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&me->fdata, CD_MTFACE, uvset_index);
set_face_uv(&mtface[face_index], uvs, *index_list_array[l], uv_indices);
}
#endif
test_index_face(mface, &me->fdata, face_index, 3);
if (has_normals) {
unsigned int ntri[3] = {nind[tri[v]], nind[tri[v + 1]], nind[tri[v + 2]]};
if (!flat_face(ntri, nor, 3))
mface->flag |= ME_SMOOTH;
}
mface++;
face_index++;
prim.totface++;
}
if (has_normals)
nind += vcount;
}
index += vcount;
indices += vcount;
}
}
mat_prim_map[mp->getMaterialId()].push_back(prim);
}
geom_uid_mat_mapping_map[mesh->getUniqueId()] = mat_prim_map;
}
void MeshImporter::get_vector(float v[3], COLLADAFW::MeshVertexData& arr, int i, int stride)
{
i *= stride;
switch(arr.getType()) {
case COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT:
{
COLLADAFW::ArrayPrimitiveType<float>* values = arr.getFloatValues();
if (values->empty()) return;
v[0] = (*values)[i++];
v[1] = (*values)[i++];
v[2] = (*values)[i];
}
break;
case COLLADAFW::MeshVertexData::DATA_TYPE_DOUBLE:
{
COLLADAFW::ArrayPrimitiveType<double>* values = arr.getDoubleValues();
if (values->empty()) return;
v[0] = (float)(*values)[i++];
v[1] = (float)(*values)[i++];
v[2] = (float)(*values)[i];
}
break;
default:
break;
}
}
bool MeshImporter::flat_face(unsigned int *nind, COLLADAFW::MeshVertexData& nor, int count)
{
float a[3], b[3];
get_vector(a, nor, *nind, 3);
normalize_v3(a);
nind++;
for (int i = 1; i < count; i++, nind++) {
get_vector(b, nor, *nind, 3);
normalize_v3(b);
float dp = dot_v3v3(a, b);
if (dp < 0.99999f || dp > 1.00001f)
return false;
}
return true;
}
MeshImporter::MeshImporter(UnitConverter *unitconv, ArmatureImporter *arm, Scene *sce) : unitconverter(unitconv), scene(sce), armature_importer(arm) {}
Object *MeshImporter::get_object_by_geom_uid(const COLLADAFW::UniqueId& geom_uid)
{
if (uid_object_map.find(geom_uid) != uid_object_map.end())
return uid_object_map[geom_uid];
return NULL;
}
MTex *MeshImporter::assign_textures_to_uvlayer(COLLADAFW::TextureCoordinateBinding &ctexture,
Mesh *me, TexIndexTextureArrayMap& texindex_texarray_map,
MTex *color_texture)
{
const COLLADAFW::TextureMapId texture_index = ctexture.getTextureMapId();
const size_t setindex = ctexture.getSetIndex();
std::string uvname = ctexture.getSemantic();
const CustomData *data = &me->fdata;
int layer_index = CustomData_get_layer_index(data, CD_MTFACE);
CustomDataLayer *cdl = &data->layers[layer_index+setindex];
/* set uvname to bind_vertex_input semantic */
BLI_strncpy(cdl->name, uvname.c_str(), sizeof(cdl->name));
if (texindex_texarray_map.find(texture_index) == texindex_texarray_map.end()) {
fprintf(stderr, "Cannot find texture array by texture index.\n");
return color_texture;
}
std::vector<MTex*> textures = texindex_texarray_map[texture_index];
std::vector<MTex*>::iterator it;
for (it = textures.begin(); it != textures.end(); it++) {
MTex *texture = *it;
if (texture) {
BLI_strncpy(texture->uvname, uvname.c_str(), sizeof(texture->uvname));
if (texture->mapto == MAP_COL) color_texture = texture;
}
}
return color_texture;
}
MTFace *MeshImporter::assign_material_to_geom(COLLADAFW::MaterialBinding cmaterial,
std::map<COLLADAFW::UniqueId, Material*>& uid_material_map,
Object *ob, const COLLADAFW::UniqueId *geom_uid,
MTex **color_texture, char *layername, MTFace *texture_face,
std::map<Material*, TexIndexTextureArrayMap>& material_texture_mapping_map, int mat_index)
{
Mesh *me = (Mesh*)ob->data;
const COLLADAFW::UniqueId& ma_uid = cmaterial.getReferencedMaterial();
// do we know this material?
if (uid_material_map.find(ma_uid) == uid_material_map.end()) {
fprintf(stderr, "Cannot find material by UID.\n");
return NULL;
}
Material *ma = uid_material_map[ma_uid];
assign_material(ob, ma, ob->totcol + 1);
COLLADAFW::TextureCoordinateBindingArray& tex_array =
cmaterial.getTextureCoordinateBindingArray();
TexIndexTextureArrayMap texindex_texarray_map = material_texture_mapping_map[ma];
unsigned int i;
// loop through <bind_vertex_inputs>
for (i = 0; i < tex_array.getCount(); i++) {
*color_texture = assign_textures_to_uvlayer(tex_array[i], me, texindex_texarray_map,
*color_texture);
}
// set texture face
if (*color_texture &&
strlen((*color_texture)->uvname) &&
strcmp(layername, (*color_texture)->uvname) != 0) {
texture_face = (MTFace*)CustomData_get_layer_named(&me->fdata, CD_MTFACE,
(*color_texture)->uvname);
strcpy(layername, (*color_texture)->uvname);
}
MaterialIdPrimitiveArrayMap& mat_prim_map = geom_uid_mat_mapping_map[*geom_uid];
COLLADAFW::MaterialId mat_id = cmaterial.getMaterialId();
// assign material indices to mesh faces
if (mat_prim_map.find(mat_id) != mat_prim_map.end()) {
std::vector<Primitive>& prims = mat_prim_map[mat_id];
std::vector<Primitive>::iterator it;
for (it = prims.begin(); it != prims.end(); it++) {
Primitive& prim = *it;
i = 0;
while (i++ < prim.totface) {
prim.mface->mat_nr = mat_index;
prim.mface++;
// bind texture images to faces
if (texture_face && (*color_texture)) {
texture_face->mode = TF_TEX;
texture_face->tpage = (Image*)(*color_texture)->tex->ima;
texture_face++;
}
}
}
}
return texture_face;
}
Object *MeshImporter::create_mesh_object(COLLADAFW::Node *node, COLLADAFW::InstanceGeometry *geom,
bool isController,
std::map<COLLADAFW::UniqueId, Material*>& uid_material_map,
std::map<Material*, TexIndexTextureArrayMap>& material_texture_mapping_map)
{
const COLLADAFW::UniqueId *geom_uid = &geom->getInstanciatedObjectId();
// check if node instanciates controller or geometry
if (isController) {
geom_uid = armature_importer->get_geometry_uid(*geom_uid);
if (!geom_uid) {
fprintf(stderr, "Couldn't find a mesh UID by controller's UID.\n");
return NULL;
}
}
else {
if (uid_mesh_map.find(*geom_uid) == uid_mesh_map.end()) {
// this could happen if a mesh was not created
// (e.g. if it contains unsupported geometry)
fprintf(stderr, "Couldn't find a mesh by UID.\n");
return NULL;
}
}
if (!uid_mesh_map[*geom_uid]) return NULL;
Object *ob = add_object(scene, OB_MESH);
// store object pointer for ArmatureImporter
uid_object_map[*geom_uid] = ob;
// name Object
const std::string& id = node->getOriginalId();
if (id.length())
rename_id(&ob->id, (char*)id.c_str());
// replace ob->data freeing the old one
Mesh *old_mesh = (Mesh*)ob->data;
set_mesh(ob, uid_mesh_map[*geom_uid]);
if (old_mesh->id.us == 0) free_libblock(&G.main->mesh, old_mesh);
char layername[100];
MTFace *texture_face = NULL;
MTex *color_texture = NULL;
COLLADAFW::MaterialBindingArray& mat_array =
geom->getMaterialBindings();
// loop through geom's materials
for (unsigned int i = 0; i < mat_array.getCount(); i++) {
texture_face = assign_material_to_geom(mat_array[i], uid_material_map, ob, geom_uid,
&color_texture, layername, texture_face,
material_texture_mapping_map, i);
}
return ob;
}
// create a mesh storing a pointer in a map so it can be retrieved later by geometry UID
bool MeshImporter::write_geometry(const COLLADAFW::Geometry* geom)
{
// TODO: import also uvs, normals
// XXX what to do with normal indices?
// XXX num_normals may be != num verts, then what to do?
// check geometry->getType() first
if (geom->getType() != COLLADAFW::Geometry::GEO_TYPE_MESH) {
// TODO: report warning
fprintf(stderr, "Mesh type %s is not supported\n", bc_geomTypeToStr(geom->getType()));
return true;
}
COLLADAFW::Mesh *mesh = (COLLADAFW::Mesh*)geom;
if (!is_nice_mesh(mesh)) {
fprintf(stderr, "Ignoring mesh %s\n", bc_get_dae_name(mesh));
return true;
}
const std::string& str_geom_id = mesh->getOriginalId();
Mesh *me = add_mesh((char*)str_geom_id.c_str());
// store the Mesh pointer to link it later with an Object
this->uid_mesh_map[mesh->getUniqueId()] = me;
int new_tris = 0;
read_vertices(mesh, me);
new_tris = count_new_tris(mesh, me);
read_faces(mesh, me, new_tris);
make_edges(me, 0);
mesh_calc_normals(me->mvert, me->totvert, me->mface, me->totface, NULL);
return true;
}