This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/imbuf/intern/iris.c

943 lines
23 KiB
C
Raw Normal View History

/*
2002-10-12 11:37:38 +00:00
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
2002-10-12 11:37:38 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2002-10-12 11:37:38 +00:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup imbuf
2011-02-27 20:23:21 +00:00
*/
2002-10-12 11:37:38 +00:00
#include <string.h>
#include "BLI_utildefines.h"
#include "BLI_fileops.h"
#include "MEM_guardedalloc.h"
2002-10-12 11:37:38 +00:00
#include "imbuf.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "IMB_filetype.h"
2002-10-12 11:37:38 +00:00
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
#include "IMB_colormanagement.h"
#include "IMB_colormanagement_intern.h"
#define IMAGIC 0732
2002-10-12 11:37:38 +00:00
typedef struct {
ushort imagic; /* stuff saved on disk . . */
ushort type;
ushort dim;
ushort xsize;
ushort ysize;
ushort zsize;
uint min;
uint max;
uchar _pad1[4];
char name[80];
uint colormap;
uchar _pad2[404];
2002-10-12 11:37:38 +00:00
} IMAGE;
#define HEADER_SIZE 512
BLI_STATIC_ASSERT(sizeof(IMAGE) == HEADER_SIZE, "Invalid header size");
2002-10-12 11:37:38 +00:00
#define RINTLUM (79)
#define GINTLUM (156)
#define BINTLUM (21)
2012-05-16 09:26:37 +00:00
#define ILUM(r, g, b) ((int)(RINTLUM * (r) + GINTLUM * (g) + BINTLUM * (b)) >> 8)
2002-10-12 11:37:38 +00:00
2012-05-16 09:26:37 +00:00
#define OFFSET_R 0 /* this is byte order dependent */
#define OFFSET_G 1
#define OFFSET_B 2
// #define OFFSET_A 3
2002-10-12 11:37:38 +00:00
2012-05-16 09:26:37 +00:00
#define CHANOFFSET(z) (3 - (z)) /* this is byte order dependent */
2002-10-12 11:37:38 +00:00
// #define TYPEMASK 0xff00
2012-05-16 09:26:37 +00:00
#define BPPMASK 0x00ff
// #define ITYPE_VERBATIM 0x0000 // UNUSED
2012-05-16 09:26:37 +00:00
#define ITYPE_RLE 0x0100
#define ISRLE(type) (((type) & 0xff00) == ITYPE_RLE)
// #define ISVERBATIM(type) (((type) & 0xff00) == ITYPE_VERBATIM)
2012-05-16 09:26:37 +00:00
#define BPP(type) ((type) & BPPMASK)
#define RLE(bpp) (ITYPE_RLE | (bpp))
// #define VERBATIM(bpp) (ITYPE_VERBATIM | (bpp)) // UNUSED
// #define IBUFSIZE(pixels) ((pixels + (pixels >> 6)) << 2) // UNUSED
// #define RLE_NOP 0x00
2002-10-12 11:37:38 +00:00
/* local struct for mem access */
typedef struct MFileOffset {
const uchar *_file_data;
uint _file_offset;
} MFileOffset;
#define MFILE_DATA(inf) ((void)0, ((inf)->_file_data + (inf)->_file_offset))
#define MFILE_STEP(inf, step) { (inf)->_file_offset += step; } ((void)0)
#define MFILE_SEEK(inf, pos) { (inf)->_file_offset = pos; } ((void)0)
/* error flags */
#define DIRTY_FLAG_EOF (1 << 0)
#define DIRTY_FLAG_ENCODING (1 << 1)
2002-10-12 11:37:38 +00:00
/* funcs */
static void readheader(MFileOffset *inf, IMAGE *image);
2002-10-12 11:37:38 +00:00
static int writeheader(FILE *outf, IMAGE *image);
static ushort getshort(MFileOffset *inf);
static uint getlong(MFileOffset *inf);
static void putshort(FILE *outf, ushort val);
static int putlong(FILE *outf, uint val);
static int writetab(FILE *outf, uint *tab, int len);
static void readtab(MFileOffset *inf, uint *tab, int len);
2002-10-12 11:37:38 +00:00
static int expandrow(uchar *optr, const uchar *optr_end, const uchar *iptr, const uchar *iptr_end, int z);
static int expandrow2(float *optr, const float *optr_end, const uchar *iptr, const uchar *iptr_end, int z);
static void interleaverow(uchar *lptr, const uchar *cptr, int z, int n);
static void interleaverow2(float *lptr, const uchar *cptr, int z, int n);
static int compressrow(uchar *lbuf, uchar *rlebuf, int z, int cnt);
static void lumrow(uchar *rgbptr, uchar *lumptr, int n);
2002-10-12 11:37:38 +00:00
/*
2018-11-14 12:53:15 +11:00
* byte order independent read/write of shorts and ints.
2002-10-12 11:37:38 +00:00
*/
static ushort getshort(MFileOffset *inf)
2002-10-12 11:37:38 +00:00
{
const uchar *buf;
buf = MFILE_DATA(inf);
MFILE_STEP(inf, 2);
return ((ushort)buf[0] << 8) + ((ushort)buf[1] << 0);
2002-10-12 11:37:38 +00:00
}
static uint getlong(MFileOffset *mofs)
2002-10-12 11:37:38 +00:00
{
const uchar *buf;
buf = MFILE_DATA(mofs);
MFILE_STEP(mofs, 4);
return ((uint)buf[0] << 24) + ((uint)buf[1] << 16) + ((uint)buf[2] << 8) + ((uint)buf[3] << 0);
2002-10-12 11:37:38 +00:00
}
static void putshort(FILE *outf, ushort val)
2002-10-12 11:37:38 +00:00
{
uchar buf[2];
2002-10-12 11:37:38 +00:00
2012-05-16 09:26:37 +00:00
buf[0] = (val >> 8);
buf[1] = (val >> 0);
2012-04-29 15:47:02 +00:00
fwrite(buf, 2, 1, outf);
2002-10-12 11:37:38 +00:00
}
static int putlong(FILE *outf, uint val)
2002-10-12 11:37:38 +00:00
{
uchar buf[4];
2002-10-12 11:37:38 +00:00
2012-05-16 09:26:37 +00:00
buf[0] = (val >> 24);
buf[1] = (val >> 16);
buf[2] = (val >> 8);
buf[3] = (val >> 0);
2012-04-29 15:47:02 +00:00
return fwrite(buf, 4, 1, outf);
2002-10-12 11:37:38 +00:00
}
static void readheader(MFileOffset *inf, IMAGE *image)
2002-10-12 11:37:38 +00:00
{
memset(image, 0, sizeof(IMAGE));
image->imagic = getshort(inf);
image->type = getshort(inf);
image->dim = getshort(inf);
image->xsize = getshort(inf);
image->ysize = getshort(inf);
image->zsize = getshort(inf);
}
static int writeheader(FILE *outf, IMAGE *image)
{
2012-05-16 09:26:37 +00:00
IMAGE t = {0};
2002-10-12 11:37:38 +00:00
2012-04-29 15:47:02 +00:00
fwrite(&t, sizeof(IMAGE), 1, outf);
fseek(outf, 0, SEEK_SET);
putshort(outf, image->imagic);
putshort(outf, image->type);
putshort(outf, image->dim);
putshort(outf, image->xsize);
putshort(outf, image->ysize);
putshort(outf, image->zsize);
putlong(outf, image->min);
putlong(outf, image->max);
putlong(outf, 0);
return fwrite("no name", 8, 1, outf);
2002-10-12 11:37:38 +00:00
}
static int writetab(FILE *outf, uint *tab, int len)
2002-10-12 11:37:38 +00:00
{
int r = 0;
2002-10-12 11:37:38 +00:00
while (len) {
2012-04-29 15:47:02 +00:00
r = putlong(outf, *tab++);
2002-10-12 11:37:38 +00:00
len -= 4;
}
return r;
}
static void readtab(MFileOffset *inf, uint *tab, int len)
2002-10-12 11:37:38 +00:00
{
while (len) {
2002-10-12 11:37:38 +00:00
*tab++ = getlong(inf);
len -= 4;
}
}
static void test_endian_zbuf(struct ImBuf *ibuf)
{
int len;
int *zval;
2012-05-16 09:26:37 +00:00
if (BIG_LONG(1) == 1) return;
if (ibuf->zbuf == NULL) return;
2012-05-16 09:26:37 +00:00
len = ibuf->x * ibuf->y;
zval = ibuf->zbuf;
while (len--) {
2012-05-16 09:26:37 +00:00
zval[0] = BIG_LONG(zval[0]);
2002-10-12 11:37:38 +00:00
zval++;
}
}
/* from misc_util: flip the bytes from x */
#define GS(x) (((uchar *)(x))[0] << 8 | ((uchar *)(x))[1])
/* this one is only def-ed once, strangely... */
#define GSS(x) (((uchar *)(x))[1] << 8 | ((uchar *)(x))[0])
int imb_is_a_iris(const uchar *mem)
{
return ((GS(mem) == IMAGIC) || (GSS(mem) == IMAGIC));
}
2002-10-12 11:37:38 +00:00
/*
2018-11-14 12:53:15 +11:00
* longimagedata -
* read in a B/W RGB or RGBA iris image file and return a
* pointer to an array of ints.
2002-10-12 11:37:38 +00:00
*/
struct ImBuf *imb_loadiris(const uchar *mem, size_t size, int flags, char colorspace[IM_MAX_SPACE])
2002-10-12 11:37:38 +00:00
{
uint *base, *lptr = NULL;
float *fbase, *fptr = NULL;
uint *zbase, *zptr;
const uchar *rledat;
const uchar *mem_end = mem + size;
MFileOffset _inf_data = {mem, 0}, *inf = &_inf_data;
2002-10-12 11:37:38 +00:00
IMAGE image;
int bpp, rle, cur, badorder;
ImBuf *ibuf = NULL;
uchar dirty_flag = 0;
if (size < HEADER_SIZE) {
return NULL;
}
if (!imb_is_a_iris(mem)) {
return NULL;
}
Color Management, Stage 2: Switch color pipeline to use OpenColorIO Replace old color pipeline which was supporting linear/sRGB color spaces only with OpenColorIO-based pipeline. This introduces two configurable color spaces: - Input color space for images and movie clips. This space is used to convert images/movies from color space in which file is saved to Blender's linear space (for float images, byte images are not internally converted, only input space is stored for such images and used later). This setting could be found in image/clip data block settings. - Display color space which defines space in which particular display is working. This settings could be found in scene's Color Management panel. When render result is being displayed on the screen, apart from converting image to display space, some additional conversions could happen. This conversions are: - View, which defines tone curve applying before display transformation. These are different ways to view the image on the same display device. For example it could be used to emulate film view on sRGB display. - Exposure affects on image exposure before tone map is applied. - Gamma is post-display gamma correction, could be used to match particular display gamma. - RGB curves are user-defined curves which are applying before display transformation, could be used for different purposes. All this settings by default are only applying on render result and does not affect on other images. If some particular image needs to be affected by this transformation, "View as Render" setting of image data block should be set to truth. Movie clips are always affected by all display transformations. This commit also introduces configurable color space in which sequencer is working. This setting could be found in scene's Color Management panel and it should be used if such stuff as grading needs to be done in color space different from sRGB (i.e. when Film view on sRGB display is use, using VD16 space as sequencer's internal space would make grading working in space which is close to the space using for display). Some technical notes: - Image buffer's float buffer is now always in linear space, even if it was created from 16bit byte images. - Space of byte buffer is stored in image buffer's rect_colorspace property. - Profile of image buffer was removed since it's not longer meaningful. - OpenGL and GLSL is supposed to always work in sRGB space. It is possible to support other spaces, but it's quite large project which isn't so much important. - Legacy Color Management option disabled is emulated by using None display. It could have some regressions, but there's no clear way to avoid them. - If OpenColorIO is disabled on build time, it should make blender behaving in the same way as previous release with color management enabled. More details could be found at this page (more details would be added soon): http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Color_Management -- Thanks to Xavier Thomas, Lukas Toene for initial work on OpenColorIO integration and to Brecht van Lommel for some further development and code/ usecase review!
2012-09-15 10:05:07 +00:00
/* OCIO_TODO: only tested with 1 byte per pixel, not sure how to test with other settings */
colorspace_set_default_role(colorspace, IM_MAX_SPACE, COLOR_ROLE_DEFAULT_BYTE);
2002-10-12 11:37:38 +00:00
readheader(inf, &image);
if (image.imagic != IMAGIC) {
2012-04-29 15:47:02 +00:00
fprintf(stderr, "longimagedata: bad magic number in image file\n");
return(NULL);
2002-10-12 11:37:38 +00:00
}
2002-10-12 11:37:38 +00:00
rle = ISRLE(image.type);
bpp = BPP(image.type);
if (bpp != 1 && bpp != 2) {
2012-04-29 15:47:02 +00:00
fprintf(stderr, "longimagedata: image must have 1 or 2 byte per pix chan\n");
return(NULL);
2002-10-12 11:37:38 +00:00
}
if ((uint)image.zsize > 8) {
fprintf(stderr, "longimagedata: channels over 8 not supported\n");
return(NULL);
}
const int xsize = image.xsize;
const int ysize = image.ysize;
const int zsize = image.zsize;
2002-10-12 11:37:38 +00:00
if (flags & IB_test) {
ibuf = IMB_allocImBuf(image.xsize, image.ysize, 8 * image.zsize, 0);
if (ibuf) ibuf->ftype = IMB_FTYPE_IMAGIC;
2002-10-12 11:37:38 +00:00
return(ibuf);
}
2002-10-12 11:37:38 +00:00
if (rle) {
size_t tablen = (size_t)ysize * (size_t)zsize * sizeof(int);
MFILE_SEEK(inf, HEADER_SIZE);
uint *starttab = MEM_mallocN(tablen, "iris starttab");
uint *lengthtab = MEM_mallocN(tablen, "iris endtab");
#define MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(p) \
if (UNLIKELY((p) > mem_end)) { dirty_flag |= DIRTY_FLAG_EOF; goto fail_rle; } ((void)0)
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(MFILE_DATA(inf) + ((4 * 2) * tablen));
2012-04-29 15:47:02 +00:00
readtab(inf, starttab, tablen);
readtab(inf, lengthtab, tablen);
2002-10-12 11:37:38 +00:00
/* check data order */
cur = 0;
badorder = 0;
for (size_t y = 0; y < ysize; y++) {
for (size_t z = 0; z < zsize; z++) {
2012-05-16 09:26:37 +00:00
if (starttab[y + z * ysize] < cur) {
2002-10-12 11:37:38 +00:00
badorder = 1;
break;
}
2012-05-16 09:26:37 +00:00
cur = starttab[y + z * ysize];
2002-10-12 11:37:38 +00:00
}
if (badorder)
2002-10-12 11:37:38 +00:00
break;
}
if (bpp == 1) {
ibuf = IMB_allocImBuf(xsize, ysize, 8 * zsize, IB_rect);
if (!ibuf) {
goto fail_rle;
}
if (ibuf->planes > 32) ibuf->planes = 32;
base = ibuf->rect;
zbase = (uint *)ibuf->zbuf;
if (badorder) {
for (size_t z = 0; z < zsize; z++) {
lptr = base;
for (size_t y = 0; y < ysize; y++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
uint *lptr_next = lptr + xsize;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
dirty_flag |= expandrow((uchar *)lptr, (uchar *)lptr_next, rledat, rledat_next, 3 - z);
lptr = lptr_next;
}
}
}
else {
2002-10-12 11:37:38 +00:00
lptr = base;
zptr = zbase;
for (size_t y = 0; y < ysize; y++) {
uint *lptr_next = lptr + xsize;
uint *zptr_next = zptr + xsize;
for (size_t z = 0; z < zsize; z++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
if (z < 4) {
dirty_flag |= expandrow((uchar *)lptr, (uchar *)lptr_next, rledat, rledat_next, 3 - z);
}
else if (z < 8) {
dirty_flag |= expandrow((uchar *)zptr, (uchar *)zptr_next, rledat, rledat_next, 7 - z);
}
}
lptr = lptr_next;
zptr = zptr_next;
2002-10-12 11:37:38 +00:00
}
}
}
2012-05-16 09:26:37 +00:00
else { /* bpp == 2 */
2012-05-16 09:26:37 +00:00
ibuf = IMB_allocImBuf(xsize, ysize, 32, (flags & IB_rect) | IB_rectfloat);
if (!ibuf) {
goto fail_rle;
}
fbase = ibuf->rect_float;
if (badorder) {
for (size_t z = 0; z < zsize; z++) {
fptr = fbase;
for (size_t y = 0; y < ysize; y++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
float *fptr_next = fptr + (xsize * 4);
dirty_flag |= expandrow2(fptr, fptr_next, rledat, rledat_next, 3 - z);
fptr = fptr_next;
}
}
}
else {
fptr = fbase;
float *fptr_next = fptr + (xsize * 4);
2002-10-12 11:37:38 +00:00
for (size_t y = 0; y < ysize; y++) {
for (size_t z = 0; z < zsize; z++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
dirty_flag |= expandrow2(fptr, fptr_next, rledat, rledat_next, 3 - z);
}
fptr = fptr_next;
2002-10-12 11:37:38 +00:00
}
}
}
#undef MFILE_CAPACITY_AT_PTR_OK_OR_FAIL
fail_rle:
MEM_freeN(starttab);
MEM_freeN(lengthtab);
if (!ibuf) {
return NULL;
}
}
else {
#define MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(p) \
if (UNLIKELY((p) > mem_end)) { dirty_flag |= DIRTY_FLAG_EOF; goto fail_uncompressed; } ((void)0)
if (bpp == 1) {
ibuf = IMB_allocImBuf(xsize, ysize, 8 * zsize, IB_rect);
if (!ibuf) {
goto fail_uncompressed;
}
if (ibuf->planes > 32) ibuf->planes = 32;
base = ibuf->rect;
zbase = (uint *)ibuf->zbuf;
MFILE_SEEK(inf, HEADER_SIZE);
rledat = MFILE_DATA(inf);
for (size_t z = 0; z < zsize; z++) {
2012-05-16 09:26:37 +00:00
if (z < 4) lptr = base;
else if (z < 8) lptr = zbase;
for (size_t y = 0; y < ysize; y++) {
const uchar *rledat_next = rledat + xsize;
const int z_ofs = 3 - z;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next + z_ofs);
interleaverow((uchar *)lptr, rledat, z_ofs, xsize);
rledat = rledat_next;
lptr += xsize;
}
}
}
2012-05-16 09:26:37 +00:00
else { /* bpp == 2 */
2012-05-16 09:26:37 +00:00
ibuf = IMB_allocImBuf(xsize, ysize, 32, (flags & IB_rect) | IB_rectfloat);
if (!ibuf) {
goto fail_uncompressed;
}
2002-10-12 11:37:38 +00:00
fbase = ibuf->rect_float;
MFILE_SEEK(inf, HEADER_SIZE);
rledat = MFILE_DATA(inf);
for (size_t z = 0; z < zsize; z++) {
fptr = fbase;
for (size_t y = 0; y < ysize; y++) {
const uchar *rledat_next = rledat + xsize * 2;
const int z_ofs = 3 - z;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next + z_ofs);
interleaverow2(fptr, rledat, z_ofs, xsize);
rledat = rledat_next;
fptr += xsize * 4;
}
2002-10-12 11:37:38 +00:00
}
2002-10-12 11:37:38 +00:00
}
#undef MFILE_CAPACITY_AT_PTR_OK_OR_FAIL
fail_uncompressed:
if (!ibuf) {
return NULL;
}
2002-10-12 11:37:38 +00:00
}
if (bpp == 1) {
2012-05-16 09:26:37 +00:00
uchar *rect;
if (image.zsize == 1) {
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = 255;
rect[1] = rect[2] = rect[3];
rect += 4;
}
}
else if (image.zsize == 2) {
/* grayscale with alpha */
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = rect[2];
rect[1] = rect[2] = rect[3];
rect += 4;
}
}
else if (image.zsize == 3) {
/* add alpha */
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = 255;
rect += 4;
}
2002-10-12 11:37:38 +00:00
}
}
2012-05-16 09:26:37 +00:00
else { /* bpp == 2 */
if (image.zsize == 1) {
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = 1;
fbase[1] = fbase[2] = fbase[3];
fbase += 4;
}
}
else if (image.zsize == 2) {
/* grayscale with alpha */
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = fbase[2];
fbase[1] = fbase[2] = fbase[3];
fbase += 4;
}
}
else if (image.zsize == 3) {
/* add alpha */
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = 1;
fbase += 4;
}
}
if (flags & IB_rect) {
IMB_rect_from_float(ibuf);
2002-10-12 11:37:38 +00:00
}
2002-10-12 11:37:38 +00:00
}
if (dirty_flag) {
fprintf(stderr, "longimagedata: corrupt file content (%d)\n", dirty_flag);
}
ibuf->ftype = IMB_FTYPE_IMAGIC;
test_endian_zbuf(ibuf);
if (ibuf->rect) {
IMB_convert_rgba_to_abgr(ibuf);
2002-10-12 11:37:38 +00:00
}
return(ibuf);
}
/* static utility functions for longimagedata */
static void interleaverow(uchar *lptr, const uchar *cptr, int z, int n)
2002-10-12 11:37:38 +00:00
{
lptr += z;
while (n--) {
2002-10-12 11:37:38 +00:00
*lptr = *cptr++;
lptr += 4;
}
}
static void interleaverow2(float *lptr, const uchar *cptr, int z, int n)
{
lptr += z;
while (n--) {
2012-05-16 09:26:37 +00:00
*lptr = ((cptr[0] << 8) | (cptr[1] << 0)) / (float)0xFFFF;
cptr += 2;
lptr += 4;
}
}
static int expandrow2(
float *optr, const float *optr_end,
const uchar *iptr, const uchar *iptr_end, int z)
{
ushort pixel, count;
float pixel_f;
#define EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next) \
if (UNLIKELY(iptr_next > iptr_end)) { goto fail; } ((void)0)
#define EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next) \
if (UNLIKELY(optr_next > optr_end)) { goto fail; } ((void)0)
optr += z;
optr_end += z;
while (1) {
const uchar *iptr_next = iptr + 2;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
2012-05-16 09:26:37 +00:00
pixel = (iptr[0] << 8) | (iptr[1] << 0);
iptr = iptr_next;
2012-05-16 09:26:37 +00:00
if (!(count = (pixel & 0x7f)) )
return false;
const float *optr_next = optr + count;
EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next);
if (pixel & 0x80) {
iptr_next = iptr + (count * 2);
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
2012-05-16 09:26:37 +00:00
while (count >= 8) {
optr[0 * 4] = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
optr[1 * 4] = ((iptr[2] << 8) | (iptr[3] << 0)) / (float)0xFFFF;
optr[2 * 4] = ((iptr[4] << 8) | (iptr[5] << 0)) / (float)0xFFFF;
optr[3 * 4] = ((iptr[6] << 8) | (iptr[7] << 0)) / (float)0xFFFF;
optr[4 * 4] = ((iptr[8] << 8) | (iptr[9] << 0)) / (float)0xFFFF;
optr[5 * 4] = ((iptr[10] << 8) | (iptr[11] << 0)) / (float)0xFFFF;
optr[6 * 4] = ((iptr[12] << 8) | (iptr[13] << 0)) / (float)0xFFFF;
optr[7 * 4] = ((iptr[14] << 8) | (iptr[15] << 0)) / (float)0xFFFF;
optr += 8 * 4;
iptr += 8 * 2;
count -= 8;
}
while (count--) {
2012-05-16 09:26:37 +00:00
*optr = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
iptr += 2;
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
else {
iptr_next = iptr + 2;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
2012-05-16 09:26:37 +00:00
pixel_f = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
iptr = iptr_next;
2012-05-16 09:26:37 +00:00
while (count >= 8) {
optr[0 * 4] = pixel_f;
optr[1 * 4] = pixel_f;
optr[2 * 4] = pixel_f;
optr[3 * 4] = pixel_f;
optr[4 * 4] = pixel_f;
optr[5 * 4] = pixel_f;
optr[6 * 4] = pixel_f;
optr[7 * 4] = pixel_f;
optr += 8 * 4;
count -= 8;
}
while (count--) {
*optr = pixel_f;
2012-05-16 09:26:37 +00:00
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
BLI_assert(optr == optr_next);
}
return false;
#undef EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL
#undef EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL
fail:
return DIRTY_FLAG_ENCODING;
}
static int expandrow(
uchar *optr, const uchar *optr_end,
const uchar *iptr, const uchar *iptr_end, int z)
2002-10-12 11:37:38 +00:00
{
uchar pixel, count;
2002-10-12 11:37:38 +00:00
#define EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next) \
if (UNLIKELY(iptr_next > iptr_end)) { goto fail; } ((void)0)
#define EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next) \
if (UNLIKELY(optr_next > optr_end)) { goto fail; } ((void)0)
2002-10-12 11:37:38 +00:00
optr += z;
optr_end += z;
while (1) {
const uchar *iptr_next = iptr + 1;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
pixel = *iptr;
iptr = iptr_next;
2012-05-16 09:26:37 +00:00
if (!(count = (pixel & 0x7f)) )
return false;
const uchar *optr_next = optr + ((int)count * 4);
EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next);
if (pixel & 0x80) {
iptr_next = iptr + count;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
2012-05-16 09:26:37 +00:00
while (count >= 8) {
optr[0 * 4] = iptr[0];
optr[1 * 4] = iptr[1];
optr[2 * 4] = iptr[2];
optr[3 * 4] = iptr[3];
optr[4 * 4] = iptr[4];
optr[5 * 4] = iptr[5];
optr[6 * 4] = iptr[6];
optr[7 * 4] = iptr[7];
optr += 8 * 4;
2002-10-12 11:37:38 +00:00
iptr += 8;
count -= 8;
}
while (count--) {
2002-10-12 11:37:38 +00:00
*optr = *iptr++;
2012-05-16 09:26:37 +00:00
optr += 4;
2002-10-12 11:37:38 +00:00
}
BLI_assert(iptr == iptr_next);
}
else {
iptr_next = iptr + 1;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
2002-10-12 11:37:38 +00:00
pixel = *iptr++;
2012-05-16 09:26:37 +00:00
while (count >= 8) {
optr[0 * 4] = pixel;
optr[1 * 4] = pixel;
optr[2 * 4] = pixel;
optr[3 * 4] = pixel;
optr[4 * 4] = pixel;
optr[5 * 4] = pixel;
optr[6 * 4] = pixel;
optr[7 * 4] = pixel;
optr += 8 * 4;
2002-10-12 11:37:38 +00:00
count -= 8;
}
while (count--) {
2002-10-12 11:37:38 +00:00
*optr = pixel;
2012-05-16 09:26:37 +00:00
optr += 4;
2002-10-12 11:37:38 +00:00
}
BLI_assert(iptr == iptr_next);
2002-10-12 11:37:38 +00:00
}
BLI_assert(optr == optr_next);
2002-10-12 11:37:38 +00:00
}
return false;
#undef EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL
#undef EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL
fail:
return DIRTY_FLAG_ENCODING;
2002-10-12 11:37:38 +00:00
}
2018-09-02 18:51:31 +10:00
/**
* Copy an array of ints to an iris image file.
* Each int represents one pixel. xsize and ysize specify the dimensions of
* the pixel array. zsize specifies what kind of image file to
* write out. if zsize is 1, the luminance of the pixels are
* calculated, and a single channel black and white image is saved.
* If zsize is 3, an RGB image file is saved. If zsize is 4, an
* RGBA image file is saved.
2002-10-12 11:37:38 +00:00
*
2018-09-02 18:51:31 +10:00
* Added: zbuf write
2002-10-12 11:37:38 +00:00
*/
static int output_iris(uint *lptr, int xsize, int ysize, int zsize, const char *name, int *zptr)
2002-10-12 11:37:38 +00:00
{
FILE *outf;
IMAGE *image;
int tablen, y, z, pos, len = 0;
uint *starttab, *lengthtab;
uchar *rlebuf;
uint *lumbuf;
2002-10-12 11:37:38 +00:00
int rlebuflen, goodwrite;
goodwrite = 1;
outf = BLI_fopen(name, "wb");
if (!outf) return 0;
2002-10-12 11:37:38 +00:00
2012-05-16 09:26:37 +00:00
tablen = ysize * zsize * sizeof(int);
2002-10-12 11:37:38 +00:00
image = (IMAGE *)MEM_mallocN(sizeof(IMAGE), "iris image");
starttab = (uint *)MEM_mallocN(tablen, "iris starttab");
lengthtab = (uint *)MEM_mallocN(tablen, "iris lengthtab");
2012-05-16 09:26:37 +00:00
rlebuflen = 1.05 * xsize + 10;
rlebuf = (uchar *)MEM_mallocN(rlebuflen, "iris rlebuf");
lumbuf = (uint *)MEM_mallocN(xsize * sizeof(int), "iris lumbuf");
2002-10-12 11:37:38 +00:00
memset(image, 0, sizeof(IMAGE));
image->imagic = IMAGIC;
2002-10-12 11:37:38 +00:00
image->type = RLE(1);
2012-05-16 09:26:37 +00:00
if (zsize > 1)
2002-10-12 11:37:38 +00:00
image->dim = 3;
else
image->dim = 2;
image->xsize = xsize;
image->ysize = ysize;
image->zsize = zsize;
image->min = 0;
image->max = 255;
2012-04-29 15:47:02 +00:00
goodwrite *= writeheader(outf, image);
fseek(outf, HEADER_SIZE + (2 * tablen), SEEK_SET);
pos = HEADER_SIZE + (2 * tablen);
2002-10-12 11:37:38 +00:00
for (y = 0; y < ysize; y++) {
for (z = 0; z < zsize; z++) {
2002-10-12 11:37:38 +00:00
if (zsize == 1) {
2012-04-29 15:47:02 +00:00
lumrow((uchar *)lptr, (uchar *)lumbuf, xsize);
len = compressrow((uchar *)lumbuf, rlebuf, CHANOFFSET(z), xsize);
2002-10-12 11:37:38 +00:00
}
else {
2012-05-16 09:26:37 +00:00
if (z < 4) {
2012-04-29 15:47:02 +00:00
len = compressrow((uchar *)lptr, rlebuf, CHANOFFSET(z), xsize);
2002-10-12 11:37:38 +00:00
}
2012-05-16 09:26:37 +00:00
else if (z < 8 && zptr) {
len = compressrow((uchar *)zptr, rlebuf, CHANOFFSET(z - 4), xsize);
2002-10-12 11:37:38 +00:00
}
}
2012-05-16 09:26:37 +00:00
if (len > rlebuflen) {
2012-04-29 15:47:02 +00:00
fprintf(stderr, "output_iris: rlebuf is too small - bad poop\n");
2002-10-12 11:37:38 +00:00
exit(1);
}
goodwrite *= fwrite(rlebuf, len, 1, outf);
2012-05-16 09:26:37 +00:00
starttab[y + z * ysize] = pos;
lengthtab[y + z * ysize] = len;
2002-10-12 11:37:38 +00:00
pos += len;
}
lptr += xsize;
if (zptr) zptr += xsize;
2002-10-12 11:37:38 +00:00
}
fseek(outf, HEADER_SIZE, SEEK_SET);
2012-04-29 15:47:02 +00:00
goodwrite *= writetab(outf, starttab, tablen);
goodwrite *= writetab(outf, lengthtab, tablen);
MEM_freeN(image);
MEM_freeN(starttab);
MEM_freeN(lengthtab);
MEM_freeN(rlebuf);
MEM_freeN(lumbuf);
2002-10-12 11:37:38 +00:00
fclose(outf);
if (goodwrite)
2002-10-12 11:37:38 +00:00
return 1;
else {
2012-04-29 15:47:02 +00:00
fprintf(stderr, "output_iris: not enough space for image!!\n");
2002-10-12 11:37:38 +00:00
return 0;
}
}
/* static utility functions for output_iris */
static void lumrow(uchar *rgbptr, uchar *lumptr, int n)
2002-10-12 11:37:38 +00:00
{
lumptr += CHANOFFSET(0);
while (n--) {
2012-04-29 15:47:02 +00:00
*lumptr = ILUM(rgbptr[OFFSET_R], rgbptr[OFFSET_G], rgbptr[OFFSET_B]);
2002-10-12 11:37:38 +00:00
lumptr += 4;
rgbptr += 4;
}
}
static int compressrow(uchar *lbuf, uchar *rlebuf, int z, int cnt)
2002-10-12 11:37:38 +00:00
{
uchar *iptr, *ibufend, *sptr, *optr;
2002-10-12 11:37:38 +00:00
short todo, cc;
int count;
lbuf += z;
iptr = lbuf;
2012-05-16 09:26:37 +00:00
ibufend = iptr + cnt * 4;
2002-10-12 11:37:38 +00:00
optr = rlebuf;
2012-05-16 09:26:37 +00:00
while (iptr < ibufend) {
2002-10-12 11:37:38 +00:00
sptr = iptr;
iptr += 8;
2012-05-16 09:26:37 +00:00
while ((iptr < ibufend) && ((iptr[-8] != iptr[-4]) || (iptr[-4] != iptr[0])))
iptr += 4;
2002-10-12 11:37:38 +00:00
iptr -= 8;
2012-05-16 09:26:37 +00:00
count = (iptr - sptr) / 4;
while (count) {
2012-05-16 09:26:37 +00:00
todo = count > 126 ? 126 : count;
2002-10-12 11:37:38 +00:00
count -= todo;
2012-05-16 09:26:37 +00:00
*optr++ = 0x80 | todo;
while (todo > 8) {
optr[0] = sptr[0 * 4];
optr[1] = sptr[1 * 4];
optr[2] = sptr[2 * 4];
optr[3] = sptr[3 * 4];
optr[4] = sptr[4 * 4];
optr[5] = sptr[5 * 4];
optr[6] = sptr[6 * 4];
optr[7] = sptr[7 * 4];
2002-10-12 11:37:38 +00:00
optr += 8;
2012-05-16 09:26:37 +00:00
sptr += 8 * 4;
2002-10-12 11:37:38 +00:00
todo -= 8;
}
while (todo--) {
2002-10-12 11:37:38 +00:00
*optr++ = *sptr;
sptr += 4;
}
}
sptr = iptr;
cc = *iptr;
iptr += 4;
2012-05-16 09:26:37 +00:00
while ( (iptr < ibufend) && (*iptr == cc) )
2002-10-12 11:37:38 +00:00
iptr += 4;
2012-05-16 09:26:37 +00:00
count = (iptr - sptr) / 4;
while (count) {
2012-05-16 09:26:37 +00:00
todo = count > 126 ? 126 : count;
2002-10-12 11:37:38 +00:00
count -= todo;
*optr++ = todo;
*optr++ = cc;
}
}
*optr++ = 0;
return optr - (uchar *)rlebuf;
2002-10-12 11:37:38 +00:00
}
2012-05-16 09:26:37 +00:00
int imb_saveiris(struct ImBuf *ibuf, const char *name, int flags)
2002-10-12 11:37:38 +00:00
{
short zsize;
int ret;
zsize = (ibuf->planes + 7) >> 3;
if (flags & IB_zbuf && ibuf->zbuf != NULL) zsize = 8;
IMB_convert_rgba_to_abgr(ibuf);
2002-10-12 11:37:38 +00:00
test_endian_zbuf(ibuf);
ret = output_iris(ibuf->rect, ibuf->x, ibuf->y, zsize, name, ibuf->zbuf);
2002-10-12 11:37:38 +00:00
/* restore! Quite clumsy, 2 times a switch... maybe better a malloc ? */
IMB_convert_rgba_to_abgr(ibuf);
2002-10-12 11:37:38 +00:00
test_endian_zbuf(ibuf);
return(ret);
}