This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_immediate_util.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

605 lines
19 KiB
C
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup gpu
*
* GPU immediate mode drawing utilities
*/
#include <stdio.h>
#include <string.h>
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "GPU_immediate.h"
#include "GPU_immediate_util.h"
#include "UI_resources.h"
static const float cube_coords[8][3] = {
{-1, -1, -1},
{-1, -1, +1},
{-1, +1, -1},
{-1, +1, +1},
{+1, -1, -1},
{+1, -1, +1},
{+1, +1, -1},
{+1, +1, +1},
};
static const int cube_quad_index[6][4] = {
{0, 1, 3, 2},
{0, 2, 6, 4},
{0, 4, 5, 1},
{1, 5, 7, 3},
{2, 3, 7, 6},
{4, 6, 7, 5},
};
static const int cube_line_index[12][2] = {
{0, 1},
{0, 2},
{0, 4},
{1, 3},
{1, 5},
{2, 3},
{2, 6},
{3, 7},
{4, 5},
{4, 6},
{5, 7},
{6, 7},
};
void immRectf(uint pos, float x1, float y1, float x2, float y2)
{
immBegin(GPU_PRIM_TRI_FAN, 4);
immVertex2f(pos, x1, y1);
immVertex2f(pos, x2, y1);
immVertex2f(pos, x2, y2);
immVertex2f(pos, x1, y2);
immEnd();
}
void immRecti(uint pos, int x1, int y1, int x2, int y2)
{
immBegin(GPU_PRIM_TRI_FAN, 4);
immVertex2i(pos, x1, y1);
immVertex2i(pos, x2, y1);
immVertex2i(pos, x2, y2);
immVertex2i(pos, x1, y2);
immEnd();
}
void immRectf_fast(uint pos, float x1, float y1, float x2, float y2)
{
immVertex2f(pos, x1, y1);
immVertex2f(pos, x2, y1);
immVertex2f(pos, x2, y2);
immVertex2f(pos, x1, y1);
immVertex2f(pos, x2, y2);
immVertex2f(pos, x1, y2);
}
void immRectf_fast_with_color(
uint pos, uint col, float x1, float y1, float x2, float y2, const float color[4])
{
immAttr4fv(col, color);
immVertex2f(pos, x1, y1);
immAttr4fv(col, color);
immVertex2f(pos, x2, y1);
immAttr4fv(col, color);
immVertex2f(pos, x2, y2);
immAttr4fv(col, color);
immVertex2f(pos, x1, y1);
immAttr4fv(col, color);
immVertex2f(pos, x2, y2);
immAttr4fv(col, color);
immVertex2f(pos, x1, y2);
}
void immRecti_fast_with_color(
uint pos, uint col, int x1, int y1, int x2, int y2, const float color[4])
{
immAttr4fv(col, color);
immVertex2i(pos, x1, y1);
immAttr4fv(col, color);
immVertex2i(pos, x2, y1);
immAttr4fv(col, color);
immVertex2i(pos, x2, y2);
immAttr4fv(col, color);
immVertex2i(pos, x1, y1);
immAttr4fv(col, color);
immVertex2i(pos, x2, y2);
immAttr4fv(col, color);
immVertex2i(pos, x1, y2);
}
#if 0 /* more complete version in case we want that */
void immRecti_complete(int x1, int y1, int x2, int y2, const float color[4])
{
GPUVertFormat *format = immVertexFormat();
uint pos = add_attr(format, "pos", GPU_COMP_I32, 2, GPU_FETCH_INT_TO_FLOAT);
immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR);
immUniformColor4fv(color);
immRecti(pos, x1, y1, x2, y2);
immUnbindProgram();
}
#endif
/**
* Pack color into 3 bytes
*
* This define converts a numerical value to the equivalent 24-bit
2019-04-10 08:40:49 +02:00
* color, while not being endian-sensitive. On little-endian, this
* is the same as doing a 'naive' indexing, on big-endian, it is not!
*
* \note BGR format (i.e. 0xBBGGRR)...
*
2018-12-12 12:17:42 +11:00
* \param x: color.
*/
2018-09-12 12:18:35 +10:00
void imm_cpack(uint x)
{
immUniformColor3ub(((x)&0xFF), (((x) >> 8) & 0xFF), (((x) >> 16) & 0xFF));
}
static void imm_draw_circle(GPUPrimType prim_type,
const uint shdr_pos,
float x,
float y,
float rad_x,
float rad_y,
int nsegments)
{
immBegin(prim_type, nsegments);
for (int i = 0; i < nsegments; i++) {
2017-08-01 13:35:26 +10:00
const float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments);
immVertex2f(shdr_pos, x + (rad_x * cosf(angle)), y + (rad_y * sinf(angle)));
}
immEnd();
}
/**
* Draw a circle outline with the given \a radius.
* The circle is centered at \a x, \a y and drawn in the XY plane.
*
2018-12-12 12:17:42 +11:00
* \param shdr_pos: The vertex attribute number for position.
* \param x: Horizontal center.
* \param y: Vertical center.
* \param rad: The circle's radius.
* \param nsegments: The number of segments to use in drawing (more = smoother).
*/
void imm_draw_circle_wire_2d(uint shdr_pos, float x, float y, float rad, int nsegments)
{
imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad, rad, nsegments);
}
/**
* Draw a filled circle with the given \a radius.
* The circle is centered at \a x, \a y and drawn in the XY plane.
*
2018-12-12 12:17:42 +11:00
* \param shdr_pos: The vertex attribute number for position.
* \param x: Horizontal center.
* \param y: Vertical center.
* \param rad: The circle's radius.
* \param nsegments: The number of segments to use in drawing (more = smoother).
*/
void imm_draw_circle_fill_2d(uint shdr_pos, float x, float y, float rad, int nsegments)
{
imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad, rad, nsegments);
}
void imm_draw_circle_wire_aspect_2d(
uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments)
{
imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad_x, rad_y, nsegments);
}
void imm_draw_circle_fill_aspect_2d(
uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments)
{
imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad_x, rad_y, nsegments);
}
static void imm_draw_circle_partial(GPUPrimType prim_type,
uint pos,
float x,
float y,
float rad,
int nsegments,
float start,
float sweep)
{
/* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */
const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2);
const float angle_end = -(DEG2RADF(sweep) - angle_start);
nsegments += 1;
immBegin(prim_type, nsegments);
for (int i = 0; i < nsegments; i++) {
const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1)));
const float angle_sin = sinf(angle);
const float angle_cos = cosf(angle);
immVertex2f(pos, x + rad * angle_cos, y + rad * angle_sin);
}
immEnd();
}
void imm_draw_circle_partial_wire_2d(
uint pos, float x, float y, float rad, int nsegments, float start, float sweep)
{
imm_draw_circle_partial(GPU_PRIM_LINE_STRIP, pos, x, y, rad, nsegments, start, sweep);
}
static void imm_draw_disk_partial(GPUPrimType prim_type,
2018-09-12 12:18:35 +10:00
uint pos,
float x,
float y,
float rad_inner,
float rad_outer,
int nsegments,
float start,
float sweep)
{
/* to avoid artifacts */
const float max_angle = 3 * 360;
CLAMP(sweep, -max_angle, max_angle);
/* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */
2017-08-01 13:35:26 +10:00
const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2);
const float angle_end = -(DEG2RADF(sweep) - angle_start);
nsegments += 1;
immBegin(prim_type, nsegments * 2);
for (int i = 0; i < nsegments; i++) {
const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1)));
const float angle_sin = sinf(angle);
const float angle_cos = cosf(angle);
immVertex2f(pos, x + rad_inner * angle_cos, y + rad_inner * angle_sin);
immVertex2f(pos, x + rad_outer * angle_cos, y + rad_outer * angle_sin);
}
immEnd();
}
/**
* Draw a filled arc with the given inner and outer radius.
* The circle is centered at \a x, \a y and drawn in the XY plane.
*
* \note Arguments are `gluPartialDisk` compatible.
*
* \param pos: The vertex attribute number for position.
* \param x: Horizontal center.
* \param y: Vertical center.
2018-12-12 12:17:42 +11:00
* \param rad_inner: The inner circle's radius.
* \param rad_outer: The outer circle's radius (can be zero).
* \param nsegments: The number of segments to use in drawing (more = smoother).
* \param start: Specifies the starting angle, in degrees, of the disk portion.
* \param sweep: Specifies the sweep angle, in degrees, of the disk portion.
*/
void imm_draw_disk_partial_fill_2d(uint pos,
2018-09-12 12:18:35 +10:00
float x,
float y,
float rad_inner,
float rad_outer,
int nsegments,
float start,
float sweep)
{
imm_draw_disk_partial(
GPU_PRIM_TRI_STRIP, pos, x, y, rad_inner, rad_outer, nsegments, start, sweep);
}
static void imm_draw_circle_3D(
2018-09-12 12:18:35 +10:00
GPUPrimType prim_type, uint pos, float x, float y, float rad, int nsegments)
{
immBegin(prim_type, nsegments);
for (int i = 0; i < nsegments; i++) {
2017-08-01 13:35:26 +10:00
float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments);
immVertex3f(pos, x + rad * cosf(angle), y + rad * sinf(angle), 0.0f);
}
immEnd();
}
2018-09-12 12:18:35 +10:00
void imm_draw_circle_wire_3d(uint pos, float x, float y, float rad, int nsegments)
{
imm_draw_circle_3D(GPU_PRIM_LINE_LOOP, pos, x, y, rad, nsegments);
}
void imm_draw_circle_dashed_3d(uint pos, float x, float y, float rad, int nsegments)
{
imm_draw_circle_3D(GPU_PRIM_LINES, pos, x, y, rad, nsegments / 2);
}
2018-09-12 12:18:35 +10:00
void imm_draw_circle_fill_3d(uint pos, float x, float y, float rad, int nsegments)
{
imm_draw_circle_3D(GPU_PRIM_TRI_FAN, pos, x, y, rad, nsegments);
}
/**
2018-07-18 23:09:31 +10:00
* Draw a lined box.
*
2018-12-12 12:17:42 +11:00
* \param pos: The vertex attribute number for position.
* \param x1: left.
* \param y1: bottom.
* \param x2: right.
* \param y2: top.
2018-07-18 23:09:31 +10:00
*/
2018-09-12 12:18:35 +10:00
void imm_draw_box_wire_2d(uint pos, float x1, float y1, float x2, float y2)
{
immBegin(GPU_PRIM_LINE_LOOP, 4);
immVertex2f(pos, x1, y1);
immVertex2f(pos, x1, y2);
immVertex2f(pos, x2, y2);
immVertex2f(pos, x2, y1);
immEnd();
}
2018-09-12 12:18:35 +10:00
void imm_draw_box_wire_3d(uint pos, float x1, float y1, float x2, float y2)
{
/* use this version when GPUVertFormat has a vec3 position */
immBegin(GPU_PRIM_LINE_LOOP, 4);
immVertex3f(pos, x1, y1, 0.0f);
immVertex3f(pos, x1, y2, 0.0f);
immVertex3f(pos, x2, y2, 0.0f);
immVertex3f(pos, x2, y1, 0.0f);
immEnd();
}
/**
* Draw a standard checkerboard to indicate transparent backgrounds.
*/
void imm_draw_box_checker_2d_ex(float x1,
float y1,
float x2,
float y2,
const float color_primary[4],
const float color_secondary[4],
2020-05-05 16:05:51 +10:00
int checker_size)
{
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_2D_CHECKER);
immUniform4fv("color1", color_primary);
immUniform4fv("color2", color_secondary);
immUniform1i("size", checker_size);
immRectf(pos, x1, y1, x2, y2);
immUnbindProgram();
}
void imm_draw_box_checker_2d(float x1, float y1, float x2, float y2)
{
float checker_primary[4];
float checker_secondary[4];
UI_GetThemeColor4fv(TH_TRANSPARENT_CHECKER_PRIMARY, checker_primary);
UI_GetThemeColor4fv(TH_TRANSPARENT_CHECKER_SECONDARY, checker_secondary);
int checker_size = UI_GetThemeValue(TH_TRANSPARENT_CHECKER_SIZE);
imm_draw_box_checker_2d_ex(x1, y1, x2, y2, checker_primary, checker_secondary, checker_size);
}
void imm_draw_cube_fill_3d(uint pos, const float co[3], const float aspect[3])
{
float coords[ARRAY_SIZE(cube_coords)][3];
for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) {
madd_v3_v3v3v3(coords[i], co, cube_coords[i], aspect);
}
immBegin(GPU_PRIM_TRIS, ARRAY_SIZE(cube_quad_index) * 3 * 2);
for (int i = 0; i < ARRAY_SIZE(cube_quad_index); i++) {
immVertex3fv(pos, coords[cube_quad_index[i][0]]);
immVertex3fv(pos, coords[cube_quad_index[i][1]]);
immVertex3fv(pos, coords[cube_quad_index[i][2]]);
immVertex3fv(pos, coords[cube_quad_index[i][0]]);
immVertex3fv(pos, coords[cube_quad_index[i][2]]);
immVertex3fv(pos, coords[cube_quad_index[i][3]]);
}
immEnd();
}
void imm_draw_cube_wire_3d(uint pos, const float co[3], const float aspect[3])
{
float coords[ARRAY_SIZE(cube_coords)][3];
for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) {
madd_v3_v3v3v3(coords[i], co, cube_coords[i], aspect);
}
immBegin(GPU_PRIM_LINES, ARRAY_SIZE(cube_line_index) * 2);
for (int i = 0; i < ARRAY_SIZE(cube_line_index); i++) {
immVertex3fv(pos, coords[cube_line_index[i][0]]);
immVertex3fv(pos, coords[cube_line_index[i][1]]);
}
immEnd();
}
void imm_draw_cube_corners_3d(uint pos,
const float co[3],
const float aspect[3],
const float factor)
{
float coords[ARRAY_SIZE(cube_coords)][3];
for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) {
madd_v3_v3v3v3(coords[i], co, cube_coords[i], aspect);
}
immBegin(GPU_PRIM_LINES, ARRAY_SIZE(cube_line_index) * 4);
for (int i = 0; i < ARRAY_SIZE(cube_line_index); i++) {
float vec[3], _co[3];
sub_v3_v3v3(vec, coords[cube_line_index[i][1]], coords[cube_line_index[i][0]]);
mul_v3_fl(vec, factor);
copy_v3_v3(_co, coords[cube_line_index[i][0]]);
immVertex3fv(pos, _co);
add_v3_v3(_co, vec);
immVertex3fv(pos, _co);
copy_v3_v3(_co, coords[cube_line_index[i][1]]);
immVertex3fv(pos, _co);
sub_v3_v3(_co, vec);
immVertex3fv(pos, _co);
}
immEnd();
}
/**
2018-07-18 23:09:31 +10:00
* Draw a cylinder. Replacement for gluCylinder.
* _warning_ : Slow, better use it only if you no other choices.
*
2018-12-12 12:17:42 +11:00
* \param pos: The vertex attribute number for position.
* \param nor: The vertex attribute number for normal.
* \param base: Specifies the radius of the cylinder at z = 0.
* \param top: Specifies the radius of the cylinder at z = height.
* \param height: Specifies the height of the cylinder.
* \param slices: Specifies the number of subdivisions around the z axis.
* \param stacks: Specifies the number of subdivisions along the z axis.
2018-07-18 23:09:31 +10:00
*/
void imm_draw_cylinder_fill_normal_3d(
2018-09-12 12:18:35 +10:00
uint pos, uint nor, float base, float top, float height, int slices, int stacks)
{
immBegin(GPU_PRIM_TRIS, 6 * slices * stacks);
for (int i = 0; i < slices; i++) {
2017-08-01 13:35:26 +10:00
const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
const float cos1 = cosf(angle1);
const float sin1 = sinf(angle1);
const float cos2 = cosf(angle2);
const float sin2 = sinf(angle2);
for (int j = 0; j < stacks; j++) {
float fac1 = (float)j / (float)stacks;
float fac2 = (float)(j + 1) / (float)stacks;
float r1 = base * (1.0f - fac1) + top * fac1;
float r2 = base * (1.0f - fac2) + top * fac2;
float h1 = height * ((float)j / (float)stacks);
float h2 = height * ((float)(j + 1) / (float)stacks);
const float v1[3] = {r1 * cos2, r1 * sin2, h1};
const float v2[3] = {r2 * cos2, r2 * sin2, h2};
const float v3[3] = {r2 * cos1, r2 * sin1, h2};
const float v4[3] = {r1 * cos1, r1 * sin1, h1};
float n1[3], n2[3];
/* calc normals */
sub_v3_v3v3(n1, v2, v1);
normalize_v3(n1);
n1[0] = cos1;
n1[1] = sin1;
n1[2] = 1 - n1[2];
sub_v3_v3v3(n2, v3, v4);
normalize_v3(n2);
n2[0] = cos2;
n2[1] = sin2;
n2[2] = 1 - n2[2];
/* first tri */
immAttr3fv(nor, n2);
immVertex3fv(pos, v1);
immVertex3fv(pos, v2);
immAttr3fv(nor, n1);
immVertex3fv(pos, v3);
/* second tri */
immVertex3fv(pos, v3);
immVertex3fv(pos, v4);
immAttr3fv(nor, n2);
immVertex3fv(pos, v1);
}
}
immEnd();
}
2018-09-12 12:18:35 +10:00
void imm_draw_cylinder_wire_3d(
uint pos, float base, float top, float height, int slices, int stacks)
{
immBegin(GPU_PRIM_LINES, 6 * slices * stacks);
for (int i = 0; i < slices; i++) {
2017-08-01 13:35:26 +10:00
const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
const float cos1 = cosf(angle1);
const float sin1 = sinf(angle1);
const float cos2 = cosf(angle2);
const float sin2 = sinf(angle2);
for (int j = 0; j < stacks; j++) {
float fac1 = (float)j / (float)stacks;
float fac2 = (float)(j + 1) / (float)stacks;
float r1 = base * (1.0f - fac1) + top * fac1;
float r2 = base * (1.0f - fac2) + top * fac2;
float h1 = height * ((float)j / (float)stacks);
float h2 = height * ((float)(j + 1) / (float)stacks);
const float v1[3] = {r1 * cos2, r1 * sin2, h1};
const float v2[3] = {r2 * cos2, r2 * sin2, h2};
const float v3[3] = {r2 * cos1, r2 * sin1, h2};
const float v4[3] = {r1 * cos1, r1 * sin1, h1};
immVertex3fv(pos, v1);
immVertex3fv(pos, v2);
immVertex3fv(pos, v2);
immVertex3fv(pos, v3);
immVertex3fv(pos, v1);
immVertex3fv(pos, v4);
}
}
immEnd();
}
2018-09-12 12:18:35 +10:00
void imm_draw_cylinder_fill_3d(
uint pos, float base, float top, float height, int slices, int stacks)
{
immBegin(GPU_PRIM_TRIS, 6 * slices * stacks);
for (int i = 0; i < slices; i++) {
2017-08-01 13:35:26 +10:00
const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
const float cos1 = cosf(angle1);
const float sin1 = sinf(angle1);
const float cos2 = cosf(angle2);
const float sin2 = sinf(angle2);
for (int j = 0; j < stacks; j++) {
float fac1 = (float)j / (float)stacks;
float fac2 = (float)(j + 1) / (float)stacks;
float r1 = base * (1.0f - fac1) + top * fac1;
float r2 = base * (1.0f - fac2) + top * fac2;
float h1 = height * ((float)j / (float)stacks);
float h2 = height * ((float)(j + 1) / (float)stacks);
const float v1[3] = {r1 * cos2, r1 * sin2, h1};
const float v2[3] = {r2 * cos2, r2 * sin2, h2};
const float v3[3] = {r2 * cos1, r2 * sin1, h2};
const float v4[3] = {r1 * cos1, r1 * sin1, h1};
/* first tri */
immVertex3fv(pos, v1);
immVertex3fv(pos, v2);
immVertex3fv(pos, v3);
/* second tri */
immVertex3fv(pos, v3);
immVertex3fv(pos, v4);
immVertex3fv(pos, v1);
}
}
immEnd();
}