This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_sync.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1031 lines
36 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/background.h"
#include "render/camera.h"
#include "render/curves.h"
#include "render/film.h"
#include "render/graph.h"
#include "render/integrator.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/shader.h"
#include "device/device.h"
#include "blender/blender_device.h"
#include "blender/blender_session.h"
#include "blender/blender_sync.h"
#include "blender/blender_util.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_logging.h"
#include "util/util_opengl.h"
#include "util/util_openimagedenoise.h"
CCL_NAMESPACE_BEGIN
static const char *cryptomatte_prefix = "Crypto";
/* Constructor */
BlenderSync::BlenderSync(BL::RenderEngine &b_engine,
BL::BlendData &b_data,
BL::Scene &b_scene,
Scene *scene,
bool preview,
Progress &progress)
: b_engine(b_engine),
b_data(b_data),
b_scene(b_scene),
shader_map(scene),
object_map(scene),
geometry_map(scene),
light_map(scene),
particle_system_map(scene),
world_map(NULL),
world_recalc(false),
scene(scene),
preview(preview),
experimental(false),
dicing_rate(1.0f),
max_subdivisions(12),
progress(progress)
{
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
dicing_rate = preview ? RNA_float_get(&cscene, "preview_dicing_rate") :
RNA_float_get(&cscene, "dicing_rate");
max_subdivisions = RNA_int_get(&cscene, "max_subdivisions");
}
BlenderSync::~BlenderSync()
{
}
void BlenderSync::reset(BL::BlendData &b_data, BL::Scene &b_scene)
{
/* Update data and scene pointers in case they change in session reset,
* for example after undo. */
this->b_data = b_data;
this->b_scene = b_scene;
}
/* Sync */
void BlenderSync::sync_recalc(BL::Depsgraph &b_depsgraph, BL::SpaceView3D &b_v3d)
{
/* Sync recalc flags from blender to cycles. Actual update is done separate,
* so we can do it later on if doing it immediate is not suitable. */
if (experimental) {
/* Mark all meshes as needing to be exported again if dicing changed. */
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
bool dicing_prop_changed = false;
float updated_dicing_rate = preview ? RNA_float_get(&cscene, "preview_dicing_rate") :
RNA_float_get(&cscene, "dicing_rate");
if (dicing_rate != updated_dicing_rate) {
dicing_rate = updated_dicing_rate;
dicing_prop_changed = true;
}
int updated_max_subdivisions = RNA_int_get(&cscene, "max_subdivisions");
if (max_subdivisions != updated_max_subdivisions) {
max_subdivisions = updated_max_subdivisions;
dicing_prop_changed = true;
}
if (dicing_prop_changed) {
for (const pair<const GeometryKey, Geometry *> &iter : geometry_map.key_to_scene_data()) {
Geometry *geom = iter.second;
if (geom->type == Geometry::MESH) {
Mesh *mesh = static_cast<Mesh *>(geom);
if (mesh->subdivision_type != Mesh::SUBDIVISION_NONE) {
PointerRNA id_ptr;
RNA_id_pointer_create((::ID *)iter.first.id, &id_ptr);
geometry_map.set_recalc(BL::ID(id_ptr));
}
}
}
}
}
/* Iterate over all IDs in this depsgraph. */
BL::Depsgraph::updates_iterator b_update;
for (b_depsgraph.updates.begin(b_update); b_update != b_depsgraph.updates.end(); ++b_update) {
BL::ID b_id(b_update->id());
/* Material */
2018-11-15 17:19:26 +01:00
if (b_id.is_a(&RNA_Material)) {
BL::Material b_mat(b_id);
shader_map.set_recalc(b_mat);
}
/* Light */
2018-11-15 17:19:26 +01:00
else if (b_id.is_a(&RNA_Light)) {
BL::Light b_light(b_id);
shader_map.set_recalc(b_light);
}
/* Object */
2018-11-15 17:19:26 +01:00
else if (b_id.is_a(&RNA_Object)) {
BL::Object b_ob(b_id);
const bool is_geometry = object_is_geometry(b_ob);
const bool is_light = !is_geometry && object_is_light(b_ob);
if (b_ob.is_instancer() && b_update->is_updated_shading()) {
/* Needed for e.g. object color updates on instancer. */
object_map.set_recalc(b_ob);
}
if (is_geometry || is_light) {
const bool updated_geometry = b_update->is_updated_geometry();
/* Geometry (mesh, hair, volume). */
if (is_geometry) {
if (b_update->is_updated_transform() || b_update->is_updated_shading()) {
object_map.set_recalc(b_ob);
}
if (updated_geometry ||
(object_subdivision_type(b_ob, preview, experimental) != Mesh::SUBDIVISION_NONE)) {
BL::ID key = BKE_object_is_modified(b_ob) ? b_ob : b_ob.data();
geometry_map.set_recalc(key);
}
if (updated_geometry) {
BL::Object::particle_systems_iterator b_psys;
for (b_ob.particle_systems.begin(b_psys); b_psys != b_ob.particle_systems.end();
++b_psys) {
particle_system_map.set_recalc(b_ob);
}
}
}
/* Light */
else if (is_light) {
if (b_update->is_updated_transform() || b_update->is_updated_shading()) {
object_map.set_recalc(b_ob);
light_map.set_recalc(b_ob);
}
if (updated_geometry) {
light_map.set_recalc(b_ob);
}
}
}
}
/* Mesh */
2018-11-15 17:19:26 +01:00
else if (b_id.is_a(&RNA_Mesh)) {
BL::Mesh b_mesh(b_id);
geometry_map.set_recalc(b_mesh);
}
/* World */
2018-11-15 17:19:26 +01:00
else if (b_id.is_a(&RNA_World)) {
BL::World b_world(b_id);
if (world_map == b_world.ptr.data) {
world_recalc = true;
}
}
/* Volume */
else if (b_id.is_a(&RNA_Volume)) {
BL::Volume b_volume(b_id);
geometry_map.set_recalc(b_volume);
}
}
BlenderViewportParameters new_viewport_parameters(b_v3d);
if (viewport_parameters.modified(new_viewport_parameters)) {
world_recalc = true;
}
}
void BlenderSync::sync_data(BL::RenderSettings &b_render,
2018-06-25 12:39:30 +02:00
BL::Depsgraph &b_depsgraph,
BL::SpaceView3D &b_v3d,
BL::Object &b_override,
int width,
int height,
void **python_thread_state)
{
scoped_timer timer;
BL::ViewLayer b_view_layer = b_depsgraph.view_layer_eval();
sync_view_layer(b_v3d, b_view_layer);
sync_integrator();
sync_film(b_v3d);
sync_shaders(b_depsgraph, b_v3d);
sync_images();
geometry_synced.clear(); /* use for objects and motion sync */
if (scene->need_motion() == Scene::MOTION_PASS || scene->need_motion() == Scene::MOTION_NONE ||
scene->camera->motion_position == Camera::MOTION_POSITION_CENTER) {
sync_objects(b_depsgraph, b_v3d);
}
sync_motion(b_render, b_depsgraph, b_v3d, b_override, width, height, python_thread_state);
geometry_synced.clear();
/* Shader sync done at the end, since object sync uses it.
* false = don't delete unused shaders, not supported. */
shader_map.post_sync(false);
free_data_after_sync(b_depsgraph);
VLOG(1) << "Total time spent synchronizing data: " << timer.get_time();
}
/* Integrator */
void BlenderSync::sync_integrator()
{
BL::RenderSettings r = b_scene.render();
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
experimental = (get_enum(cscene, "feature_set") != 0);
Integrator *integrator = scene->integrator;
Integrator previntegrator = *integrator;
integrator->min_bounce = get_int(cscene, "min_light_bounces");
integrator->max_bounce = get_int(cscene, "max_bounces");
integrator->max_diffuse_bounce = get_int(cscene, "diffuse_bounces");
integrator->max_glossy_bounce = get_int(cscene, "glossy_bounces");
integrator->max_transmission_bounce = get_int(cscene, "transmission_bounces");
integrator->max_volume_bounce = get_int(cscene, "volume_bounces");
integrator->transparent_min_bounce = get_int(cscene, "min_transparent_bounces");
integrator->transparent_max_bounce = get_int(cscene, "transparent_max_bounces");
integrator->volume_max_steps = get_int(cscene, "volume_max_steps");
integrator->volume_step_rate = (preview) ? get_float(cscene, "volume_preview_step_rate") :
get_float(cscene, "volume_step_rate");
integrator->caustics_reflective = get_boolean(cscene, "caustics_reflective");
integrator->caustics_refractive = get_boolean(cscene, "caustics_refractive");
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
integrator->filter_glossy = get_float(cscene, "blur_glossy");
integrator->seed = get_int(cscene, "seed");
if (get_boolean(cscene, "use_animated_seed")) {
integrator->seed = hash_uint2(b_scene.frame_current(), get_int(cscene, "seed"));
if (b_scene.frame_subframe() != 0.0f) {
/* TODO(sergey): Ideally should be some sort of hash_merge,
* but this is good enough for now.
*/
integrator->seed += hash_uint2((int)(b_scene.frame_subframe() * (float)INT_MAX),
get_int(cscene, "seed"));
}
}
integrator->sampling_pattern = (SamplingPattern)get_enum(
cscene, "sampling_pattern", SAMPLING_NUM_PATTERNS, SAMPLING_PATTERN_SOBOL);
integrator->sample_clamp_direct = get_float(cscene, "sample_clamp_direct");
integrator->sample_clamp_indirect = get_float(cscene, "sample_clamp_indirect");
if (!preview) {
if (integrator->motion_blur != r.use_motion_blur()) {
scene->object_manager->tag_update(scene);
scene->camera->tag_update();
}
integrator->motion_blur = r.use_motion_blur();
}
integrator->method = (Integrator::Method)get_enum(
cscene, "progressive", Integrator::NUM_METHODS, Integrator::PATH);
integrator->sample_all_lights_direct = get_boolean(cscene, "sample_all_lights_direct");
integrator->sample_all_lights_indirect = get_boolean(cscene, "sample_all_lights_indirect");
integrator->light_sampling_threshold = get_float(cscene, "light_sampling_threshold");
if (RNA_boolean_get(&cscene, "use_adaptive_sampling")) {
integrator->sampling_pattern = SAMPLING_PATTERN_PMJ;
integrator->adaptive_min_samples = get_int(cscene, "adaptive_min_samples");
integrator->adaptive_threshold = get_float(cscene, "adaptive_threshold");
}
else {
integrator->adaptive_min_samples = INT_MAX;
integrator->adaptive_threshold = 0.0f;
}
int diffuse_samples = get_int(cscene, "diffuse_samples");
int glossy_samples = get_int(cscene, "glossy_samples");
int transmission_samples = get_int(cscene, "transmission_samples");
int ao_samples = get_int(cscene, "ao_samples");
int mesh_light_samples = get_int(cscene, "mesh_light_samples");
int subsurface_samples = get_int(cscene, "subsurface_samples");
int volume_samples = get_int(cscene, "volume_samples");
if (get_boolean(cscene, "use_square_samples")) {
integrator->diffuse_samples = diffuse_samples * diffuse_samples;
integrator->glossy_samples = glossy_samples * glossy_samples;
integrator->transmission_samples = transmission_samples * transmission_samples;
integrator->ao_samples = ao_samples * ao_samples;
integrator->mesh_light_samples = mesh_light_samples * mesh_light_samples;
integrator->subsurface_samples = subsurface_samples * subsurface_samples;
integrator->volume_samples = volume_samples * volume_samples;
integrator->adaptive_min_samples = min(
integrator->adaptive_min_samples * integrator->adaptive_min_samples, INT_MAX);
}
else {
integrator->diffuse_samples = diffuse_samples;
integrator->glossy_samples = glossy_samples;
integrator->transmission_samples = transmission_samples;
integrator->ao_samples = ao_samples;
integrator->mesh_light_samples = mesh_light_samples;
integrator->subsurface_samples = subsurface_samples;
integrator->volume_samples = volume_samples;
}
if (b_scene.render().use_simplify()) {
if (preview) {
integrator->ao_bounces = get_int(cscene, "ao_bounces");
}
else {
integrator->ao_bounces = get_int(cscene, "ao_bounces_render");
}
}
else {
integrator->ao_bounces = 0;
}
if (integrator->modified(previntegrator))
integrator->tag_update(scene);
}
/* Film */
void BlenderSync::sync_film(BL::SpaceView3D &b_v3d)
{
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
Film *film = scene->film;
Film prevfilm = *film;
vector<Pass> prevpasses = scene->passes;
if (b_v3d) {
film->display_pass = update_viewport_display_passes(b_v3d, scene->passes);
}
film->exposure = get_float(cscene, "film_exposure");
film->filter_type = (FilterType)get_enum(
cscene, "pixel_filter_type", FILTER_NUM_TYPES, FILTER_BLACKMAN_HARRIS);
film->filter_width = (film->filter_type == FILTER_BOX) ? 1.0f :
get_float(cscene, "filter_width");
if (b_scene.world()) {
BL::WorldMistSettings b_mist = b_scene.world().mist_settings();
film->mist_start = b_mist.start();
film->mist_depth = b_mist.depth();
switch (b_mist.falloff()) {
case BL::WorldMistSettings::falloff_QUADRATIC:
film->mist_falloff = 2.0f;
break;
case BL::WorldMistSettings::falloff_LINEAR:
film->mist_falloff = 1.0f;
break;
case BL::WorldMistSettings::falloff_INVERSE_QUADRATIC:
film->mist_falloff = 0.5f;
break;
}
}
if (film->modified(prevfilm)) {
film->tag_update(scene);
}
if (!Pass::equals(prevpasses, scene->passes)) {
film->tag_passes_update(scene, prevpasses, false);
film->tag_update(scene);
}
}
/* Render Layer */
void BlenderSync::sync_view_layer(BL::SpaceView3D & /*b_v3d*/, BL::ViewLayer &b_view_layer)
{
view_layer.name = b_view_layer.name();
/* Filter. */
view_layer.use_background_shader = b_view_layer.use_sky();
view_layer.use_background_ao = b_view_layer.use_ao();
/* Always enable surfaces for baking, otherwise there is nothing to bake to. */
view_layer.use_surfaces = b_view_layer.use_solid() || scene->bake_manager->get_baking();
view_layer.use_hair = b_view_layer.use_strand();
view_layer.use_volumes = b_view_layer.use_volumes();
/* Material override. */
view_layer.material_override = b_view_layer.material_override();
/* Sample override. */
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
int use_layer_samples = get_enum(cscene, "use_layer_samples");
view_layer.bound_samples = (use_layer_samples == 1);
view_layer.samples = 0;
if (use_layer_samples != 2) {
int samples = b_view_layer.samples();
if (get_boolean(cscene, "use_square_samples"))
view_layer.samples = samples * samples;
else
view_layer.samples = samples;
}
}
/* Images */
void BlenderSync::sync_images()
{
/* Sync is a convention for this API, but currently it frees unused buffers. */
const bool is_interface_locked = b_engine.render() && b_engine.render().use_lock_interface();
if (is_interface_locked == false && BlenderSession::headless == false) {
/* If interface is not locked, it's possible image is needed for
* the display.
*/
return;
}
/* Free buffers used by images which are not needed for render. */
BL::BlendData::images_iterator b_image;
for (b_data.images.begin(b_image); b_image != b_data.images.end(); ++b_image) {
/* TODO(sergey): Consider making it an utility function to check
* whether image is considered builtin.
*/
const bool is_builtin = b_image->packed_file() ||
b_image->source() == BL::Image::source_GENERATED ||
Cycles: Experiment with making previews more interactive There were two major problems with the interactivity of material previews: - Beckmann tables were re-generated on every material tweak. This is because preview scene is not set to be persistent, so re-triggering the render leads to the full scene re-sync. - Images could take rather noticeable time to load with OIIO from the disk on every tweak. This patch addressed this two issues in the following way: - Beckmann tables are now static on CPU memory. They're couple of hundred kilobytes only, so wouldn't expect this to be an issue. And they're needed for almost every render anyway. This actually also makes blackbody table to be static, but it's even smaller than beckmann table. Not totally happy with this approach, but others seems to complicate things quite a bit with all this render engine life time and so.. - For preview rendering all images are considered to be built-in. This means instead of OIIO which re-loads images on every re-render they're coming from ImBuf cache which is fully manageable from blender side and unused images gets freed later. This would make it impossible to have mipmapping with OSL for now, but we'll be working on that later anyway and don't think mipmaps are really so crucial for the material preview. This seems to be a better alternative to making preview scene persistent, because of much optimal memory control from blender side. Reviewers: brecht, juicyfruit, campbellbarton, dingto Subscribers: eyecandy, venomgfx Differential Revision: https://developer.blender.org/D1132
2015-02-21 21:55:24 +05:00
b_image->source() == BL::Image::source_MOVIE || b_engine.is_preview();
if (is_builtin == false) {
b_image->buffers_free();
}
/* TODO(sergey): Free builtin images not used by any shader. */
}
}
/* Passes */
PassType BlenderSync::get_pass_type(BL::RenderPass &b_pass)
{
string name = b_pass.name();
#define MAP_PASS(passname, passtype) \
if (name == passname) { \
return passtype; \
} \
((void)0)
/* NOTE: Keep in sync with defined names from DNA_scene_types.h */
MAP_PASS("Combined", PASS_COMBINED);
MAP_PASS("Depth", PASS_DEPTH);
MAP_PASS("Mist", PASS_MIST);
MAP_PASS("Normal", PASS_NORMAL);
MAP_PASS("IndexOB", PASS_OBJECT_ID);
MAP_PASS("UV", PASS_UV);
MAP_PASS("Vector", PASS_MOTION);
MAP_PASS("IndexMA", PASS_MATERIAL_ID);
MAP_PASS("DiffDir", PASS_DIFFUSE_DIRECT);
MAP_PASS("GlossDir", PASS_GLOSSY_DIRECT);
MAP_PASS("TransDir", PASS_TRANSMISSION_DIRECT);
MAP_PASS("VolumeDir", PASS_VOLUME_DIRECT);
MAP_PASS("DiffInd", PASS_DIFFUSE_INDIRECT);
MAP_PASS("GlossInd", PASS_GLOSSY_INDIRECT);
MAP_PASS("TransInd", PASS_TRANSMISSION_INDIRECT);
MAP_PASS("VolumeInd", PASS_VOLUME_INDIRECT);
MAP_PASS("DiffCol", PASS_DIFFUSE_COLOR);
MAP_PASS("GlossCol", PASS_GLOSSY_COLOR);
MAP_PASS("TransCol", PASS_TRANSMISSION_COLOR);
MAP_PASS("Emit", PASS_EMISSION);
MAP_PASS("Env", PASS_BACKGROUND);
MAP_PASS("AO", PASS_AO);
MAP_PASS("Shadow", PASS_SHADOW);
MAP_PASS("BakePrimitive", PASS_BAKE_PRIMITIVE);
MAP_PASS("BakeDifferential", PASS_BAKE_DIFFERENTIAL);
#ifdef __KERNEL_DEBUG__
MAP_PASS("Debug BVH Traversed Nodes", PASS_BVH_TRAVERSED_NODES);
MAP_PASS("Debug BVH Traversed Instances", PASS_BVH_TRAVERSED_INSTANCES);
MAP_PASS("Debug BVH Intersections", PASS_BVH_INTERSECTIONS);
MAP_PASS("Debug Ray Bounces", PASS_RAY_BOUNCES);
#endif
MAP_PASS("Debug Render Time", PASS_RENDER_TIME);
MAP_PASS("AdaptiveAuxBuffer", PASS_ADAPTIVE_AUX_BUFFER);
MAP_PASS("Debug Sample Count", PASS_SAMPLE_COUNT);
if (string_startswith(name, cryptomatte_prefix)) {
return PASS_CRYPTOMATTE;
}
#undef MAP_PASS
return PASS_NONE;
}
int BlenderSync::get_denoising_pass(BL::RenderPass &b_pass)
{
string name = b_pass.name();
if (name == "Noisy Image")
return DENOISING_PASS_PREFILTERED_COLOR;
if (name.substr(0, 10) != "Denoising ") {
return -1;
}
name = name.substr(10);
#define MAP_PASS(passname, offset) \
if (name == passname) { \
return offset; \
} \
((void)0)
MAP_PASS("Normal", DENOISING_PASS_PREFILTERED_NORMAL);
MAP_PASS("Albedo", DENOISING_PASS_PREFILTERED_ALBEDO);
MAP_PASS("Depth", DENOISING_PASS_PREFILTERED_DEPTH);
MAP_PASS("Shadowing", DENOISING_PASS_PREFILTERED_SHADOWING);
MAP_PASS("Variance", DENOISING_PASS_PREFILTERED_VARIANCE);
MAP_PASS("Intensity", DENOISING_PASS_PREFILTERED_INTENSITY);
MAP_PASS("Clean", DENOISING_PASS_CLEAN);
#undef MAP_PASS
return -1;
}
vector<Pass> BlenderSync::sync_render_passes(BL::RenderLayer &b_rlay,
BL::ViewLayer &b_view_layer,
bool adaptive_sampling,
const DenoiseParams &denoising)
{
vector<Pass> passes;
/* loop over passes */
BL::RenderLayer::passes_iterator b_pass_iter;
for (b_rlay.passes.begin(b_pass_iter); b_pass_iter != b_rlay.passes.end(); ++b_pass_iter) {
BL::RenderPass b_pass(*b_pass_iter);
PassType pass_type = get_pass_type(b_pass);
if (pass_type == PASS_MOTION && scene->integrator->motion_blur)
continue;
if (pass_type != PASS_NONE)
Pass::add(pass_type, passes, b_pass.name().c_str());
}
PointerRNA crl = RNA_pointer_get(&b_view_layer.ptr, "cycles");
scene->film->denoising_flags = 0;
if (denoising.use || denoising.store_passes) {
if (denoising.type == DENOISER_NLM) {
#define MAP_OPTION(name, flag) \
if (!get_boolean(crl, name)) { \
scene->film->denoising_flags |= flag; \
} \
((void)0)
MAP_OPTION("denoising_diffuse_direct", DENOISING_CLEAN_DIFFUSE_DIR);
MAP_OPTION("denoising_diffuse_indirect", DENOISING_CLEAN_DIFFUSE_IND);
MAP_OPTION("denoising_glossy_direct", DENOISING_CLEAN_GLOSSY_DIR);
MAP_OPTION("denoising_glossy_indirect", DENOISING_CLEAN_GLOSSY_IND);
MAP_OPTION("denoising_transmission_direct", DENOISING_CLEAN_TRANSMISSION_DIR);
MAP_OPTION("denoising_transmission_indirect", DENOISING_CLEAN_TRANSMISSION_IND);
#undef MAP_OPTION
}
2018-10-28 16:41:30 +01:00
b_engine.add_pass("Noisy Image", 4, "RGBA", b_view_layer.name().c_str());
}
if (denoising.store_passes) {
2018-10-30 14:13:47 +01:00
b_engine.add_pass("Denoising Normal", 3, "XYZ", b_view_layer.name().c_str());
b_engine.add_pass("Denoising Albedo", 3, "RGB", b_view_layer.name().c_str());
b_engine.add_pass("Denoising Depth", 1, "Z", b_view_layer.name().c_str());
if (denoising.type == DENOISER_NLM) {
b_engine.add_pass("Denoising Shadowing", 1, "X", b_view_layer.name().c_str());
b_engine.add_pass("Denoising Variance", 3, "RGB", b_view_layer.name().c_str());
b_engine.add_pass("Denoising Intensity", 1, "X", b_view_layer.name().c_str());
}
if (scene->film->denoising_flags & DENOISING_CLEAN_ALL_PASSES) {
2018-10-30 14:13:47 +01:00
b_engine.add_pass("Denoising Clean", 3, "RGB", b_view_layer.name().c_str());
}
}
#ifdef __KERNEL_DEBUG__
if (get_boolean(crl, "pass_debug_bvh_traversed_nodes")) {
b_engine.add_pass("Debug BVH Traversed Nodes", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_BVH_TRAVERSED_NODES, passes, "Debug BVH Traversed Nodes");
}
if (get_boolean(crl, "pass_debug_bvh_traversed_instances")) {
b_engine.add_pass("Debug BVH Traversed Instances", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_BVH_TRAVERSED_INSTANCES, passes, "Debug BVH Traversed Instances");
}
if (get_boolean(crl, "pass_debug_bvh_intersections")) {
b_engine.add_pass("Debug BVH Intersections", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_BVH_INTERSECTIONS, passes, "Debug BVH Intersections");
}
if (get_boolean(crl, "pass_debug_ray_bounces")) {
b_engine.add_pass("Debug Ray Bounces", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_RAY_BOUNCES, passes, "Debug Ray Bounces");
}
#endif
if (get_boolean(crl, "pass_debug_render_time")) {
b_engine.add_pass("Debug Render Time", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_RENDER_TIME, passes, "Debug Render Time");
}
if (get_boolean(crl, "pass_debug_sample_count")) {
b_engine.add_pass("Debug Sample Count", 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_SAMPLE_COUNT, passes, "Debug Sample Count");
}
if (get_boolean(crl, "use_pass_volume_direct")) {
b_engine.add_pass("VolumeDir", 3, "RGB", b_view_layer.name().c_str());
Pass::add(PASS_VOLUME_DIRECT, passes, "VolumeDir");
}
if (get_boolean(crl, "use_pass_volume_indirect")) {
b_engine.add_pass("VolumeInd", 3, "RGB", b_view_layer.name().c_str());
Pass::add(PASS_VOLUME_INDIRECT, passes, "VolumeInd");
}
/* Cryptomatte stores two ID/weight pairs per RGBA layer.
2019-04-29 14:14:14 +10:00
* User facing parameter is the number of pairs. */
int crypto_depth = divide_up(min(16, get_int(crl, "pass_crypto_depth")), 2);
scene->film->cryptomatte_depth = crypto_depth;
scene->film->cryptomatte_passes = CRYPT_NONE;
if (get_boolean(crl, "use_pass_crypto_object")) {
for (int i = 0; i < crypto_depth; i++) {
string passname = cryptomatte_prefix + string_printf("Object%02d", i);
2018-10-28 16:41:30 +01:00
b_engine.add_pass(passname.c_str(), 4, "RGBA", b_view_layer.name().c_str());
Pass::add(PASS_CRYPTOMATTE, passes, passname.c_str());
}
scene->film->cryptomatte_passes = (CryptomatteType)(scene->film->cryptomatte_passes |
CRYPT_OBJECT);
}
if (get_boolean(crl, "use_pass_crypto_material")) {
for (int i = 0; i < crypto_depth; i++) {
string passname = cryptomatte_prefix + string_printf("Material%02d", i);
2018-10-28 16:41:30 +01:00
b_engine.add_pass(passname.c_str(), 4, "RGBA", b_view_layer.name().c_str());
Pass::add(PASS_CRYPTOMATTE, passes, passname.c_str());
}
scene->film->cryptomatte_passes = (CryptomatteType)(scene->film->cryptomatte_passes |
CRYPT_MATERIAL);
}
if (get_boolean(crl, "use_pass_crypto_asset")) {
for (int i = 0; i < crypto_depth; i++) {
string passname = cryptomatte_prefix + string_printf("Asset%02d", i);
2018-10-28 16:41:30 +01:00
b_engine.add_pass(passname.c_str(), 4, "RGBA", b_view_layer.name().c_str());
Pass::add(PASS_CRYPTOMATTE, passes, passname.c_str());
}
scene->film->cryptomatte_passes = (CryptomatteType)(scene->film->cryptomatte_passes |
CRYPT_ASSET);
}
if (get_boolean(crl, "pass_crypto_accurate") && scene->film->cryptomatte_passes != CRYPT_NONE) {
scene->film->cryptomatte_passes = (CryptomatteType)(scene->film->cryptomatte_passes |
CRYPT_ACCURATE);
}
if (adaptive_sampling) {
Pass::add(PASS_ADAPTIVE_AUX_BUFFER, passes);
if (!get_boolean(crl, "pass_debug_sample_count")) {
Pass::add(PASS_SAMPLE_COUNT, passes);
}
}
RNA_BEGIN (&crl, b_aov, "aovs") {
bool is_color = (get_enum(b_aov, "type") == 1);
string name = get_string(b_aov, "name");
if (is_color) {
b_engine.add_pass(name.c_str(), 4, "RGBA", b_view_layer.name().c_str());
Pass::add(PASS_AOV_COLOR, passes, name.c_str());
}
else {
b_engine.add_pass(name.c_str(), 1, "X", b_view_layer.name().c_str());
Pass::add(PASS_AOV_VALUE, passes, name.c_str());
}
}
RNA_END;
scene->film->denoising_data_pass = denoising.use || denoising.store_passes;
scene->film->denoising_clean_pass = (scene->film->denoising_flags & DENOISING_CLEAN_ALL_PASSES);
scene->film->denoising_prefiltered_pass = denoising.store_passes &&
denoising.type == DENOISER_NLM;
scene->film->pass_alpha_threshold = b_view_layer.pass_alpha_threshold();
scene->film->tag_passes_update(scene, passes);
scene->film->tag_update(scene);
scene->integrator->tag_update(scene);
return passes;
}
void BlenderSync::free_data_after_sync(BL::Depsgraph &b_depsgraph)
{
/* When viewport display is not needed during render we can force some
* caches to be releases from blender side in order to reduce peak memory
* footprint during synchronization process.
*/
const bool is_interface_locked = b_engine.render() && b_engine.render().use_lock_interface();
const bool can_free_caches = (BlenderSession::headless || is_interface_locked) &&
/* Baking re-uses the depsgraph multiple times, clearing crashes
* reading un-evaluated mesh data which isn't aligned with the
* geometry we're baking, see T71012. */
!scene->bake_manager->get_baking();
2018-11-15 17:19:26 +01:00
if (!can_free_caches) {
return;
}
/* TODO(sergey): We can actually remove the whole dependency graph,
* but that will need some API support first.
*/
BL::Depsgraph::objects_iterator b_ob;
for (b_depsgraph.objects.begin(b_ob); b_ob != b_depsgraph.objects.end(); ++b_ob) {
b_ob->cache_release();
}
}
/* Scene Parameters */
SceneParams BlenderSync::get_scene_params(BL::Scene &b_scene, bool background)
{
BL::RenderSettings r = b_scene.render();
SceneParams params;
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
2014-02-03 18:55:59 +11:00
const bool shadingsystem = RNA_boolean_get(&cscene, "shading_system");
if (shadingsystem == 0)
params.shadingsystem = SHADINGSYSTEM_SVM;
else if (shadingsystem == 1)
params.shadingsystem = SHADINGSYSTEM_OSL;
if (background || DebugFlags().viewport_static_bvh)
params.bvh_type = SceneParams::BVH_STATIC;
else
params.bvh_type = SceneParams::BVH_DYNAMIC;
params.use_bvh_spatial_split = RNA_boolean_get(&cscene, "debug_use_spatial_splits");
params.use_bvh_unaligned_nodes = RNA_boolean_get(&cscene, "debug_use_hair_bvh");
params.num_bvh_time_steps = RNA_int_get(&cscene, "debug_bvh_time_steps");
PointerRNA csscene = RNA_pointer_get(&b_scene.ptr, "cycles_curves");
params.hair_subdivisions = get_int(csscene, "subdivisions");
params.hair_shape = (CurveShapeType)get_enum(
csscene, "shape", CURVE_NUM_SHAPE_TYPES, CURVE_THICK);
if (background && params.shadingsystem != SHADINGSYSTEM_OSL)
params.persistent_data = r.use_persistent_data();
else
params.persistent_data = false;
int texture_limit;
if (background) {
texture_limit = RNA_enum_get(&cscene, "texture_limit_render");
}
else {
texture_limit = RNA_enum_get(&cscene, "texture_limit");
}
if (texture_limit > 0 && b_scene.render().use_simplify()) {
params.texture_limit = 1 << (texture_limit + 6);
}
else {
params.texture_limit = 0;
}
params.bvh_layout = DebugFlags().cpu.bvh_layout;
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
params.background = background;
return params;
}
/* Session Parameters */
bool BlenderSync::get_session_pause(BL::Scene &b_scene, bool background)
{
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
return (background) ? false : get_boolean(cscene, "preview_pause");
}
SessionParams BlenderSync::get_session_params(BL::RenderEngine &b_engine,
2019-02-11 13:37:45 +01:00
BL::Preferences &b_preferences,
BL::Scene &b_scene,
bool background,
BL::ViewLayer b_view_layer)
{
SessionParams params;
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
/* feature set */
params.experimental = (get_enum(cscene, "feature_set") != 0);
/* Background */
params.background = background;
/* Device */
params.threads = blender_device_threads(b_scene);
2019-02-11 13:37:45 +01:00
params.device = blender_device_info(b_preferences, b_scene, params.background);
/* samples */
int samples = get_int(cscene, "samples");
int aa_samples = get_int(cscene, "aa_samples");
int preview_samples = get_int(cscene, "preview_samples");
int preview_aa_samples = get_int(cscene, "preview_aa_samples");
if (get_boolean(cscene, "use_square_samples")) {
aa_samples = aa_samples * aa_samples;
preview_aa_samples = preview_aa_samples * preview_aa_samples;
samples = samples * samples;
preview_samples = preview_samples * preview_samples;
}
if (get_enum(cscene, "progressive") == 0 && (params.device.type != DEVICE_OPTIX)) {
if (background) {
params.samples = aa_samples;
}
else {
params.samples = preview_aa_samples;
if (params.samples == 0)
params.samples = INT_MAX;
}
}
else {
if (background) {
params.samples = samples;
}
else {
params.samples = preview_samples;
if (params.samples == 0)
params.samples = INT_MAX;
}
}
/* Clamp samples. */
params.samples = min(params.samples, Integrator::MAX_SAMPLES);
/* tiles */
const bool is_cpu = (params.device.type == DEVICE_CPU);
if (!is_cpu && !background) {
/* currently GPU could be much slower than CPU when using tiles,
* still need to be investigated, but meanwhile make it possible
* to work in viewport smoothly
*/
int debug_tile_size = get_int(cscene, "debug_tile_size");
params.tile_size = make_int2(debug_tile_size, debug_tile_size);
}
else {
int tile_x = b_engine.tile_x();
int tile_y = b_engine.tile_y();
params.tile_size = make_int2(tile_x, tile_y);
}
if ((BlenderSession::headless == false) && background) {
params.tile_order = (TileOrder)get_enum(cscene, "tile_order");
}
else {
params.tile_order = TILE_BOTTOM_TO_TOP;
}
/* Denoising */
params.denoising = get_denoise_params(b_scene, b_view_layer, background);
if (params.denoising.use) {
/* Add additional denoising devices if we are rendering and denoising
* with different devices. */
params.device.add_denoising_devices(params.denoising.type);
/* Check if denoiser is supported by device. */
if (!(params.device.denoisers & params.denoising.type)) {
params.denoising.use = false;
}
}
/* Viewport Performance */
params.start_resolution = get_int(cscene, "preview_start_resolution");
params.pixel_size = b_engine.get_preview_pixel_size(b_scene);
/* other parameters */
params.cancel_timeout = (double)get_float(cscene, "debug_cancel_timeout");
params.reset_timeout = (double)get_float(cscene, "debug_reset_timeout");
params.text_timeout = (double)get_float(cscene, "debug_text_timeout");
/* progressive refine */
BL::RenderSettings b_r = b_scene.render();
params.progressive_refine = b_engine.is_preview() ||
get_boolean(cscene, "use_progressive_refine");
if (b_r.use_save_buffers())
params.progressive_refine = false;
if (background) {
if (params.progressive_refine)
params.progressive = true;
else
params.progressive = false;
params.start_resolution = INT_MAX;
params.pixel_size = 1;
}
else
params.progressive = true;
/* shading system - scene level needs full refresh */
2014-02-03 18:55:59 +11:00
const bool shadingsystem = RNA_boolean_get(&cscene, "shading_system");
if (shadingsystem == 0)
params.shadingsystem = SHADINGSYSTEM_SVM;
else if (shadingsystem == 1)
params.shadingsystem = SHADINGSYSTEM_OSL;
/* color managagement */
params.display_buffer_linear = b_engine.support_display_space_shader(b_scene);
if (b_engine.is_preview()) {
/* For preview rendering we're using same timeout as
* blender's job update.
*/
params.progressive_update_timeout = 0.1;
}
params.use_profiling = params.device.has_profiling && !b_engine.is_preview() && background &&
BlenderSession::print_render_stats;
params.adaptive_sampling = RNA_boolean_get(&cscene, "use_adaptive_sampling");
return params;
}
DenoiseParams BlenderSync::get_denoise_params(BL::Scene &b_scene,
BL::ViewLayer &b_view_layer,
bool background)
{
DenoiseParams denoising;
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
if (background) {
/* Final Render Denoising */
denoising.use = get_boolean(cscene, "use_denoising");
denoising.type = (DenoiserType)get_enum(cscene, "denoiser", DENOISER_NUM, DENOISER_NONE);
if (b_view_layer) {
PointerRNA clayer = RNA_pointer_get(&b_view_layer.ptr, "cycles");
if (!get_boolean(clayer, "use_denoising")) {
denoising.use = false;
}
denoising.radius = get_int(clayer, "denoising_radius");
denoising.strength = get_float(clayer, "denoising_strength");
denoising.feature_strength = get_float(clayer, "denoising_feature_strength");
denoising.relative_pca = get_boolean(clayer, "denoising_relative_pca");
denoising.input_passes = (DenoiserInput)get_enum(
clayer,
(denoising.type == DENOISER_OPTIX) ? "denoising_optix_input_passes" :
"denoising_openimagedenoise_input_passes",
DENOISER_INPUT_NUM,
DENOISER_INPUT_RGB_ALBEDO_NORMAL);
denoising.store_passes = get_boolean(clayer, "denoising_store_passes");
}
}
else {
/* Viewport Denoising */
denoising.use = get_boolean(cscene, "use_preview_denoising");
denoising.type = (DenoiserType)get_enum(
cscene, "preview_denoiser", DENOISER_NUM, DENOISER_NONE);
denoising.start_sample = get_int(cscene, "preview_denoising_start_sample");
/* Auto select fastest denoiser. */
if (denoising.type == DENOISER_NONE) {
if (!Device::available_devices(DEVICE_MASK_OPTIX).empty()) {
denoising.type = DENOISER_OPTIX;
}
else if (openimagedenoise_supported()) {
denoising.type = DENOISER_OPENIMAGEDENOISE;
}
else {
denoising.use = false;
}
}
}
return denoising;
}
CCL_NAMESPACE_END