This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/nodes/intern/node_tree_ref.cc

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

405 lines
14 KiB
C++
Raw Normal View History

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "NOD_node_tree_ref.hh"
#include "BLI_dot_export.hh"
namespace blender::nodes {
NodeTreeRef::NodeTreeRef(bNodeTree *btree) : btree_(btree)
{
Map<bNode *, NodeRef *> node_mapping;
LISTBASE_FOREACH (bNode *, bnode, &btree->nodes) {
2021-03-07 14:46:48 +01:00
NodeRef &node = *allocator_.construct<NodeRef>().release();
node.tree_ = this;
node.bnode_ = bnode;
node.id_ = nodes_by_id_.append_and_get_index(&node);
RNA_pointer_create(&btree->id, &RNA_Node, bnode, &node.rna_);
LISTBASE_FOREACH (bNodeSocket *, bsocket, &bnode->inputs) {
2021-03-07 14:46:48 +01:00
InputSocketRef &socket = *allocator_.construct<InputSocketRef>().release();
socket.node_ = &node;
socket.index_ = node.inputs_.append_and_get_index(&socket);
socket.is_input_ = true;
socket.bsocket_ = bsocket;
socket.id_ = sockets_by_id_.append_and_get_index(&socket);
RNA_pointer_create(&btree->id, &RNA_NodeSocket, bsocket, &socket.rna_);
}
LISTBASE_FOREACH (bNodeSocket *, bsocket, &bnode->outputs) {
2021-03-07 14:46:48 +01:00
OutputSocketRef &socket = *allocator_.construct<OutputSocketRef>().release();
socket.node_ = &node;
socket.index_ = node.outputs_.append_and_get_index(&socket);
socket.is_input_ = false;
socket.bsocket_ = bsocket;
socket.id_ = sockets_by_id_.append_and_get_index(&socket);
RNA_pointer_create(&btree->id, &RNA_NodeSocket, bsocket, &socket.rna_);
}
LISTBASE_FOREACH (bNodeLink *, blink, &bnode->internal_links) {
2021-03-07 14:46:48 +01:00
InternalLinkRef &internal_link = *allocator_.construct<InternalLinkRef>().release();
internal_link.blink_ = blink;
for (InputSocketRef *socket_ref : node.inputs_) {
if (socket_ref->bsocket_ == blink->fromsock) {
internal_link.from_ = socket_ref;
break;
}
}
for (OutputSocketRef *socket_ref : node.outputs_) {
if (socket_ref->bsocket_ == blink->tosock) {
internal_link.to_ = socket_ref;
break;
}
}
node.internal_links_.append(&internal_link);
}
input_sockets_.extend(node.inputs_.as_span());
output_sockets_.extend(node.outputs_.as_span());
node_mapping.add_new(bnode, &node);
}
LISTBASE_FOREACH (bNodeLink *, blink, &btree->links) {
OutputSocketRef &from_socket = this->find_output_socket(
node_mapping, blink->fromnode, blink->fromsock);
InputSocketRef &to_socket = this->find_input_socket(
node_mapping, blink->tonode, blink->tosock);
2021-03-07 14:46:48 +01:00
LinkRef &link = *allocator_.construct<LinkRef>().release();
link.from_ = &from_socket;
link.to_ = &to_socket;
link.blink_ = blink;
links_.append(&link);
from_socket.directly_linked_links_.append(&link);
to_socket.directly_linked_links_.append(&link);
}
for (InputSocketRef *input_socket : input_sockets_) {
if (input_socket->is_multi_input_socket()) {
std::sort(input_socket->directly_linked_links_.begin(),
input_socket->directly_linked_links_.end(),
[&](const LinkRef *a, const LinkRef *b) -> bool {
int index_a = a->blink()->multi_input_socket_index;
int index_b = b->blink()->multi_input_socket_index;
return index_a > index_b;
});
}
}
this->create_linked_socket_caches();
for (NodeRef *node : nodes_by_id_) {
const bNodeType *nodetype = node->bnode_->typeinfo;
nodes_by_type_.add(nodetype, node);
}
}
NodeTreeRef::~NodeTreeRef()
{
/* The destructor has to be called manually, because these types are allocated in a linear
* allocator. */
for (NodeRef *node : nodes_by_id_) {
node->~NodeRef();
}
for (InputSocketRef *socket : input_sockets_) {
socket->~InputSocketRef();
}
for (OutputSocketRef *socket : output_sockets_) {
socket->~OutputSocketRef();
}
for (LinkRef *link : links_) {
link->~LinkRef();
}
}
InputSocketRef &NodeTreeRef::find_input_socket(Map<bNode *, NodeRef *> &node_mapping,
bNode *bnode,
bNodeSocket *bsocket)
{
NodeRef *node = node_mapping.lookup(bnode);
for (InputSocketRef *socket : node->inputs_) {
if (socket->bsocket_ == bsocket) {
return *socket;
}
}
BLI_assert_unreachable();
return *node->inputs_[0];
}
OutputSocketRef &NodeTreeRef::find_output_socket(Map<bNode *, NodeRef *> &node_mapping,
bNode *bnode,
bNodeSocket *bsocket)
{
NodeRef *node = node_mapping.lookup(bnode);
for (OutputSocketRef *socket : node->outputs_) {
if (socket->bsocket_ == bsocket) {
return *socket;
}
}
BLI_assert_unreachable();
return *node->outputs_[0];
}
void NodeTreeRef::create_linked_socket_caches()
{
for (InputSocketRef *socket : input_sockets_) {
/* Find directly linked socket based on incident links. */
Vector<const SocketRef *> directly_linked_sockets;
for (LinkRef *link : socket->directly_linked_links_) {
directly_linked_sockets.append(link->from_);
}
socket->directly_linked_sockets_ = allocator_.construct_array_copy(
directly_linked_sockets.as_span());
/* Find logically linked sockets. */
Vector<const SocketRef *> logically_linked_sockets;
Vector<const SocketRef *> logically_linked_skipped_sockets;
Vector<const InputSocketRef *> handled_sockets;
socket->foreach_logical_origin(
[&](const OutputSocketRef &origin) { logically_linked_sockets.append(&origin); },
[&](const SocketRef &socket) { logically_linked_skipped_sockets.append(&socket); },
false,
handled_sockets);
if (logically_linked_sockets == directly_linked_sockets) {
socket->logically_linked_sockets_ = socket->directly_linked_sockets_;
}
else {
socket->logically_linked_sockets_ = allocator_.construct_array_copy(
logically_linked_sockets.as_span());
}
socket->logically_linked_skipped_sockets_ = allocator_.construct_array_copy(
logically_linked_skipped_sockets.as_span());
}
for (OutputSocketRef *socket : output_sockets_) {
/* Find directly linked socket based on incident links. */
Vector<const SocketRef *> directly_linked_sockets;
for (LinkRef *link : socket->directly_linked_links_) {
directly_linked_sockets.append(link->to_);
}
socket->directly_linked_sockets_ = allocator_.construct_array_copy(
directly_linked_sockets.as_span());
/* Find logically linked sockets. */
Vector<const SocketRef *> logically_linked_sockets;
Vector<const SocketRef *> logically_linked_skipped_sockets;
Vector<const OutputSocketRef *> handled_sockets;
socket->foreach_logical_target(
[&](const InputSocketRef &target) { logically_linked_sockets.append(&target); },
[&](const SocketRef &socket) { logically_linked_skipped_sockets.append(&socket); },
handled_sockets);
if (logically_linked_sockets == directly_linked_sockets) {
socket->logically_linked_sockets_ = socket->directly_linked_sockets_;
}
else {
socket->logically_linked_sockets_ = allocator_.construct_array_copy(
logically_linked_sockets.as_span());
}
socket->logically_linked_skipped_sockets_ = allocator_.construct_array_copy(
logically_linked_skipped_sockets.as_span());
}
}
void InputSocketRef::foreach_logical_origin(FunctionRef<void(const OutputSocketRef &)> origin_fn,
FunctionRef<void(const SocketRef &)> skipped_fn,
bool only_follow_first_input_link,
Vector<const InputSocketRef *> &handled_sockets) const
{
/* Protect against loops. */
if (handled_sockets.contains(this)) {
return;
}
handled_sockets.append(this);
Span<const LinkRef *> links_to_check = this->directly_linked_links();
if (only_follow_first_input_link) {
links_to_check = links_to_check.take_front(1);
}
for (const LinkRef *link : links_to_check) {
if (link->is_muted()) {
continue;
}
const OutputSocketRef &origin = link->from();
const NodeRef &origin_node = origin.node();
if (!origin.is_available()) {
/* Non available sockets are ignored. */
}
else if (origin_node.is_reroute_node()) {
const InputSocketRef &reroute_input = origin_node.input(0);
const OutputSocketRef &reroute_output = origin_node.output(0);
skipped_fn.call_safe(reroute_input);
skipped_fn.call_safe(reroute_output);
reroute_input.foreach_logical_origin(origin_fn, skipped_fn, false, handled_sockets);
}
else if (origin_node.is_muted()) {
for (const InternalLinkRef *internal_link : origin_node.internal_links()) {
if (&internal_link->to() == &origin) {
const InputSocketRef &mute_input = internal_link->from();
skipped_fn.call_safe(origin);
skipped_fn.call_safe(mute_input);
mute_input.foreach_logical_origin(origin_fn, skipped_fn, true, handled_sockets);
break;
}
}
}
else {
origin_fn(origin);
}
}
}
void OutputSocketRef::foreach_logical_target(
FunctionRef<void(const InputSocketRef &)> target_fn,
FunctionRef<void(const SocketRef &)> skipped_fn,
Vector<const OutputSocketRef *> &handled_sockets) const
{
/* Protect against loops. */
if (handled_sockets.contains(this)) {
return;
}
handled_sockets.append(this);
for (const LinkRef *link : this->directly_linked_links()) {
if (link->is_muted()) {
continue;
}
const InputSocketRef &target = link->to();
const NodeRef &target_node = target.node();
if (!target.is_available()) {
/* Non available sockets are ignored. */
}
else if (target_node.is_reroute_node()) {
const OutputSocketRef &reroute_output = target_node.output(0);
skipped_fn.call_safe(target);
skipped_fn.call_safe(reroute_output);
reroute_output.foreach_logical_target(target_fn, skipped_fn, handled_sockets);
}
else if (target_node.is_muted()) {
skipped_fn.call_safe(target);
for (const InternalLinkRef *internal_link : target_node.internal_links()) {
if (&internal_link->from() == &target) {
/* The internal link only forwards the first incoming link. */
if (target.is_multi_input_socket()) {
if (target.directly_linked_links()[0] != link) {
continue;
}
}
const OutputSocketRef &mute_output = internal_link->to();
skipped_fn.call_safe(target);
skipped_fn.call_safe(mute_output);
mute_output.foreach_logical_target(target_fn, skipped_fn, handled_sockets);
}
}
}
else {
target_fn(target);
}
}
}
Geometry Nodes: initial scattering and geometry nodes This is the initial merge from the geometry-nodes branch. Nodes: * Attribute Math * Boolean * Edge Split * Float Compare * Object Info * Point Distribute * Point Instance * Random Attribute * Random Float * Subdivision Surface * Transform * Triangulate It includes the initial evaluation of geometry node groups in the Geometry Nodes modifier. Notes on the Generic attribute access API The API adds an indirection for attribute access. That has the following benefits: * Most code does not have to care about how an attribute is stored internally. This is mainly necessary, because we have to deal with "legacy" attributes such as vertex weights and attributes that are embedded into other structs such as vertex positions. * When reading from an attribute, we generally don't care what domain the attribute is stored on. So we want to abstract away the interpolation that that adapts attributes from one domain to another domain (this is not actually implemented yet). Other possible improvements for later iterations include: * Actually implement interpolation between domains. * Don't use inheritance for the different attribute types. A single class for read access and one for write access might be enough, because we know all the ways in which attributes are stored internally. We don't want more different internal structures in the future. On the contrary, ideally we can consolidate the different storage formats in the future to reduce the need for this indirection. * Remove the need for heap allocations when creating attribute accessors. It includes commits from: * Dalai Felinto * Hans Goudey * Jacques Lucke * Léo Depoix
2020-12-02 13:25:25 +01:00
static bool has_link_cycles_recursive(const NodeRef &node,
MutableSpan<bool> visited,
MutableSpan<bool> is_in_stack)
{
const int node_id = node.id();
if (is_in_stack[node_id]) {
return true;
}
if (visited[node_id]) {
return false;
}
visited[node_id] = true;
is_in_stack[node_id] = true;
for (const OutputSocketRef *from_socket : node.outputs()) {
for (const InputSocketRef *to_socket : from_socket->directly_linked_sockets()) {
const NodeRef &to_node = to_socket->node();
if (has_link_cycles_recursive(to_node, visited, is_in_stack)) {
return true;
}
}
}
is_in_stack[node_id] = false;
return false;
}
bool NodeTreeRef::has_link_cycles() const
{
const int node_amount = nodes_by_id_.size();
Array<bool> visited(node_amount, false);
Array<bool> is_in_stack(node_amount, false);
for (const NodeRef *node : nodes_by_id_) {
if (has_link_cycles_recursive(*node, visited, is_in_stack)) {
return true;
}
}
return false;
}
std::string NodeTreeRef::to_dot() const
{
dot::DirectedGraph digraph;
digraph.set_rankdir(dot::Attr_rankdir::LeftToRight);
Map<const NodeRef *, dot::NodeWithSocketsRef> dot_nodes;
for (const NodeRef *node : nodes_by_id_) {
dot::Node &dot_node = digraph.new_node("");
dot_node.set_background_color("white");
Vector<std::string> input_names;
Vector<std::string> output_names;
for (const InputSocketRef *socket : node->inputs()) {
input_names.append(socket->name());
}
for (const OutputSocketRef *socket : node->outputs()) {
output_names.append(socket->name());
}
dot_nodes.add_new(node,
dot::NodeWithSocketsRef(dot_node, node->name(), input_names, output_names));
}
for (const OutputSocketRef *from_socket : output_sockets_) {
for (const InputSocketRef *to_socket : from_socket->directly_linked_sockets()) {
dot::NodeWithSocketsRef &from_dot_node = dot_nodes.lookup(&from_socket->node());
dot::NodeWithSocketsRef &to_dot_node = dot_nodes.lookup(&to_socket->node());
digraph.new_edge(from_dot_node.output(from_socket->index()),
to_dot_node.input(to_socket->index()));
}
}
return digraph.to_dot_string();
}
const NodeTreeRef &get_tree_ref_from_map(NodeTreeRefMap &node_tree_refs, bNodeTree &btree)
{
return *node_tree_refs.lookup_or_add_cb(&btree,
[&]() { return std::make_unique<NodeTreeRef>(&btree); });
}
} // namespace blender::nodes