This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/collision.c

1460 lines
39 KiB
C
Raw Normal View History

/* collision.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_group_types.h"
#include "DNA_object_types.h"
#include "DNA_cloth_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
#include "mydevice.h"
#include "Bullet-C-Api.h"
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef _WIN32
static void start ( void )
{}
static void end ( void )
{
}
static double val()
{
return 0;
}
#else
#include <sys/time.h>
static void mystart ( struct timeval *start, struct timezone *z )
{
gettimeofday ( start, z );
}
static void myend ( struct timeval *end, struct timezone *z )
{
gettimeofday ( end,z );
}
static double myval ( struct timeval *start, struct timeval *end )
{
double t1, t2;
t1 = ( double ) start->tv_sec + ( double ) start->tv_usec/ ( 1000*1000 );
t2 = ( double ) end->tv_sec + ( double ) end->tv_usec/ ( 1000*1000 );
return t2-t1;
}
#endif
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep )
{
float tv[3] = {0,0,0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ )
{
VECSUB ( tv, collmd->xnew[i].co, collmd->x[i].co );
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
{
BVHTree *tree;
float co[12];
int i;
MFace *tface = mfaces;
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ )
{
VECCOPY ( &co[0*3], x[tface->v1].co );
VECCOPY ( &co[1*3], x[tface->v2].co );
VECCOPY ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
VECCOPY ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// balance tree
BLI_bvhtree_balance ( tree );
return tree;
}
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int numverts, int moving )
{
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
int ret = 0;
if ( !bvhtree )
return;
if ( x )
{
for ( i = 0; i < numfaces; i++, mfaces++ )
{
VECCOPY ( &co[0*3], x[mfaces->v1].co );
VECCOPY ( &co[1*3], x[mfaces->v2].co );
VECCOPY ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co[3*3], x[mfaces->v4].co );
// copy new locations into array
if ( moving && xnew )
{
// update moving positions
VECCOPY ( &co_moving[0*3], xnew[mfaces->v1].co );
VECCOPY ( &co_moving[1*3], xnew[mfaces->v2].co );
VECCOPY ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co_moving[3*3], xnew[mfaces->v4].co );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else
{
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
Collision modifier code end
***********************************/
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
int
gsl_poly_solve_cubic (double a, double b, double c,
double *x0, double *x1, double *x2)
{
double q = (a * a - 3 * b);
double r = (2 * a * a * a - 9 * a * b + 27 * c);
double Q = q / 9;
double R = r / 54;
double Q3 = Q * Q * Q;
double R2 = R * R;
double CR2 = 729 * r * r;
double CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
*x0 = - a / 3 ;
*x1 = - a / 3 ;
*x2 = - a / 3 ;
return 3 ;
}
else if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some double roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
double sqrtQ = sqrt (Q);
if (R > 0)
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
return 3 ;
}
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
double sqrtQ = sqrt (Q);
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
double theta = acos (R / sqrtQ3);
double norm = -2 * sqrtQ;
*x0 = norm * cos (theta / 3) - a / 3;
*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
if (*x1 > *x2)
{
mySWAP(*x1, *x2) ;
if (*x0 > *x1)
mySWAP(*x0, *x1) ;
}
return 3;
}
else
{
double sgnR = (R >= 0 ? 1 : -1);
double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
double B = Q / A ;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
int
gsl_poly_solve_quadratic (double a, double b, double c,
double *x0, double *x1)
{
double disc = b * b - 4 * a * c;
if (a == 0) /* Handle linear case */
{
if (b == 0)
{
return 0;
}
else
{
*x0 = -c / b;
return 1;
};
}
if (disc > 0)
{
if (b == 0)
{
double r = fabs (0.5 * sqrt (disc) / a);
*x0 = -r;
*x1 = r;
}
else
{
double sgnb = (b > 0 ? 1 : -1);
double temp = -0.5 * (b + sgnb * sqrt (disc));
double r1 = temp / a ;
double r2 = c / temp ;
if (r1 < r2)
{
*x0 = r1 ;
*x1 = r2 ;
}
else
{
*x0 = r2 ;
*x1 = r1 ;
}
}
return 2;
}
else if (disc == 0)
{
*x0 = -0.5 * b / a ;
*x1 = -0.5 * b / a ;
return 2 ;
}
else
{
return 0;
}
}
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
{
int num_sols = 0;
// x^0 - checked
double g = a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
a[1] * c[2] * e[0] - a[1] * c[0] * e[2] +
a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
// x^1
double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
// x^2
double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
// x^3 - checked
double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
/*
printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
*/
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if ( ABS ( j ) > DBL_EPSILON )
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
}
else
{
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
solution[2] = -1.0;
}
// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0], solution[1], solution[2]);
// Discard negative solutions
if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
{
--num_sols;
solution[0] = solution[num_sols];
}
if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
{
--num_sols;
solution[1] = solution[num_sols];
}
if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
{
--num_sols;
}
// Sort
if ( num_sols == 2 )
{
if ( solution[0] > solution[1] )
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if ( num_sols == 3 )
{
// Bubblesort
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if ( solution[1] > solution[2] )
{
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
// w3 is not perfect
void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
if ( ABS ( d ) < ALMOST_ZERO )
{
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
to[0] = to[1] = to[2] = 0;
VECADDMUL ( to, v1, w1 );
VECADDMUL ( to, v2, w2 );
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
VecMulf ( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
Normalize ( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
result = 1;
}
}
return result;
}
//Determines collisions on overlap, collisions are writen to collpair[i] and collision+number_collision_found is returned
CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, CollPair *collpair )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
#ifdef WITH_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * ( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
{
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
collpair->distance = distance;
collpair->flag = 0;
}
else
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
}
collpair++;
}
return collpair;
}
int cloth_are_edges_adjacent ( ClothModifierData *clmd, CollisionModifierData *collmd, EdgeCollPair *edgecollpair )
{
Cloth *cloth1 = NULL;
ClothVertex *verts1 = NULL;
float temp[3];
MVert *verts2 = collmd->current_x; // old x
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
VECSUB ( temp, verts1[edgecollpair->p11].txold, verts2[edgecollpair->p21].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p11].txold, verts2[edgecollpair->p22].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].txold, verts2[edgecollpair->p21].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].txold, verts2[edgecollpair->p22].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p11].txold, verts1[edgecollpair->p12].txold );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts2[edgecollpair->p21].co, verts2[edgecollpair->p22].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
return 0;
}
int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
VECSUB ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = INPR ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
VECCOPY ( temp, collpair->normal );
VecMulf ( temp, magrelVel );
VECSUB ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( INPR ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
Normalize ( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
/*
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
*/
result = 1;
}
}
return result;
}
int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL;
ClothVertex *verts1=NULL;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
double solution[3];
MVert *verts2 = collmd->current_x; // old x
MVert *velocity2 = collmd->current_v; // velocity
float mintime = FLT_MAX;
float distance;
float triA[3][3], triB[3][3];
int result = 0;
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
for(i = 0; i < 9; i++)
{
// 9 edge - edge possibilities
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// always put coll points in p21/p22
VECSUB ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
VECSUB ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
VECSUB ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
VECSUB ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
VECSUB ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
VECSUB ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
for ( k = 0; k < numsolutions; k++ )
{
// printf("sol %d: %lf\n", k, solution[k]);
if ( ( solution[k] >= DBL_EPSILON ) && ( solution[k] <= 1.0 ) )
{
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (edge) collision list
mintime = MIN2(mintime, (float)solution[k]);
result = 1;
break;
}
}
}
}
if(result)
{
// move triangles to collision point in time
VECADDS(triA[0], verts1[collpair->ap1].txold, verts1[collpair->ap1].tv, mintime);
VECADDS(triA[1], verts1[collpair->ap2].txold, verts1[collpair->ap2].tv, mintime);
VECADDS(triA[2], verts1[collpair->ap3].txold, verts1[collpair->ap3].tv, mintime);
VECADDS(triB[0], collmd->current_x[collpair->bp1].co, collmd->current_v[collpair->bp1].co, mintime);
VECADDS(triB[1], collmd->current_x[collpair->bp2].co, collmd->current_v[collpair->bp2].co, mintime);
VECADDS(triB[2], collmd->current_x[collpair->bp3].co, collmd->current_v[collpair->bp3].co, mintime);
// check distance there
distance = plNearestPoints (triA[0], triA[1], triA[2], triB[0], triB[1], triB[2], collpair->pa,collpair->pb,collpair->vector );
if(distance <= (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO))
{
CollPair *next = collpair;
next++;
collpair->distance = clmd->coll_parms->epsilon;
collpair->time = mintime;
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
cloth_collision_response_moving ( clmd, collmd, collpair, next );
}
}
return result;
}
/*
void cloth_collision_moving_tris ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
{
CollPair collpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3];
double solution[3];
for ( i = 0; i < 2; i++ )
{
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( cloth2->mfaces[tree2->tri_index] );
// check all possible pairs of triangles
if ( i == 0 )
{
collpair.ap1 = face1->v1;
collpair.ap2 = face1->v2;
collpair.ap3 = face1->v3;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
if ( i == 1 )
{
if ( face1->v4 )
{
collpair.ap1 = face1->v3;
collpair.ap2 = face1->v4;
collpair.ap3 = face1->v1;
collpair.pointsb[0] = face2->v1;
collpair.pointsb[1] = face2->v2;
collpair.pointsb[2] = face2->v3;
collpair.pointsb[3] = face2->v4;
}
else
i++;
}
// calc SIPcode (?)
if ( i < 2 )
{
VECSUB ( a, verts1[collpair.ap2].xold, verts1[collpair.ap1].xold );
VECSUB ( b, verts1[collpair.ap2].v, verts1[collpair.ap1].v );
VECSUB ( c, verts1[collpair.ap3].xold, verts1[collpair.ap1].xold );
VECSUB ( d, verts1[collpair.ap3].v, verts1[collpair.ap1].v );
for ( j = 0; j < 4; j++ )
{
if ( ( j==3 ) && ! ( face2->v4 ) )
break;
VECSUB ( e, verts2[collpair.pointsb[j]].xold, verts1[collpair.ap1].xold );
VECSUB ( f, verts2[collpair.pointsb[j]].v, verts1[collpair.ap1].v );
numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
for ( k = 0; k < numsolutions; k++ )
{
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) )
{
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (point-face) collision list
// printf("Moving found!\n");
}
}
// TODO: check borders for collisions
}
}
}
}
*/
int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle moving collisions here
if (!( collpair->flag & COLLISION_IN_FUTURE ))
continue;
cloth_collision_moving_edges ( clmd, collmd, collpair);
}
return 1;
}
int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData *collmd, float step, float dt )
{
Cloth *cloth = clmd->clothObject;
BVHTree *cloth_bvh= ( BVHTree * ) cloth->bvhtree;
long i=0, j = 0, numfaces = 0, numverts = 0;
ClothVertex *verts = NULL;
CollPair *collisions = NULL, *collisions_index = NULL;
int ret = 0;
int result = 0;
float tnull[3] = {0,0,0};
BVHTreeOverlap *overlap = NULL;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
if ( collmd->bvhtree )
{
/* get pointer to bounding volume hierarchy */
BVHTree *coll_bvh = collmd->bvhtree;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, coll_bvh, &result );
collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * result*4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
collisions_index = collisions;
for ( i = 0; i < result; i++ )
{
collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, collisions_index );
}
if ( overlap )
MEM_freeN ( overlap );
}
else
{
if ( G.rt > 0 )
printf ( "cloth_bvh_objcollision: found a collision object with clothObject or collData NULL.\n" );
}
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
{
result = 0;
if ( collmd->bvhtree )
{
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if ( result )
{
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECCOPY ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
}
/*
result += cloth_collision_moving ( clmd, collmd, collisions, collisions_index );
// apply impulses in parallel
if ( result )
{
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
VECCOPY ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
}
*/
}
}
if ( collisions ) MEM_freeN ( collisions );
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
{
Base *base=NULL;
CollisionModifierData *collmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVHTree *cloth_bvh=NULL;
long i=0, j = 0, numfaces = 0, numverts = 0;
unsigned int result = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0;
ClothModifierData *tclmd;
int collisions = 0, count = 0;
if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->bvhtree ) )
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = ( BVHTree * ) cloth->bvhtree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
do
{
result = 0;
// check all collision objects
for ( base = G.scene->base.first; base; base = base->next )
{
coll_ob = base->object;
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
if ( !collmd )
{
if ( coll_ob->dup_group )
{
GroupObject *go;
Group *group = coll_ob->dup_group;
for ( go= group->gobject.first; go; go= go->next )
{
coll_ob = go->ob;
collmd = ( CollisionModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Collision );
if ( !collmd )
continue;
tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
if ( tclmd == clmd )
continue;
ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
}
}
}
else
{
tclmd = ( ClothModifierData * ) modifiers_findByType ( coll_ob, eModifierType_Cloth );
if ( tclmd == clmd )
continue;
ret += cloth_bvh_objcollisions_do ( clmd, collmd, step, dt );
}
}
rounds++;
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ )
{
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
MFace *mface = clmd->clothObject->mfaces;
collisions = 1;
verts = cloth->verts; // needed for openMP
/*
for ( count = 0; count < clmd->coll_parms->self_loop_count; count++ )
{
if ( collisions )
{
collisions = 0;
#pragma omp parallel for private(i,j, collisions) shared(verts, ret)
for ( i = 0; i < cloth->numverts; i++ )
{
for ( j = i + 1; j < cloth->numverts; j++ )
{
float temp[3];
float length = 0;
float mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
VECSUB ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, i, j ) )
{
continue;
}
length = Normalize ( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
VecMulf ( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
collisions = 1;
if ( !ret )
{
#pragma omp critical
{
ret = 1;
}
}
}
}
}
}
}
*/
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret )
{
for ( i = 0; i < cloth->numverts; i++ )
{
if ( ! ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
VECSUB ( verts[i].tv, verts[i].tx, verts[i].txold );
}
}
////////////////////////////////////////////////////////////
}
}
while ( result && ( clmd->coll_parms->loop_count>rounds ) );
return MIN2 ( ret, 1 );
}