This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/imbuf/intern/iris.c

943 lines
23 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup imbuf
*/
#include <string.h>
#include "BLI_utildefines.h"
#include "BLI_fileops.h"
#include "MEM_guardedalloc.h"
#include "imbuf.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
#include "IMB_filetype.h"
#include "IMB_colormanagement.h"
#include "IMB_colormanagement_intern.h"
#define IMAGIC 0732
typedef struct {
ushort imagic; /* stuff saved on disk . . */
ushort type;
ushort dim;
ushort xsize;
ushort ysize;
ushort zsize;
uint min;
uint max;
uchar _pad1[4];
char name[80];
uint colormap;
uchar _pad2[404];
} IMAGE;
#define HEADER_SIZE 512
BLI_STATIC_ASSERT(sizeof(IMAGE) == HEADER_SIZE, "Invalid header size");
#define RINTLUM (79)
#define GINTLUM (156)
#define BINTLUM (21)
#define ILUM(r, g, b) ((int)(RINTLUM * (r) + GINTLUM * (g) + BINTLUM * (b)) >> 8)
#define OFFSET_R 0 /* this is byte order dependent */
#define OFFSET_G 1
#define OFFSET_B 2
// #define OFFSET_A 3
#define CHANOFFSET(z) (3 - (z)) /* this is byte order dependent */
// #define TYPEMASK 0xff00
#define BPPMASK 0x00ff
// #define ITYPE_VERBATIM 0x0000 // UNUSED
#define ITYPE_RLE 0x0100
#define ISRLE(type) (((type) & 0xff00) == ITYPE_RLE)
// #define ISVERBATIM(type) (((type) & 0xff00) == ITYPE_VERBATIM)
#define BPP(type) ((type) & BPPMASK)
#define RLE(bpp) (ITYPE_RLE | (bpp))
// #define VERBATIM(bpp) (ITYPE_VERBATIM | (bpp)) // UNUSED
// #define IBUFSIZE(pixels) ((pixels + (pixels >> 6)) << 2) // UNUSED
// #define RLE_NOP 0x00
/* local struct for mem access */
typedef struct MFileOffset {
const uchar *_file_data;
uint _file_offset;
} MFileOffset;
#define MFILE_DATA(inf) ((void)0, ((inf)->_file_data + (inf)->_file_offset))
#define MFILE_STEP(inf, step) { (inf)->_file_offset += step; } ((void)0)
#define MFILE_SEEK(inf, pos) { (inf)->_file_offset = pos; } ((void)0)
/* error flags */
#define DIRTY_FLAG_EOF (1 << 0)
#define DIRTY_FLAG_ENCODING (1 << 1)
/* funcs */
static void readheader(MFileOffset *inf, IMAGE *image);
static int writeheader(FILE *outf, IMAGE *image);
static ushort getshort(MFileOffset *inf);
static uint getlong(MFileOffset *inf);
static void putshort(FILE *outf, ushort val);
static int putlong(FILE *outf, uint val);
static int writetab(FILE *outf, uint *tab, int len);
static void readtab(MFileOffset *inf, uint *tab, int len);
static int expandrow(uchar *optr, const uchar *optr_end, const uchar *iptr, const uchar *iptr_end, int z);
static int expandrow2(float *optr, const float *optr_end, const uchar *iptr, const uchar *iptr_end, int z);
static void interleaverow(uchar *lptr, const uchar *cptr, int z, int n);
static void interleaverow2(float *lptr, const uchar *cptr, int z, int n);
static int compressrow(uchar *lbuf, uchar *rlebuf, int z, int cnt);
static void lumrow(uchar *rgbptr, uchar *lumptr, int n);
/*
* byte order independent read/write of shorts and ints.
*/
static ushort getshort(MFileOffset *inf)
{
const uchar *buf;
buf = MFILE_DATA(inf);
MFILE_STEP(inf, 2);
return ((ushort)buf[0] << 8) + ((ushort)buf[1] << 0);
}
static uint getlong(MFileOffset *mofs)
{
const uchar *buf;
buf = MFILE_DATA(mofs);
MFILE_STEP(mofs, 4);
return ((uint)buf[0] << 24) + ((uint)buf[1] << 16) + ((uint)buf[2] << 8) + ((uint)buf[3] << 0);
}
static void putshort(FILE *outf, ushort val)
{
uchar buf[2];
buf[0] = (val >> 8);
buf[1] = (val >> 0);
fwrite(buf, 2, 1, outf);
}
static int putlong(FILE *outf, uint val)
{
uchar buf[4];
buf[0] = (val >> 24);
buf[1] = (val >> 16);
buf[2] = (val >> 8);
buf[3] = (val >> 0);
return fwrite(buf, 4, 1, outf);
}
static void readheader(MFileOffset *inf, IMAGE *image)
{
memset(image, 0, sizeof(IMAGE));
image->imagic = getshort(inf);
image->type = getshort(inf);
image->dim = getshort(inf);
image->xsize = getshort(inf);
image->ysize = getshort(inf);
image->zsize = getshort(inf);
}
static int writeheader(FILE *outf, IMAGE *image)
{
IMAGE t = {0};
fwrite(&t, sizeof(IMAGE), 1, outf);
fseek(outf, 0, SEEK_SET);
putshort(outf, image->imagic);
putshort(outf, image->type);
putshort(outf, image->dim);
putshort(outf, image->xsize);
putshort(outf, image->ysize);
putshort(outf, image->zsize);
putlong(outf, image->min);
putlong(outf, image->max);
putlong(outf, 0);
return fwrite("no name", 8, 1, outf);
}
static int writetab(FILE *outf, uint *tab, int len)
{
int r = 0;
while (len) {
r = putlong(outf, *tab++);
len -= 4;
}
return r;
}
static void readtab(MFileOffset *inf, uint *tab, int len)
{
while (len) {
*tab++ = getlong(inf);
len -= 4;
}
}
static void test_endian_zbuf(struct ImBuf *ibuf)
{
int len;
int *zval;
if (BIG_LONG(1) == 1) return;
if (ibuf->zbuf == NULL) return;
len = ibuf->x * ibuf->y;
zval = ibuf->zbuf;
while (len--) {
zval[0] = BIG_LONG(zval[0]);
zval++;
}
}
/* from misc_util: flip the bytes from x */
#define GS(x) (((uchar *)(x))[0] << 8 | ((uchar *)(x))[1])
/* this one is only def-ed once, strangely... */
#define GSS(x) (((uchar *)(x))[1] << 8 | ((uchar *)(x))[0])
int imb_is_a_iris(const uchar *mem)
{
return ((GS(mem) == IMAGIC) || (GSS(mem) == IMAGIC));
}
/*
* longimagedata -
* read in a B/W RGB or RGBA iris image file and return a
* pointer to an array of ints.
*/
struct ImBuf *imb_loadiris(const uchar *mem, size_t size, int flags, char colorspace[IM_MAX_SPACE])
{
uint *base, *lptr = NULL;
float *fbase, *fptr = NULL;
uint *zbase, *zptr;
const uchar *rledat;
const uchar *mem_end = mem + size;
MFileOffset _inf_data = {mem, 0}, *inf = &_inf_data;
IMAGE image;
int bpp, rle, cur, badorder;
ImBuf *ibuf = NULL;
uchar dirty_flag = 0;
if (size < HEADER_SIZE) {
return NULL;
}
if (!imb_is_a_iris(mem)) {
return NULL;
}
/* OCIO_TODO: only tested with 1 byte per pixel, not sure how to test with other settings */
colorspace_set_default_role(colorspace, IM_MAX_SPACE, COLOR_ROLE_DEFAULT_BYTE);
readheader(inf, &image);
if (image.imagic != IMAGIC) {
fprintf(stderr, "longimagedata: bad magic number in image file\n");
return(NULL);
}
rle = ISRLE(image.type);
bpp = BPP(image.type);
if (bpp != 1 && bpp != 2) {
fprintf(stderr, "longimagedata: image must have 1 or 2 byte per pix chan\n");
return(NULL);
}
if ((uint)image.zsize > 8) {
fprintf(stderr, "longimagedata: channels over 8 not supported\n");
return(NULL);
}
const int xsize = image.xsize;
const int ysize = image.ysize;
const int zsize = image.zsize;
if (flags & IB_test) {
ibuf = IMB_allocImBuf(image.xsize, image.ysize, 8 * image.zsize, 0);
if (ibuf) ibuf->ftype = IMB_FTYPE_IMAGIC;
return(ibuf);
}
if (rle) {
size_t tablen = (size_t)ysize * (size_t)zsize * sizeof(int);
MFILE_SEEK(inf, HEADER_SIZE);
uint *starttab = MEM_mallocN(tablen, "iris starttab");
uint *lengthtab = MEM_mallocN(tablen, "iris endtab");
#define MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(p) \
if (UNLIKELY((p) > mem_end)) { dirty_flag |= DIRTY_FLAG_EOF; goto fail_rle; } ((void)0)
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(MFILE_DATA(inf) + ((4 * 2) * tablen));
readtab(inf, starttab, tablen);
readtab(inf, lengthtab, tablen);
/* check data order */
cur = 0;
badorder = 0;
for (size_t y = 0; y < ysize; y++) {
for (size_t z = 0; z < zsize; z++) {
if (starttab[y + z * ysize] < cur) {
badorder = 1;
break;
}
cur = starttab[y + z * ysize];
}
if (badorder)
break;
}
if (bpp == 1) {
ibuf = IMB_allocImBuf(xsize, ysize, 8 * zsize, IB_rect);
if (!ibuf) {
goto fail_rle;
}
if (ibuf->planes > 32) ibuf->planes = 32;
base = ibuf->rect;
zbase = (uint *)ibuf->zbuf;
if (badorder) {
for (size_t z = 0; z < zsize; z++) {
lptr = base;
for (size_t y = 0; y < ysize; y++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
uint *lptr_next = lptr + xsize;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
dirty_flag |= expandrow((uchar *)lptr, (uchar *)lptr_next, rledat, rledat_next, 3 - z);
lptr = lptr_next;
}
}
}
else {
lptr = base;
zptr = zbase;
for (size_t y = 0; y < ysize; y++) {
uint *lptr_next = lptr + xsize;
uint *zptr_next = zptr + xsize;
for (size_t z = 0; z < zsize; z++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
if (z < 4) {
dirty_flag |= expandrow((uchar *)lptr, (uchar *)lptr_next, rledat, rledat_next, 3 - z);
}
else if (z < 8) {
dirty_flag |= expandrow((uchar *)zptr, (uchar *)zptr_next, rledat, rledat_next, 7 - z);
}
}
lptr = lptr_next;
zptr = zptr_next;
}
}
}
else { /* bpp == 2 */
ibuf = IMB_allocImBuf(xsize, ysize, 32, (flags & IB_rect) | IB_rectfloat);
if (!ibuf) {
goto fail_rle;
}
fbase = ibuf->rect_float;
if (badorder) {
for (size_t z = 0; z < zsize; z++) {
fptr = fbase;
for (size_t y = 0; y < ysize; y++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
float *fptr_next = fptr + (xsize * 4);
dirty_flag |= expandrow2(fptr, fptr_next, rledat, rledat_next, 3 - z);
fptr = fptr_next;
}
}
}
else {
fptr = fbase;
float *fptr_next = fptr + (xsize * 4);
for (size_t y = 0; y < ysize; y++) {
for (size_t z = 0; z < zsize; z++) {
MFILE_SEEK(inf, starttab[y + z * ysize]);
rledat = MFILE_DATA(inf);
MFILE_STEP(inf, lengthtab[y + z * ysize]);
const uchar *rledat_next = MFILE_DATA(inf);
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next);
dirty_flag |= expandrow2(fptr, fptr_next, rledat, rledat_next, 3 - z);
}
fptr = fptr_next;
}
}
}
#undef MFILE_CAPACITY_AT_PTR_OK_OR_FAIL
fail_rle:
MEM_freeN(starttab);
MEM_freeN(lengthtab);
if (!ibuf) {
return NULL;
}
}
else {
#define MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(p) \
if (UNLIKELY((p) > mem_end)) { dirty_flag |= DIRTY_FLAG_EOF; goto fail_uncompressed; } ((void)0)
if (bpp == 1) {
ibuf = IMB_allocImBuf(xsize, ysize, 8 * zsize, IB_rect);
if (!ibuf) {
goto fail_uncompressed;
}
if (ibuf->planes > 32) ibuf->planes = 32;
base = ibuf->rect;
zbase = (uint *)ibuf->zbuf;
MFILE_SEEK(inf, HEADER_SIZE);
rledat = MFILE_DATA(inf);
for (size_t z = 0; z < zsize; z++) {
if (z < 4) lptr = base;
else if (z < 8) lptr = zbase;
for (size_t y = 0; y < ysize; y++) {
const uchar *rledat_next = rledat + xsize;
const int z_ofs = 3 - z;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next + z_ofs);
interleaverow((uchar *)lptr, rledat, z_ofs, xsize);
rledat = rledat_next;
lptr += xsize;
}
}
}
else { /* bpp == 2 */
ibuf = IMB_allocImBuf(xsize, ysize, 32, (flags & IB_rect) | IB_rectfloat);
if (!ibuf) {
goto fail_uncompressed;
}
fbase = ibuf->rect_float;
MFILE_SEEK(inf, HEADER_SIZE);
rledat = MFILE_DATA(inf);
for (size_t z = 0; z < zsize; z++) {
fptr = fbase;
for (size_t y = 0; y < ysize; y++) {
const uchar *rledat_next = rledat + xsize * 2;
const int z_ofs = 3 - z;
MFILE_CAPACITY_AT_PTR_OK_OR_FAIL(rledat_next + z_ofs);
interleaverow2(fptr, rledat, z_ofs, xsize);
rledat = rledat_next;
fptr += xsize * 4;
}
}
}
#undef MFILE_CAPACITY_AT_PTR_OK_OR_FAIL
fail_uncompressed:
if (!ibuf) {
return NULL;
}
}
if (bpp == 1) {
uchar *rect;
if (image.zsize == 1) {
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = 255;
rect[1] = rect[2] = rect[3];
rect += 4;
}
}
else if (image.zsize == 2) {
/* grayscale with alpha */
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = rect[2];
rect[1] = rect[2] = rect[3];
rect += 4;
}
}
else if (image.zsize == 3) {
/* add alpha */
rect = (uchar *) ibuf->rect;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
rect[0] = 255;
rect += 4;
}
}
}
else { /* bpp == 2 */
if (image.zsize == 1) {
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = 1;
fbase[1] = fbase[2] = fbase[3];
fbase += 4;
}
}
else if (image.zsize == 2) {
/* grayscale with alpha */
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = fbase[2];
fbase[1] = fbase[2] = fbase[3];
fbase += 4;
}
}
else if (image.zsize == 3) {
/* add alpha */
fbase = ibuf->rect_float;
for (size_t x = (size_t)ibuf->x * (size_t)ibuf->y; x > 0; x--) {
fbase[0] = 1;
fbase += 4;
}
}
if (flags & IB_rect) {
IMB_rect_from_float(ibuf);
}
}
if (dirty_flag) {
fprintf(stderr, "longimagedata: corrupt file content (%d)\n", dirty_flag);
}
ibuf->ftype = IMB_FTYPE_IMAGIC;
test_endian_zbuf(ibuf);
if (ibuf->rect) {
IMB_convert_rgba_to_abgr(ibuf);
}
return(ibuf);
}
/* static utility functions for longimagedata */
static void interleaverow(uchar *lptr, const uchar *cptr, int z, int n)
{
lptr += z;
while (n--) {
*lptr = *cptr++;
lptr += 4;
}
}
static void interleaverow2(float *lptr, const uchar *cptr, int z, int n)
{
lptr += z;
while (n--) {
*lptr = ((cptr[0] << 8) | (cptr[1] << 0)) / (float)0xFFFF;
cptr += 2;
lptr += 4;
}
}
static int expandrow2(
float *optr, const float *optr_end,
const uchar *iptr, const uchar *iptr_end, int z)
{
ushort pixel, count;
float pixel_f;
#define EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next) \
if (UNLIKELY(iptr_next > iptr_end)) { goto fail; } ((void)0)
#define EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next) \
if (UNLIKELY(optr_next > optr_end)) { goto fail; } ((void)0)
optr += z;
optr_end += z;
while (1) {
const uchar *iptr_next = iptr + 2;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
pixel = (iptr[0] << 8) | (iptr[1] << 0);
iptr = iptr_next;
if (!(count = (pixel & 0x7f)) )
return false;
const float *optr_next = optr + count;
EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next);
if (pixel & 0x80) {
iptr_next = iptr + (count * 2);
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
while (count >= 8) {
optr[0 * 4] = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
optr[1 * 4] = ((iptr[2] << 8) | (iptr[3] << 0)) / (float)0xFFFF;
optr[2 * 4] = ((iptr[4] << 8) | (iptr[5] << 0)) / (float)0xFFFF;
optr[3 * 4] = ((iptr[6] << 8) | (iptr[7] << 0)) / (float)0xFFFF;
optr[4 * 4] = ((iptr[8] << 8) | (iptr[9] << 0)) / (float)0xFFFF;
optr[5 * 4] = ((iptr[10] << 8) | (iptr[11] << 0)) / (float)0xFFFF;
optr[6 * 4] = ((iptr[12] << 8) | (iptr[13] << 0)) / (float)0xFFFF;
optr[7 * 4] = ((iptr[14] << 8) | (iptr[15] << 0)) / (float)0xFFFF;
optr += 8 * 4;
iptr += 8 * 2;
count -= 8;
}
while (count--) {
*optr = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
iptr += 2;
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
else {
iptr_next = iptr + 2;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
pixel_f = ((iptr[0] << 8) | (iptr[1] << 0)) / (float)0xFFFF;
iptr = iptr_next;
while (count >= 8) {
optr[0 * 4] = pixel_f;
optr[1 * 4] = pixel_f;
optr[2 * 4] = pixel_f;
optr[3 * 4] = pixel_f;
optr[4 * 4] = pixel_f;
optr[5 * 4] = pixel_f;
optr[6 * 4] = pixel_f;
optr[7 * 4] = pixel_f;
optr += 8 * 4;
count -= 8;
}
while (count--) {
*optr = pixel_f;
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
BLI_assert(optr == optr_next);
}
return false;
#undef EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL
#undef EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL
fail:
return DIRTY_FLAG_ENCODING;
}
static int expandrow(
uchar *optr, const uchar *optr_end,
const uchar *iptr, const uchar *iptr_end, int z)
{
uchar pixel, count;
#define EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next) \
if (UNLIKELY(iptr_next > iptr_end)) { goto fail; } ((void)0)
#define EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next) \
if (UNLIKELY(optr_next > optr_end)) { goto fail; } ((void)0)
optr += z;
optr_end += z;
while (1) {
const uchar *iptr_next = iptr + 1;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
pixel = *iptr;
iptr = iptr_next;
if (!(count = (pixel & 0x7f)) )
return false;
const uchar *optr_next = optr + ((int)count * 4);
EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL(optr_next);
if (pixel & 0x80) {
iptr_next = iptr + count;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
while (count >= 8) {
optr[0 * 4] = iptr[0];
optr[1 * 4] = iptr[1];
optr[2 * 4] = iptr[2];
optr[3 * 4] = iptr[3];
optr[4 * 4] = iptr[4];
optr[5 * 4] = iptr[5];
optr[6 * 4] = iptr[6];
optr[7 * 4] = iptr[7];
optr += 8 * 4;
iptr += 8;
count -= 8;
}
while (count--) {
*optr = *iptr++;
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
else {
iptr_next = iptr + 1;
EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL(iptr_next);
pixel = *iptr++;
while (count >= 8) {
optr[0 * 4] = pixel;
optr[1 * 4] = pixel;
optr[2 * 4] = pixel;
optr[3 * 4] = pixel;
optr[4 * 4] = pixel;
optr[5 * 4] = pixel;
optr[6 * 4] = pixel;
optr[7 * 4] = pixel;
optr += 8 * 4;
count -= 8;
}
while (count--) {
*optr = pixel;
optr += 4;
}
BLI_assert(iptr == iptr_next);
}
BLI_assert(optr == optr_next);
}
return false;
#undef EXPAND_CAPACITY_AT_INPUT_OK_OR_FAIL
#undef EXPAND_CAPACITY_AT_OUTPUT_OK_OR_FAIL
fail:
return DIRTY_FLAG_ENCODING;
}
/**
* Copy an array of ints to an iris image file.
* Each int represents one pixel. xsize and ysize specify the dimensions of
* the pixel array. zsize specifies what kind of image file to
* write out. if zsize is 1, the luminance of the pixels are
* calculated, and a single channel black and white image is saved.
* If zsize is 3, an RGB image file is saved. If zsize is 4, an
* RGBA image file is saved.
*
* Added: zbuf write
*/
static int output_iris(uint *lptr, int xsize, int ysize, int zsize, const char *name, int *zptr)
{
FILE *outf;
IMAGE *image;
int tablen, y, z, pos, len = 0;
uint *starttab, *lengthtab;
uchar *rlebuf;
uint *lumbuf;
int rlebuflen, goodwrite;
goodwrite = 1;
outf = BLI_fopen(name, "wb");
if (!outf) return 0;
tablen = ysize * zsize * sizeof(int);
image = (IMAGE *)MEM_mallocN(sizeof(IMAGE), "iris image");
starttab = (uint *)MEM_mallocN(tablen, "iris starttab");
lengthtab = (uint *)MEM_mallocN(tablen, "iris lengthtab");
rlebuflen = 1.05 * xsize + 10;
rlebuf = (uchar *)MEM_mallocN(rlebuflen, "iris rlebuf");
lumbuf = (uint *)MEM_mallocN(xsize * sizeof(int), "iris lumbuf");
memset(image, 0, sizeof(IMAGE));
image->imagic = IMAGIC;
image->type = RLE(1);
if (zsize > 1)
image->dim = 3;
else
image->dim = 2;
image->xsize = xsize;
image->ysize = ysize;
image->zsize = zsize;
image->min = 0;
image->max = 255;
goodwrite *= writeheader(outf, image);
fseek(outf, HEADER_SIZE + (2 * tablen), SEEK_SET);
pos = HEADER_SIZE + (2 * tablen);
for (y = 0; y < ysize; y++) {
for (z = 0; z < zsize; z++) {
if (zsize == 1) {
lumrow((uchar *)lptr, (uchar *)lumbuf, xsize);
len = compressrow((uchar *)lumbuf, rlebuf, CHANOFFSET(z), xsize);
}
else {
if (z < 4) {
len = compressrow((uchar *)lptr, rlebuf, CHANOFFSET(z), xsize);
}
else if (z < 8 && zptr) {
len = compressrow((uchar *)zptr, rlebuf, CHANOFFSET(z - 4), xsize);
}
}
if (len > rlebuflen) {
fprintf(stderr, "output_iris: rlebuf is too small - bad poop\n");
exit(1);
}
goodwrite *= fwrite(rlebuf, len, 1, outf);
starttab[y + z * ysize] = pos;
lengthtab[y + z * ysize] = len;
pos += len;
}
lptr += xsize;
if (zptr) zptr += xsize;
}
fseek(outf, HEADER_SIZE, SEEK_SET);
goodwrite *= writetab(outf, starttab, tablen);
goodwrite *= writetab(outf, lengthtab, tablen);
MEM_freeN(image);
MEM_freeN(starttab);
MEM_freeN(lengthtab);
MEM_freeN(rlebuf);
MEM_freeN(lumbuf);
fclose(outf);
if (goodwrite)
return 1;
else {
fprintf(stderr, "output_iris: not enough space for image!!\n");
return 0;
}
}
/* static utility functions for output_iris */
static void lumrow(uchar *rgbptr, uchar *lumptr, int n)
{
lumptr += CHANOFFSET(0);
while (n--) {
*lumptr = ILUM(rgbptr[OFFSET_R], rgbptr[OFFSET_G], rgbptr[OFFSET_B]);
lumptr += 4;
rgbptr += 4;
}
}
static int compressrow(uchar *lbuf, uchar *rlebuf, int z, int cnt)
{
uchar *iptr, *ibufend, *sptr, *optr;
short todo, cc;
int count;
lbuf += z;
iptr = lbuf;
ibufend = iptr + cnt * 4;
optr = rlebuf;
while (iptr < ibufend) {
sptr = iptr;
iptr += 8;
while ((iptr < ibufend) && ((iptr[-8] != iptr[-4]) || (iptr[-4] != iptr[0])))
iptr += 4;
iptr -= 8;
count = (iptr - sptr) / 4;
while (count) {
todo = count > 126 ? 126 : count;
count -= todo;
*optr++ = 0x80 | todo;
while (todo > 8) {
optr[0] = sptr[0 * 4];
optr[1] = sptr[1 * 4];
optr[2] = sptr[2 * 4];
optr[3] = sptr[3 * 4];
optr[4] = sptr[4 * 4];
optr[5] = sptr[5 * 4];
optr[6] = sptr[6 * 4];
optr[7] = sptr[7 * 4];
optr += 8;
sptr += 8 * 4;
todo -= 8;
}
while (todo--) {
*optr++ = *sptr;
sptr += 4;
}
}
sptr = iptr;
cc = *iptr;
iptr += 4;
while ( (iptr < ibufend) && (*iptr == cc) )
iptr += 4;
count = (iptr - sptr) / 4;
while (count) {
todo = count > 126 ? 126 : count;
count -= todo;
*optr++ = todo;
*optr++ = cc;
}
}
*optr++ = 0;
return optr - (uchar *)rlebuf;
}
int imb_saveiris(struct ImBuf *ibuf, const char *name, int flags)
{
short zsize;
int ret;
zsize = (ibuf->planes + 7) >> 3;
if (flags & IB_zbuf && ibuf->zbuf != NULL) zsize = 8;
IMB_convert_rgba_to_abgr(ibuf);
test_endian_zbuf(ibuf);
ret = output_iris(ibuf->rect, ibuf->x, ibuf->y, zsize, name, ibuf->zbuf);
/* restore! Quite clumsy, 2 times a switch... maybe better a malloc ? */
IMB_convert_rgba_to_abgr(ibuf);
test_endian_zbuf(ibuf);
return(ret);
}