Reason of all this work: Commiting my work-in-progress on reviewed collision system (better + general access to kdop, uses less memory, put it into BLI_* namespace and usage defined like existing BLI_kdtree_*). Deleted old kdop.c

This commit is contained in:
2008-05-07 20:42:16 +00:00
parent 96408da81a
commit a68c03e409
24 changed files with 2614 additions and 1286 deletions

11
intern/sph/SConscript Normal file
View File

@@ -0,0 +1,11 @@
#!/usr/bin/python
import sys
import os
Import('env')
sources = env.Glob('intern/*.cpp')
incs = ' . extern intern'
defs = ''
env.BlenderLib ('bf_sph', sources, Split(incs), Split(defs), libtype='blender', priority=0 )

51
intern/sph/extern/sph_extern.h vendored Normal file
View File

@@ -0,0 +1,51 @@
/**
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel Genrich.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifndef PW_EXTERN_H
#define PW_EXTERN_H
#ifdef __cplusplus
extern "C" {
#endif
/*
void sph_init_cpp(struct SphModifierData *sphmd);
void sph_free_cpp(struct SphModifierData *sphmd);
int sph_simulate_cpp(struct Object *ob, struct SphModifierData *sphmd, float frame, struct ListBase *effectors);
*/
#ifdef __cplusplus
}
#endif
#endif //PW_EXTERN_H

51
intern/sph/intern/sph.cpp Normal file
View File

@@ -0,0 +1,51 @@
/* pw.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* Contributor(s): Daniel Genrich
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <iostream>
#include "sph_extern.h"
/*
extern "C" void sph_init_cpp(struct SphModifierData *sphmd)
{
}
/*
extern "C" void sph_free_cpp(struct SphModifierData *sphmd)
{
}
extern "C" int sph_simulate_cpp(struct Object *ob, struct SphModifierData *sphmd, float frame, struct ListBase *effectors)
{
return 1;
}
*/

View File

@@ -24,14 +24,14 @@
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
* Contributor(s): Daniel Genrich.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifndef BKE_CLOTH_H
#define BKE_CLOTH_H
#include "float.h"
#include <float.h>
#include "BLI_linklist.h"
#include "BKE_customdata.h"
@@ -49,6 +49,9 @@
#include "BKE_collision.h"
#include "RE_raytrace.h"
struct Object;
struct MFace;
@@ -102,7 +105,8 @@ typedef struct Cloth
unsigned char old_solver_type; /* unused, only 1 solver here */
unsigned char pad2;
short pad3;
struct BVH *tree; /* collision tree for this cloth object */
struct BVHTree *bvhtree; /* collision tree for this cloth object */
struct RayTree *selftree; /* collision tree for this cloth object */
struct MFace *mfaces;
struct Implicit_Data *implicit; /* our implicit solver connects to this pointer */
struct Implicit_Data *implicitEM; /* our implicit solver connects to this pointer */
@@ -171,17 +175,10 @@ ClothSpring;
/* These are the bits used in SimSettings.flags. */
typedef enum
{
//CLOTH_SIMSETTINGS_FLAG_RESET = ( 1 << 1 ), // The CM object requires a reinitializaiton.
CLOTH_SIMSETTINGS_FLAG_COLLOBJ = ( 1 << 2 ),// object is only collision object, no cloth simulation is done
CLOTH_SIMSETTINGS_FLAG_GOAL = ( 1 << 3 ), // we have goals enabled
CLOTH_SIMSETTINGS_FLAG_TEARING = ( 1 << 4 ),// true if tearing is enabled
//CLOTH_SIMSETTINGS_FLAG_CCACHE_PROTECT = ( 1 << 5 ), // true if tearing is enabled
//CLOTH_SIMSETTINGS_FLAG_EDITMODE = ( 1 << 6 ), // are we in editmode? -several things disabled
//CLOTH_SIMSETTINGS_FLAG_CCACHE_FFREE = ( 1 << 7 ), /* force cache freeing */
CLOTH_SIMSETTINGS_FLAG_SCALING = ( 1 << 8 ), /* is advanced scaling active? */
//CLOTH_SIMSETTINGS_FLAG_LOADED = ( 1 << 9 ), /* did we just got load? */
//CLOTH_SIMSETTINGS_FLAG_AUTOPROTECT = ( 1 << 10 ), /* is autoprotect enabled? */
//CLOTH_SIMSETTINGS_FLAG_CCACHE_OUTDATED = (1 << 11), /* while protected, did cache get outdated? */
CLOTH_SIMSETTINGS_FLAG_CCACHE_EDIT = (1 << 12) /* edit cache in editmode */
} CLOTH_SIMSETTINGS_FLAGS;
@@ -208,6 +205,7 @@ typedef enum
CLOTH_SPRING_FLAG_NEEDED = ( 1 << 2 ), // springs has values to be applied
} CLOTH_SPRINGS_FLAGS;
/////////////////////////////////////////////////
// collision.c
////////////////////////////////////////////////
@@ -246,7 +244,7 @@ DerivedMesh *clothModifier_do ( ClothModifierData *clmd,Object *ob, DerivedMesh
void cloth_update_normals ( ClothVertex *verts, int nVerts, MFace *face, int totface );
// needed for collision.c
void bvh_update_from_cloth ( ClothModifierData *clmd, int moving );
void bvhtree_update_from_cloth ( ClothModifierData *clmd, int moving );
// needed for editmesh.c
void cloth_write_cache ( Object *ob, ClothModifierData *clmd, float framenr );

View File

@@ -32,7 +32,7 @@
#define BKE_COLLISIONS_H
#include <math.h>
#include "float.h"
#include <float.h>
#include <stdlib.h>
#include <string.h>
@@ -47,6 +47,8 @@
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "BLI_kdopbvh.h"
struct Object;
struct Cloth;
struct MFace;
@@ -102,10 +104,16 @@ BVH;
typedef void ( *CM_COLLISION_RESPONSE ) ( ModifierData *md1, ModifierData *md2, CollisionTree *tree1, CollisionTree *tree2 );
// needed for collision.c
int bvh_traverse ( ModifierData * md1, ModifierData * md2, CollisionTree * tree1, CollisionTree * tree2, float step, CM_COLLISION_RESPONSE collision_response, int selfcollision);
int bvh_traverse ( ModifierData * md1, ModifierData * md2, CollisionTree * tree1, CollisionTree * tree2, float step, CM_COLLISION_RESPONSE collision_response, int selfcollision );
////////////////////////////////////////
/* COLLISION FLAGS */
typedef enum
{
COLLISION_IN_FUTURE = ( 1 << 1 ),
} COLLISION_FLAGS;
////////////////////////////////////////
// used for collisions in kdop.c and also collision.c
@@ -119,10 +127,10 @@ typedef struct CollPair
float normal[3];
float vector[3]; // unnormalized collision vector: p2-p1
float pa[3], pb[3]; // collision point p1 on face1, p2 on face2
int lastsign; // indicates if the distance sign has changed, unused itm
int flag;
float time; // collision time, from 0 up to 1
unsigned int ap1, ap2, ap3, bp1, bp2, bp3;
unsigned int pointsb[4];
int ap1, ap2, ap3, bp1, bp2, bp3;
int pointsb[4];
}
CollPair;
@@ -160,8 +168,9 @@ FaceCollPair;
// NOTICE: mvert-routines for building + update the BVH are the most native ones
// builds bounding volume hierarchy
void bvh_build (BVH *bvh);
BVH *bvh_build_from_mvert (MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon);
void bvh_build ( BVH *bvh );
BVH *bvh_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon );
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon );
// frees the same
void bvh_free ( BVH * bvh );
@@ -169,20 +178,21 @@ void bvh_free ( BVH * bvh );
// checks two bounding volume hierarchies for potential collisions and returns some list with those
// update bounding volumes, needs updated positions in bvh->current_xold (static)
// update bounding volumes, needs updated positions in bvh->current_xold (static)
// and also bvh->current_x if moving==1
void bvh_update_from_mvert(BVH * bvh, MVert *x, unsigned int numverts, MVert *xnew, int moving);
void bvh_update(BVH * bvh, int moving);
void bvh_update_from_mvert ( BVH * bvh, MVert *x, unsigned int numverts, MVert *xnew, int moving );
void bvh_update ( BVH * bvh, int moving );
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int numverts, int moving );
LinkNode *BLI_linklist_append_fast ( LinkNode **listp, void *ptr );
// move Collision modifier object inter-frame with step = [0,1]
// defined in collisions.c
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep);
void collision_move_object ( CollisionModifierData *collmd, float step, float prevstep );
// interface for collision functions
void collisions_compute_barycentric (float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3);
void interpolateOnTriangle(float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3);
void collisions_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 );
void interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 );
/////////////////////////////////////////////////

View File

@@ -31,6 +31,7 @@
#ifndef BKE_EFFECT_H
#define BKE_EFFECT_H
#include "DNA_effect_types.h"
#include "DNA_object_types.h"
struct Effect;

View File

@@ -0,0 +1,69 @@
/**
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel Genrich.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifndef BKE_SPH_H
#define BKE_SPH_H
#include "BKE_DerivedMesh.h"
#include "BKE_utildefines.h"
#include "BLI_linklist.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
void sph_init(SphModifierData *sphmd);
void sph_free_modifier (SphModifierData *sphmd);
DerivedMesh *sphModifier_do(SphModifierData *sphmd,Object *ob, DerivedMesh *dm, int useRenderParams, int isFinalCalc);
int sph_init_all (SphModifierData *sphmd, DerivedMesh *dm, Object *ob);
/* SIMULATION FLAGS: goal flags,.. */
/* These are the bits used in SimSettings.flags. */
// first 16 (short) flags are used for fluid type identification
typedef enum
{
SPH_SIMSETTINGS_FLAG_FLUID = ( 1 << 0 ), // Fluid object?
SPH_SIMSETTINGS_FLAG_OBSTACLE = ( 1 << 1 ), // Obstacle?
SPH_SIMSETTINGS_FLAG_DOMAIN = ( 1 << 2 ), // Fluid domain
SPH_SIMSETTINGS_FLAG_GHOSTS = ( 1 << 16 ), // use ghost particles?
SPH_SIMSETTINGS_FLAG_OFFLINE = ( 1 << 17 ), // do offline simulation?
SPH_SIMSETTINGS_FLAG_MULTIRES = ( 1 << 18 ), // use multires?
SPH_SIMSETTINGS_FLAG_VORTICITY = ( 1 << 19 ), // use vorticity enhancement?
SPH_SIMSETTINGS_FLAG_BAKING = ( 1 << 20 ), // is domain baking?
SPH_SIMSETTINGS_FLAG_INIT = ( 1 << 21 ), // inited?
} SPH_SIMSETTINGS_FLAGS;
#endif //BKE_SPH_H

View File

@@ -0,0 +1,152 @@
/* $Id: CCGSubSurf.h 12931 2007-12-17 18:20:48Z theeth $ */
typedef void* CCGMeshHDL;
typedef void* CCGVertHDL;
typedef void* CCGEdgeHDL;
typedef void* CCGFaceHDL;
typedef struct _CCGVert CCGVert;
typedef struct _CCGEdge CCGEdge;
typedef struct _CCGFace CCGFace;
typedef struct _CCGMeshIFC CCGMeshIFC;
struct _CCGMeshIFC {
int vertUserSize, edgeUserSize, faceUserSize;
int vertDataSize;
};
/***/
typedef void* CCGAllocatorHDL;
typedef struct _CCGAllocatorIFC CCGAllocatorIFC;
struct _CCGAllocatorIFC {
void* (*alloc) (CCGAllocatorHDL a, int numBytes);
void* (*realloc) (CCGAllocatorHDL a, void *ptr, int newSize, int oldSize);
void (*free) (CCGAllocatorHDL a, void *ptr);
void (*release) (CCGAllocatorHDL a);
};
/***/
typedef enum {
eCCGError_None = 0,
eCCGError_InvalidSyncState,
eCCGError_InvalidValue,
} CCGError;
/***/
typedef struct _CCGSubSurf CCGSubSurf;
CCGSubSurf* ccgSubSurf_new (CCGMeshIFC *ifc, int subdivisionLevels, CCGAllocatorIFC *allocatorIFC, CCGAllocatorHDL allocator);
void ccgSubSurf_free (CCGSubSurf *ss);
CCGError ccgSubSurf_sync (CCGSubSurf *ss);
CCGError ccgSubSurf_initFullSync (CCGSubSurf *ss);
CCGError ccgSubSurf_initPartialSync (CCGSubSurf *ss);
CCGError ccgSubSurf_syncVert (CCGSubSurf *ss, CCGVertHDL vHDL, void *vertData, int seam, CCGVert **v_r);
CCGError ccgSubSurf_syncEdge (CCGSubSurf *ss, CCGEdgeHDL eHDL, CCGVertHDL e_vHDL0, CCGVertHDL e_vHDL1, float crease, CCGEdge **e_r);
CCGError ccgSubSurf_syncFace (CCGSubSurf *ss, CCGFaceHDL fHDL, int numVerts, CCGVertHDL *vHDLs, CCGFace **f_r);
CCGError ccgSubSurf_syncVertDel (CCGSubSurf *ss, CCGVertHDL vHDL);
CCGError ccgSubSurf_syncEdgeDel (CCGSubSurf *ss, CCGEdgeHDL eHDL);
CCGError ccgSubSurf_syncFaceDel (CCGSubSurf *ss, CCGFaceHDL fHDL);
CCGError ccgSubSurf_processSync (CCGSubSurf *ss);
CCGError ccgSubSurf_setSubdivisionLevels (CCGSubSurf *ss, int subdivisionLevels);
CCGError ccgSubSurf_setAllowEdgeCreation (CCGSubSurf *ss, int allowEdgeCreation, float defaultCreaseValue, void *defaultUserData);
void ccgSubSurf_getAllowEdgeCreation (CCGSubSurf *ss, int *allowEdgeCreation_r, float *defaultCreaseValue_r, void *defaultUserData_r);
void ccgSubSurf_getUseAgeCounts (CCGSubSurf *ss, int *useAgeCounts_r, int *vertUserOffset_r, int *edgeUserOffset_r, int *faceUserOffset_r);
CCGError ccgSubSurf_setUseAgeCounts (CCGSubSurf *ss, int useAgeCounts, int vertUserOffset, int edgeUserOffset, int faceUserOffset);
CCGError ccgSubSurf_setCalcVertexNormals (CCGSubSurf *ss, int useVertNormals, int normalDataOffset);
/***/
int ccgSubSurf_getNumVerts (CCGSubSurf *ss);
int ccgSubSurf_getNumEdges (CCGSubSurf *ss);
int ccgSubSurf_getNumFaces (CCGSubSurf *ss);
int ccgSubSurf_getSubdivisionLevels (CCGSubSurf *ss);
int ccgSubSurf_getEdgeSize (CCGSubSurf *ss);
int ccgSubSurf_getEdgeLevelSize (CCGSubSurf *ss, int level);
int ccgSubSurf_getGridSize (CCGSubSurf *ss);
int ccgSubSurf_getGridLevelSize (CCGSubSurf *ss, int level);
CCGVert* ccgSubSurf_getVert (CCGSubSurf *ss, CCGVertHDL v);
CCGVertHDL ccgSubSurf_getVertVertHandle (CCGSubSurf *ss, CCGVert *v);
int ccgSubSurf_getVertNumFaces (CCGSubSurf *ss, CCGVert *v);
CCGFace* ccgSubSurf_getVertFace (CCGSubSurf *ss, CCGVert *v, int index);
int ccgSubSurf_getVertNumEdges (CCGSubSurf *ss, CCGVert *v);
CCGEdge* ccgSubSurf_getVertEdge (CCGSubSurf *ss, CCGVert *v, int index);
int ccgSubSurf_getVertAge (CCGSubSurf *ss, CCGVert *v);
void* ccgSubSurf_getVertUserData (CCGSubSurf *ss, CCGVert *v);
void* ccgSubSurf_getVertData (CCGSubSurf *ss, CCGVert *v);
void* ccgSubSurf_getVertLevelData (CCGSubSurf *ss, CCGVert *v, int level);
CCGEdge* ccgSubSurf_getEdge (CCGSubSurf *ss, CCGEdgeHDL e);
CCGEdgeHDL ccgSubSurf_getEdgeEdgeHandle (CCGSubSurf *ss, CCGEdge *e);
int ccgSubSurf_getEdgeNumFaces (CCGSubSurf *ss, CCGEdge *e);
CCGFace* ccgSubSurf_getEdgeFace (CCGSubSurf *ss, CCGEdge *e, int index);
CCGVert* ccgSubSurf_getEdgeVert0 (CCGSubSurf *ss, CCGEdge *e);
CCGVert* ccgSubSurf_getEdgeVert1 (CCGSubSurf *ss, CCGEdge *e);
float ccgSubSurf_getEdgeCrease (CCGSubSurf *ss, CCGEdge *e);
int ccgSubSurf_getEdgeAge (CCGSubSurf *ss, CCGEdge *e);
void* ccgSubSurf_getEdgeUserData (CCGSubSurf *ss, CCGEdge *e);
void* ccgSubSurf_getEdgeDataArray (CCGSubSurf *ss, CCGEdge *e);
void* ccgSubSurf_getEdgeData (CCGSubSurf *ss, CCGEdge *e, int x);
void* ccgSubSurf_getEdgeLevelData (CCGSubSurf *ss, CCGEdge *e, int x, int level);
CCGFace* ccgSubSurf_getFace (CCGSubSurf *ss, CCGFaceHDL f);
CCGFaceHDL ccgSubSurf_getFaceFaceHandle (CCGSubSurf *ss, CCGFace *f);
int ccgSubSurf_getFaceNumVerts (CCGSubSurf *ss, CCGFace *f);
CCGVert* ccgSubSurf_getFaceVert (CCGSubSurf *ss, CCGFace *f, int index);
CCGEdge* ccgSubSurf_getFaceEdge (CCGSubSurf *ss, CCGFace *f, int index);
int ccgSubSurf_getFaceEdgeIndex (CCGSubSurf *ss, CCGFace *f, CCGEdge *e);
int ccgSubSurf_getFaceAge (CCGSubSurf *ss, CCGFace *f);
void* ccgSubSurf_getFaceUserData (CCGSubSurf *ss, CCGFace *f);
void* ccgSubSurf_getFaceCenterData (CCGSubSurf *ss, CCGFace *f);
void* ccgSubSurf_getFaceGridEdgeDataArray (CCGSubSurf *ss, CCGFace *f, int gridIndex);
void* ccgSubSurf_getFaceGridEdgeData (CCGSubSurf *ss, CCGFace *f, int gridIndex, int x);
void* ccgSubSurf_getFaceGridDataArray (CCGSubSurf *ss, CCGFace *f, int gridIndex);
void* ccgSubSurf_getFaceGridData (CCGSubSurf *ss, CCGFace *f, int gridIndex, int x, int y);
int ccgSubSurf_getNumFinalVerts (CCGSubSurf *ss);
int ccgSubSurf_getNumFinalEdges (CCGSubSurf *ss);
int ccgSubSurf_getNumFinalFaces (CCGSubSurf *ss);
/***/
typedef struct _CCGVertIterator CCGVertIterator;
typedef struct _CCGEdgeIterator CCGEdgeIterator;
typedef struct _CCGFaceIterator CCGFaceIterator;
CCGVertIterator* ccgSubSurf_getVertIterator (CCGSubSurf *ss);
CCGEdgeIterator* ccgSubSurf_getEdgeIterator (CCGSubSurf *ss);
CCGFaceIterator* ccgSubSurf_getFaceIterator (CCGSubSurf *ss);
CCGVert* ccgVertIterator_getCurrent (CCGVertIterator *vi);
int ccgVertIterator_isStopped (CCGVertIterator *vi);
void ccgVertIterator_next (CCGVertIterator *vi);
void ccgVertIterator_free (CCGVertIterator *vi);
CCGEdge* ccgEdgeIterator_getCurrent (CCGEdgeIterator *ei);
int ccgEdgeIterator_isStopped (CCGEdgeIterator *ei);
void ccgEdgeIterator_next (CCGEdgeIterator *ei);
void ccgEdgeIterator_free (CCGEdgeIterator *ei);
CCGFace* ccgFaceIterator_getCurrent (CCGFaceIterator *fi);
int ccgFaceIterator_isStopped (CCGFaceIterator *fi);
void ccgFaceIterator_next (CCGFaceIterator *fi);
void ccgFaceIterator_free (CCGFaceIterator *fi);

View File

@@ -10,6 +10,7 @@ incs += ' #/intern/iksolver/extern ../blenloader ../quicktime'
incs += ' #/extern/bullet2/src'
incs += ' #/intern/bmfont'
incs += ' #/intern/opennl/extern'
incs += ' #/intern/sph/extern'
incs += ' ' + env['BF_PYTHON_INC']
incs += ' ' + env['BF_OPENGL_INC']

View File

@@ -0,0 +1,71 @@
/**
* BME_private.h jan 2007
*
* low level, 'private' function prototypes for bmesh kernel.
*
* $Id: BKE_bmesh.h,v 1.00 2007/01/17 17:42:01 Briggs Exp $
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2004 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Geoffrey Bantle.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifndef BMESH_PRIVATE
#define BMESH_PRIVATE
#include "BKE_bmesh.h"
/*ALLOCATION/DEALLOCATION*/
struct BME_Vert *BME_addvertlist(struct BME_Mesh *bm, struct BME_Vert *example);
struct BME_Edge *BME_addedgelist(struct BME_Mesh *bm, struct BME_Vert *v1, struct BME_Vert *v2, struct BME_Edge *example);
struct BME_Poly *BME_addpolylist(struct BME_Mesh *bm, struct BME_Poly *example);
struct BME_Loop *BME_create_loop(struct BME_Mesh *bm, struct BME_Vert *v, struct BME_Edge *e, struct BME_Poly *f, struct BME_Loop *example);
void BME_free_vert(struct BME_Mesh *bm, struct BME_Vert *v);
void BME_free_edge(struct BME_Mesh *bm, struct BME_Edge *e);
void BME_free_poly(struct BME_Mesh *bm, struct BME_Poly *f);
void BME_free_loop(struct BME_Mesh *bm, struct BME_Loop *l);
void BME_delete_loop(struct BME_Mesh *bm, struct BME_Loop *l);
/*DOUBLE CIRCULAR LINKED LIST FUNCTIONS*/
void BME_cycle_append(void *h, void *nt);
int BME_cycle_remove(void *h, void *remn);
int BME_cycle_validate(int len, void *h);
/*DISK CYCLE MANAGMENT*/
int BME_disk_append_edge(struct BME_Edge *e, struct BME_Vert *v);
void BME_disk_remove_edge(struct BME_Edge *e, struct BME_Vert *v);
/*RADIAL CYCLE MANAGMENT*/
void BME_radial_append(struct BME_Edge *e, struct BME_Loop *l);
void BME_radial_remove_loop(struct BME_Loop *l, struct BME_Edge *e);
/*MISC FUNCTIONS*/
int BME_edge_swapverts(struct BME_Edge *e, struct BME_Vert *orig, struct BME_Vert *new); /*relink edge*/
int BME_disk_hasedge(struct BME_Vert *v, struct BME_Edge *e);
/*Error reporting. Shouldnt be called by tools ever.*/
void BME_error(void);
#endif

View File

@@ -45,6 +45,8 @@
#include "BKE_pointcache.h"
#include "BLI_kdopbvh.h"
#ifdef _WIN32
void tstart ( void )
{}
@@ -151,13 +153,14 @@ void cloth_init ( ClothModifierData *clmd )
clmd->sim_parms->goalfrict = 0.0f;
}
BVH *bvh_build_from_cloth (ClothModifierData *clmd, float epsilon)
BVHTree *bvhtree_build_from_cloth (ClothModifierData *clmd, float epsilon)
{
unsigned int i = 0;
BVH *bvh=NULL;
int i;
BVHTree *bvhtree;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = NULL;
ClothVertex *verts;
MFace *mfaces;
float co[12];
if(!clmd)
return NULL;
@@ -168,69 +171,86 @@ BVH *bvh_build_from_cloth (ClothModifierData *clmd, float epsilon)
return NULL;
verts = cloth->verts;
mfaces = cloth->mfaces;
// in the moment, return zero if no faces there
if(!cloth->numfaces)
return NULL;
bvh = MEM_callocN(sizeof(BVH), "BVH");
if (bvh == NULL)
// create quadtree with k=26
bvhtree = BLI_bvhtree_new(cloth->numfaces, epsilon, 4, 26);
// fill tree
for(i = 0; i < cloth->numfaces; i++, mfaces++)
{
printf("bvh: Out of memory.\n");
return NULL;
VECCOPY(&co[0*3], verts[mfaces->v1].xold);
VECCOPY(&co[1*3], verts[mfaces->v2].xold);
VECCOPY(&co[2*3], verts[mfaces->v3].xold);
if(mfaces->v4)
VECCOPY(&co[3*3], verts[mfaces->v4].xold);
BLI_bvhtree_insert(bvhtree, i, co, (mfaces->v4 ? 4 : 3));
}
// springs = cloth->springs;
// numsprings = cloth->numsprings;
bvh->epsilon = epsilon;
bvh->numfaces = cloth->numfaces;
bvh->mfaces = cloth->mfaces;
bvh->numverts = cloth->numverts;
// balance tree
BLI_bvhtree_balance(bvhtree);
bvh->current_x = MEM_callocN ( sizeof ( MVert ) * bvh->numverts, "bvh->current_x" );
if (bvh->current_x == NULL)
{
printf("bvh: Out of memory.\n");
MEM_freeN(bvh);
return NULL;
}
for(i = 0; i < bvh->numverts; i++)
{
VECCOPY(bvh->current_x[i].co, verts[i].tx);
}
bvh_build (bvh);
return bvh;
return bvhtree;
}
void bvh_update_from_cloth(ClothModifierData *clmd, int moving)
{
void bvhtree_update_from_cloth(ClothModifierData *clmd, int moving)
{
unsigned int i = 0;
Cloth *cloth = clmd->clothObject;
BVH *bvh = cloth->tree;
BVHTree *bvhtree = cloth->bvhtree;
ClothVertex *verts = cloth->verts;
MFace *mfaces;
float co[12], co_moving[12];
int ret = 0;
if(!bvh)
if(!bvhtree)
return;
if(cloth->numverts!=bvh->numverts)
return;
mfaces = cloth->mfaces;
if(cloth->verts)
// update vertex position in bvh tree
if(verts && mfaces)
{
for(i = 0; i < bvh->numverts; i++)
for(i = 0; i < cloth->numfaces; i++, mfaces++)
{
VECCOPY(bvh->current_x[i].co, verts[i].tx);
VECCOPY(bvh->current_xold[i].co, verts[i].txold);
VECCOPY(&co[0*3], verts[mfaces->v1].txold);
VECCOPY(&co[1*3], verts[mfaces->v2].txold);
VECCOPY(&co[2*3], verts[mfaces->v3].txold);
if(mfaces->v4)
VECCOPY(&co[3*3], verts[mfaces->v4].txold);
// copy new locations into array
if(moving)
{
// update moving positions
VECCOPY(&co_moving[0*3], verts[mfaces->v1].tx);
VECCOPY(&co_moving[1*3], verts[mfaces->v2].tx);
VECCOPY(&co_moving[2*3], verts[mfaces->v3].tx);
if(mfaces->v4)
VECCOPY(&co_moving[3*3], verts[mfaces->v4].tx);
ret = BLI_bvhtree_update_node(bvhtree, i, co, co_moving, (mfaces->v4 ? 4 : 3));
}
else
{
ret = BLI_bvhtree_update_node(bvhtree, i, co, NULL, (mfaces->v4 ? 4 : 3));
}
// check if tree is already full
if(!ret)
break;
}
BLI_bvhtree_update_tree(bvhtree);
}
bvh_update(bvh, moving);
}
int modifiers_indexInObject(Object *ob, ModifierData *md_seek);
@@ -541,8 +561,8 @@ void cloth_free_modifier ( Object *ob, ClothModifierData *clmd )
cloth->numsprings = 0;
// free BVH collision tree
if ( cloth->tree )
bvh_free ( ( BVH * ) cloth->tree );
if ( cloth->bvhtree )
BLI_bvhtree_free ( cloth->bvhtree );
// we save our faces for collision objects
if ( cloth->mfaces )
@@ -611,8 +631,8 @@ void cloth_free_modifier_extern ( ClothModifierData *clmd )
cloth->numsprings = 0;
// free BVH collision tree
if ( cloth->tree )
bvh_free ( ( BVH * ) cloth->tree );
if ( cloth->bvhtree )
BLI_bvhtree_free ( cloth->bvhtree );
// we save our faces for collision objects
if ( cloth->mfaces )
@@ -810,6 +830,7 @@ static int cloth_from_object(Object *ob, ClothModifierData *clmd, DerivedMesh *d
VECCOPY ( verts->xold, verts->x );
VECCOPY ( verts->xconst, verts->x );
VECCOPY ( verts->txold, verts->x );
VECCOPY ( verts->tx, verts->x );
VecMulf ( verts->v, 0.0f );
verts->impulse_count = 0;
@@ -845,12 +866,11 @@ static int cloth_from_object(Object *ob, ClothModifierData *clmd, DerivedMesh *d
if(!first)
implicit_set_positions(clmd);
clmd->clothObject->tree = bvh_build_from_cloth ( clmd, clmd->coll_parms->epsilon );
clmd->clothObject->bvhtree = bvhtree_build_from_cloth ( clmd, clmd->coll_parms->epsilon );
return 1;
}
static void cloth_from_mesh ( Object *ob, ClothModifierData *clmd, DerivedMesh *dm )
{
unsigned int numverts = dm->getNumVerts ( dm );

View File

@@ -41,7 +41,6 @@
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_cloth.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
@@ -49,6 +48,38 @@
#include "Bullet-C-Api.h"
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef _WIN32
static void start ( void )
{}
static void end ( void )
{
}
static double val()
{
return 0;
}
#else
#include <sys/time.h>
static void mystart ( struct timeval *start, struct timezone *z )
{
gettimeofday ( start, z );
}
static void myend ( struct timeval *end, struct timezone *z )
{
gettimeofday ( end,z );
}
static double myval ( struct timeval *start, struct timeval *end )
{
double t1, t2;
t1 = ( double ) start->tv_sec + ( double ) start->tv_usec/ ( 1000*1000 );
t2 = ( double ) end->tv_sec + ( double ) end->tv_usec/ ( 1000*1000 );
return t2-t1;
}
#endif
/***********************************
Collision modifier code start
***********************************/
@@ -66,58 +97,80 @@ void collision_move_object ( CollisionModifierData *collmd, float step, float pr
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
VECSUB ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvh_update_from_mvert ( collmd->bvh, collmd->current_x, collmd->numverts, collmd->current_xnew, 1 );
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
/* build bounding volume hierarchy from mverts (see kdop.c for whole BVH code) */
BVH *bvh_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int numverts, float epsilon )
{
BVH *bvh=NULL;
BVHTree *tree;
float co[12];
int i;
MFace *tface = mfaces;
bvh = MEM_callocN ( sizeof ( BVH ), "BVH" );
if ( bvh == NULL )
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ )
{
printf ( "bvh: Out of memory.\n" );
return NULL;
VECCOPY ( &co[0*3], x[tface->v1].co );
VECCOPY ( &co[1*3], x[tface->v2].co );
VECCOPY ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
VECCOPY ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// in the moment, return zero if no faces there
if ( !numfaces )
return NULL;
// balance tree
BLI_bvhtree_balance ( tree );
bvh->epsilon = epsilon;
bvh->numfaces = numfaces;
bvh->mfaces = mfaces;
// we have no faces, we save seperate points
if ( !mfaces )
{
bvh->numfaces = numverts;
}
bvh->numverts = numverts;
bvh->current_x = MEM_dupallocN ( x );
bvh_build ( bvh );
return bvh;
return tree;
}
void bvh_update_from_mvert ( BVH * bvh, MVert *x, unsigned int numverts, MVert *xnew, int moving )
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int numverts, int moving )
{
if ( !bvh )
return;
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
int ret = 0;
if ( numverts!=bvh->numverts )
if ( !bvhtree )
return;
if ( x )
memcpy ( bvh->current_xold, x, sizeof ( MVert ) * numverts );
{
for ( i = 0; i < numfaces; i++, mfaces++ )
{
VECCOPY ( &co[0*3], x[mfaces->v1].co );
VECCOPY ( &co[1*3], x[mfaces->v2].co );
VECCOPY ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co[3*3], x[mfaces->v4].co );
if ( xnew )
memcpy ( bvh->current_x, xnew, sizeof ( MVert ) * numverts );
// copy new locations into array
if ( moving && xnew )
{
// update moving positions
VECCOPY ( &co_moving[0*3], xnew[mfaces->v1].co );
VECCOPY ( &co_moving[1*3], xnew[mfaces->v2].co );
VECCOPY ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
VECCOPY ( &co_moving[3*3], xnew[mfaces->v4].co );
bvh_update ( bvh, moving );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else
{
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
@@ -157,11 +210,11 @@ int gsl_poly_solve_cubic ( float a, float b, float c, float *x0, float *x1, floa
else if ( CR2 == CQ3 )
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
for exact computation with integers */
/* Due to finite precision some float roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
float sqrtQ = sqrt ( Q );
@@ -419,24 +472,22 @@ DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float
VECADDMUL ( to, v3, w3 );
}
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd )
int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
LinkNode *search = NULL;
CollPair *collpair = NULL;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = collmd->bvh->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
search = clmd->coll_parms->collision_list;
while ( search )
for ( ; collpair != collision_end; collpair++ )
{
collpair = search->link;
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
@@ -530,8 +581,6 @@ int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifier
result = 1;
}
search = search->next;
}
@@ -549,51 +598,46 @@ int cloth_collision_response_moving_edges ( ClothModifierData *clmd, ClothModifi
return 1;
}
void cloth_collision_static ( ModifierData *md1, ModifierData *md2, CollisionTree *tree1, CollisionTree *tree2 )
//Determines collisions on overlap, collisions are writen to collpair[i] and collision+number_collision_found is returned
CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap, CollPair *collpair )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
CollPair *collpair = NULL;
Cloth *cloth1=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
float epsilon = clmd->coll_parms->epsilon;
float epsilon2 = ( ( CollisionModifierData * ) md2 )->bvh->epsilon;
unsigned int i = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
collpair = ( CollPair * ) MEM_callocN ( sizeof ( CollPair ), "cloth coll pair" );
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( collmd->mfaces[tree2->tri_index] );
// check all possible pairs of triangles
if ( i == 0 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
if ( i == 1 )
else if ( i == 1 )
{
if ( face1->v4 )
{
collpair->ap1 = face1->v3;
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
@@ -601,235 +645,215 @@ void cloth_collision_static ( ModifierData *md1, ModifierData *md2, CollisionTre
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
collpair->bp3 = face2->v3;
}
else
i+=2;
break;
}
if ( i == 3 )
else if ( i == 3 )
{
if ( ( face1->v4 ) && ( face2->v4 ) )
if ( face1->v4 && face2->v4 )
{
collpair->ap1 = face1->v3;
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v1;
collpair->ap3 = face1->v3;
collpair->bp1 = face2->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v1;
collpair->bp3 = face2->v3;
}
else
i++;
break;
}
// calc SIPcode (?)
if ( i < 4 )
{
// calc distance + normal
#ifdef WITH_BULLET
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
distance = 2.0 * ( epsilon + epsilon2 + ALMOST_ZERO );
// just be sure that we don't add anything
distance = 2.0 * ( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon + epsilon2 + ALMOST_ZERO ) )
{
// printf("dist: %f\n", (float)distance);
// collpair->face1 = tree1->tri_index;
// collpair->face2 = tree2->tri_index;
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
{
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
VECCOPY ( collpair->normal, collpair->vector );
Normalize ( collpair->normal );
collpair->distance = distance;
BLI_linklist_prepend ( &clmd->coll_parms->collision_list, collpair );
}
else
{
MEM_freeN ( collpair );
}
collpair->distance = distance;
collpair->flag = 0;
}
else
{
MEM_freeN ( collpair );
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
}
collpair++;
}
return collpair;
}
int cloth_are_edges_adjacent ( ClothModifierData *clmd, ClothModifierData *coll_clmd, EdgeCollPair *edgecollpair )
int cloth_are_edges_adjacent ( ClothModifierData *clmd, CollisionModifierData *collmd, EdgeCollPair *edgecollpair )
{
Cloth *cloth1 = NULL, *cloth2 = NULL;
ClothVertex *verts1 = NULL, *verts2 = NULL;
Cloth *cloth1 = NULL;
ClothVertex *verts1 = NULL;
float temp[3];
MVert *verts2 = collmd->current_x; // old x
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p21].xold );
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p21].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p22].xold );
VECSUB ( temp, verts1[edgecollpair->p11].xold, verts2[edgecollpair->p22].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p21].xold );
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p21].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p22].xold );
VECSUB ( temp, verts1[edgecollpair->p12].xold, verts2[edgecollpair->p22].co );
if ( ABS ( INPR ( temp, temp ) ) < ALMOST_ZERO )
return 1;
return 0;
}
void cloth_collision_moving_edges ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
void cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL, *cloth2=NULL;
MFace *face1=NULL, *face2=NULL;
ClothVertex *verts1=NULL, *verts2=NULL;
Cloth *cloth1=NULL;
ClothVertex *verts1=NULL;
unsigned int i = 0, j = 0, k = 0;
int numsolutions = 0;
float a[3], b[3], c[3], d[3], e[3], f[3], solution[3];
MVert *verts2 = collmd->current_x; // old x
MVert *velocity2 = collmd->current_v; // velocity
float mintime = 0;
cloth1 = clmd->clothObject;
cloth2 = coll_clmd->clothObject;
verts1 = cloth1->verts;
verts2 = cloth2->verts;
face1 = & ( cloth1->mfaces[tree1->tri_index] );
face2 = & ( cloth2->mfaces[tree2->tri_index] );
for ( i = 0; i < 5; i++ )
for(i = 0; i < 9; i++)
{
if ( i == 0 )
// 9 edge - edge possibilities
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
{
edgecollpair.p11 = face1->v1;
edgecollpair.p12 = face1->v2;
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if ( i == 1 )
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
{
edgecollpair.p11 = face1->v2;
edgecollpair.p12 = face1->v3;
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if ( i == 2 )
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
{
if ( face1->v4 )
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v4;
}
else
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
i+=5; // get out of here after this edge pair is handled
}
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if ( i == 3 )
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
{
if ( face1->v4 )
{
edgecollpair.p11 = face1->v4;
edgecollpair.p12 = face1->v1;
}
else
continue;
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
{
edgecollpair.p11 = face1->v3;
edgecollpair.p12 = face1->v1;
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
for ( j = 0; j < 5; j++ )
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
{
if ( j == 0 )
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// always put coll points in p21/p22
VECSUB ( a, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
VECSUB ( b, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
VECSUB ( c, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
VECSUB ( d, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
VECSUB ( e, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
VECSUB ( f, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].v );
numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
for ( k = 0; k < numsolutions; k++ )
{
edgecollpair.p21 = face2->v1;
edgecollpair.p22 = face2->v2;
}
else if ( j == 1 )
{
edgecollpair.p21 = face2->v2;
edgecollpair.p22 = face2->v3;
}
else if ( j == 2 )
{
if ( face2->v4 )
if ( ( solution[k] >= 0.0 ) && ( solution[k] <= 1.0 ) )
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v4;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
}
else if ( j == 3 )
{
if ( face2->v4 )
{
edgecollpair.p21 = face2->v4;
edgecollpair.p22 = face2->v1;
}
else
continue;
}
else
{
edgecollpair.p21 = face2->v3;
edgecollpair.p22 = face2->v1;
}
if ( !cloth_are_edges_adjacent ( clmd, coll_clmd, &edgecollpair ) )
{
VECSUB ( a, verts1[edgecollpair.p12].xold, verts1[edgecollpair.p11].xold );
VECSUB ( b, verts1[edgecollpair.p12].v, verts1[edgecollpair.p11].v );
VECSUB ( c, verts1[edgecollpair.p21].xold, verts1[edgecollpair.p11].xold );
VECSUB ( d, verts1[edgecollpair.p21].v, verts1[edgecollpair.p11].v );
VECSUB ( e, verts2[edgecollpair.p22].xold, verts1[edgecollpair.p11].xold );
VECSUB ( f, verts2[edgecollpair.p22].v, verts1[edgecollpair.p11].v );
numsolutions = cloth_get_collision_time ( a, b, c, d, e, f, solution );
for ( k = 0; k < numsolutions; k++ )
{
if ( ( solution[k] >= 0.0 ) && ( solution[k] <= 1.0 ) )
{
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (edge) collision list
// printf("Moving edge found!\n");
}
//float out_collisionTime = solution[k];
// TODO: check for collisions
// TODO: put into (edge) collision list
mintime = MIN2(mintime, solution[k]);
printf("Moving edge found!, mintime: %f\n", mintime);
break;
}
}
}
@@ -928,6 +952,7 @@ void cloth_collision_moving_tris ( ClothModifierData *clmd, ClothModifierData *c
}
}
/*
void cloth_collision_moving ( ClothModifierData *clmd, ClothModifierData *coll_clmd, CollisionTree *tree1, CollisionTree *tree2 )
{
// TODO: check for adjacent
@@ -936,51 +961,68 @@ void cloth_collision_moving ( ClothModifierData *clmd, ClothModifierData *coll_c
cloth_collision_moving_tris ( clmd, coll_clmd, tree1, tree2 );
cloth_collision_moving_tris ( coll_clmd, clmd, tree2, tree1 );
}
*/
void cloth_free_collision_list ( ClothModifierData *clmd )
int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
// free collision list
if ( clmd->coll_parms->collision_list )
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
LinkNode *search = clmd->coll_parms->collision_list;
while ( search )
{
CollPair *coll_pair = search->link;
MEM_freeN ( coll_pair );
search = search->next;
}
BLI_linklist_free ( clmd->coll_parms->collision_list,NULL );
clmd->coll_parms->collision_list = NULL;
// only handle moving collisions here
if (!( collpair->flag & COLLISION_IN_FUTURE ))
continue;
cloth_collision_moving_edges ( clmd, collmd, collpair);
}
}
int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData *collmd, float step, float dt )
{
Cloth *cloth = clmd->clothObject;
BVH *cloth_bvh= ( BVH * ) cloth->tree;
BVHTree *cloth_bvh= ( BVHTree * ) cloth->bvhtree;
long i=0, j = 0, numfaces = 0, numverts = 0;
ClothVertex *verts = NULL;
CollPair *collisions = NULL, *collisions_index = NULL;
int ret = 0;
unsigned int result = 0;
int result = 0;
float tnull[3] = {0,0,0};
BVHTreeOverlap *overlap = NULL;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
if ( collmd->bvh )
if ( collmd->bvhtree )
{
/* get pointer to bounding volume hierarchy */
BVH *coll_bvh = collmd->bvh;
BVHTree *coll_bvh = collmd->bvhtree;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
bvh_traverse ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, cloth_bvh->root, coll_bvh->root, step, cloth_collision_static, 0 );
overlap = BLI_bvhtree_overlap ( cloth_bvh, coll_bvh, &result );
collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * result*4, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
collisions_index = collisions;
for ( i = 0; i < result; i++ )
{
collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd, overlap+i, collisions_index );
}
if ( overlap )
MEM_freeN ( overlap );
}
else
{
@@ -994,11 +1036,15 @@ int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData
{
result = 0;
if ( collmd->bvh )
result += cloth_collision_response_static ( clmd, collmd );
if ( collmd->bvhtree )
{
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
result += cloth_collision_moving ( clmd, collmd, collisions, collisions_index );
}
// apply impulses in parallel
if ( result )
{
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
@@ -1011,12 +1057,10 @@ int cloth_bvh_objcollisions_do ( ClothModifierData * clmd, CollisionModifierData
ret++;
}
}
if ( !result )
break;
}
}
cloth_free_collision_list ( clmd );
if ( collisions ) MEM_freeN ( collisions );
return ret;
}
@@ -1028,7 +1072,7 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
CollisionModifierData *collmd=NULL;
Cloth *cloth=NULL;
Object *coll_ob=NULL;
BVH *cloth_bvh=NULL;
BVHTree *cloth_bvh=NULL;
long i=0, j = 0, numfaces = 0, numverts = 0;
unsigned int result = 0, rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
@@ -1036,14 +1080,14 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
ClothModifierData *tclmd;
int collisions = 0, count = 0;
if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->tree ) )
if ( ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ ) || ! ( ( ( Cloth * ) clmd->clothObject )->bvhtree ) )
{
return 0;
}
cloth = clmd->clothObject;
verts = cloth->verts;
cloth_bvh = ( BVH * ) cloth->tree;
cloth_bvh = ( BVHTree * ) cloth->bvhtree;
numfaces = clmd->clothObject->numfaces;
numverts = clmd->clothObject->numverts;
@@ -1052,12 +1096,11 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
////////////////////////////////////////////////////////////
// update cloth bvh
bvh_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhtree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
do
{
result = 0;
clmd->coll_parms->collision_list = NULL;
// check all collision objects
for ( base = G.scene->base.first; base; base = base->next )
@@ -1126,80 +1169,87 @@ int cloth_bvh_objcollision ( ClothModifierData * clmd, float step, float dt )
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
MFace *mface = clmd->clothObject->mfaces;
collisions = 1;
verts = cloth->verts; // needed for openMP
/*
for ( count = 0; count < clmd->coll_parms->self_loop_count; count++ )
{
if ( collisions )
{
collisions = 0;
#pragma omp parallel for private(i,j, collisions) shared(verts, ret)
for ( i = 0; i < cloth->numverts; i++ )
{
for ( j = i + 1; j < cloth->numverts; j++ )
{
float temp[3];
float length = 0;
float mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( collisions )
{
collisions = 0;
#pragma omp parallel for private(i,j, collisions) shared(verts, ret)
for ( i = 0; i < cloth->numverts; i++ )
{
for ( j = i + 1; j < cloth->numverts; j++ )
{
float temp[3];
float length = 0;
float mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
VECSUB ( temp, verts[i].tx, verts[j].tx );
VECSUB ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, i, j ) )
{
continue;
}
length = Normalize ( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
VecMulf ( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
collisions = 1;
if ( !ret )
{
#pragma omp critical
{
ret = 1;
}
}
}
}
}
}
if ( BLI_edgehash_haskey ( cloth->edgehash, i, j ) )
{
continue;
}
length = Normalize ( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
VecMulf ( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
VecMulf ( temp, -correction*0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
VECSUB ( verts[i].tx, verts[i].tx, temp );
}
collisions = 1;
if ( !ret )
{
#pragma omp critical
{
ret = 1;
}
}
}
}
}
}
}
*/
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////

View File

@@ -1,860 +0,0 @@
/* kdop.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_cloth_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BKE_modifier.h"
#include "BKE_utildefines.h"
#ifdef _OPENMP
#include <omp.h>
#endif
////////////////////////////////////////////////////////////////////////
// Additional fastened appending function
// It uses the link to the last inserted node as start value
// for searching the end of the list
// NEW: in compare to the original function, this one returns
// the reference to the last inserted node
////////////////////////////////////////////////////////////////////////
LinkNode *BLI_linklist_append_fast(LinkNode **listp, void *ptr) {
LinkNode *nlink= MEM_mallocN(sizeof(*nlink), "nlink");
LinkNode *node = *listp;
nlink->link = ptr;
nlink->next = NULL;
if(node == NULL){
*listp = nlink;
} else {
while(node->next != NULL){
node = node->next;
}
node->next = nlink;
}
return nlink;
}
////////////////////////////////////////////////////////////////////////
// Bounding Volume Hierarchy Definition
//
// Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
// Notes: You have to choose the type at compile time ITM
// Notes: You can choose the tree type --> binary, quad, octree, choose below
////////////////////////////////////////////////////////////////////////
static float KDOP_AXES[13][3] =
{ {1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0},
{1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0},
{0, 1.0, -1.0}
};
///////////// choose bounding volume here! /////////////
#define KDOP_26
#ifdef KDOP_26
#define KDOP_END 13
#define KDOP_START 0
#endif
#ifdef KDOP_18
#define KDOP_END 13
#define KDOP_START 7
#endif
#ifdef KDOP_14
#define KDOP_END 7
#define KDOP_START 0
#endif
// this is basicly some AABB
#ifdef KDOP_8
#define KDOP_END 4
#define KDOP_START 0
#endif
// this is basicly some OBB
#ifdef KDOP_6
#define KDOP_END 3
#define KDOP_START 0
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Introsort
// with permission deriven from the following Java code:
// http://ralphunden.net/content/tutorials/a-guide-to-introsort/
// and he derived it from the SUN STL
//////////////////////////////////////////////////////////////////////////////////////////////////////
static int size_threshold = 16;
/*
* Common methods for all algorithms
*/
DO_INLINE void bvh_exchange(CollisionTree **a, int i, int j)
{
CollisionTree *t=a[i];
a[i]=a[j];
a[j]=t;
}
DO_INLINE int floor_lg(int a)
{
return (int)(floor(log(a)/log(2)));
}
/*
* Insertion sort algorithm
*/
void bvh_insertionsort(CollisionTree **a, int lo, int hi, int axis)
{
int i,j;
CollisionTree *t;
for (i=lo; i < hi; i++)
{
j=i;
t = a[i];
while((j!=lo) && (t->bv[axis] < (a[j-1])->bv[axis]))
{
a[j] = a[j-1];
j--;
}
a[j] = t;
}
}
static int bvh_partition(CollisionTree **a, int lo, int hi, CollisionTree * x, int axis)
{
int i=lo, j=hi;
while (1)
{
while ((a[i])->bv[axis] < x->bv[axis]) i++;
j=j-1;
while (x->bv[axis] < (a[j])->bv[axis]) j=j-1;
if(!(i < j))
return i;
bvh_exchange(a, i,j);
i++;
}
}
/*
* Heapsort algorithm
*/
static void bvh_downheap(CollisionTree **a, int i, int n, int lo, int axis)
{
CollisionTree * d = a[lo+i-1];
int child;
while (i<=n/2)
{
child = 2*i;
if ((child < n) && ((a[lo+child-1])->bv[axis] < (a[lo+child])->bv[axis]))
{
child++;
}
if (!(d->bv[axis] < (a[lo+child-1])->bv[axis])) break;
a[lo+i-1] = a[lo+child-1];
i = child;
}
a[lo+i-1] = d;
}
static void bvh_heapsort(CollisionTree **a, int lo, int hi, int axis)
{
int n = hi-lo, i;
for (i=n/2; i>=1; i=i-1)
{
bvh_downheap(a, i,n,lo, axis);
}
for (i=n; i>1; i=i-1)
{
bvh_exchange(a, lo,lo+i-1);
bvh_downheap(a, 1,i-1,lo, axis);
}
}
static CollisionTree *bvh_medianof3(CollisionTree **a, int lo, int mid, int hi, int axis) // returns Sortable
{
if ((a[mid])->bv[axis] < (a[lo])->bv[axis])
{
if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
return a[mid];
else
{
if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
return a[hi];
else
return a[lo];
}
}
else
{
if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
{
if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
return a[lo];
else
return a[hi];
}
else
return a[mid];
}
}
/*
* Quicksort algorithm modified for Introsort
*/
void bvh_introsort_loop (CollisionTree **a, int lo, int hi, int depth_limit, int axis)
{
int p;
while (hi-lo > size_threshold)
{
if (depth_limit == 0)
{
bvh_heapsort(a, lo, hi, axis);
return;
}
depth_limit=depth_limit-1;
p=bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo+((hi-lo)/2)+1, hi-1, axis), axis);
bvh_introsort_loop(a, p, hi, depth_limit, axis);
hi=p;
}
}
DO_INLINE void bvh_sort(CollisionTree **a0, int begin, int end, int axis)
{
if (begin < end)
{
CollisionTree **a=a0;
bvh_introsort_loop(a, begin, end, 2*floor_lg(end-begin), axis);
bvh_insertionsort(a, begin, end, axis);
}
}
DO_INLINE void bvh_sort_along_axis(CollisionTree **face_list, int start, int end, int axis)
{
bvh_sort(face_list, start, end, axis);
}
////////////////////////////////////////////////////////////////////////////////////////////////
void bvh_free(BVH * bvh)
{
LinkNode *search = NULL;
CollisionTree *tree = NULL;
if (bvh)
{
search = bvh->tree;
while(search)
{
LinkNode *next= search->next;
tree = search->link;
MEM_freeN(tree);
search = next;
}
BLI_linklist_free(bvh->tree,NULL);
bvh->tree = NULL;
if(bvh->current_x)
MEM_freeN(bvh->current_x);
if(bvh->current_xold)
MEM_freeN(bvh->current_xold);
MEM_freeN(bvh);
bvh = NULL;
}
}
// only supports x,y,z axis in the moment
// but we should use a plain and simple function here for speed sake
DO_INLINE int bvh_largest_axis(float *bv)
{
float middle_point[3];
middle_point[0] = (bv[1]) - (bv[0]); // x axis
middle_point[1] = (bv[3]) - (bv[2]); // y axis
middle_point[2] = (bv[5]) - (bv[4]); // z axis
if (middle_point[0] > middle_point[1])
{
if (middle_point[0] > middle_point[2])
return 1; // max x axis
else
return 5; // max z axis
}
else
{
if (middle_point[1] > middle_point[2])
return 3; // max y axis
else
return 5; // max z axis
}
}
// depends on the fact that the BVH's for each face is already build
DO_INLINE void bvh_calc_DOP_hull_from_faces(BVH * bvh, CollisionTree **tri, int numfaces, float *bv)
{
float newmin,newmax;
int i, j;
if(numfaces >0)
{
// for all Axes.
for (i = KDOP_START; i < KDOP_END; i++)
{
bv[(2 * i)] = (tri [0])->bv[(2 * i)];
bv[(2 * i) + 1] = (tri [0])->bv[(2 * i) + 1];
}
}
for (j = 0; j < numfaces; j++)
{
// for all Axes.
for (i = KDOP_START; i < KDOP_END; i++)
{
newmin = (tri [j])->bv[(2 * i)];
if ((newmin < bv[(2 * i)]))
{
bv[(2 * i)] = newmin;
}
newmax = (tri [j])->bv[(2 * i) + 1];
if ((newmax > bv[(2 * i) + 1]))
{
bv[(2 * i) + 1] = newmax;
}
}
}
}
DO_INLINE void bvh_calc_DOP_hull_static(BVH * bvh, CollisionTree **tri, int numfaces, float *bv, CollisionTree *tree)
{
MFace *tempMFace = bvh->mfaces;
float *tempBV = bv;
float newminmax;
int i, j, k;
for (j = 0; j < numfaces; j++)
{
tempMFace = bvh->mfaces + (tri [j])->tri_index;
// 3 or 4 vertices per face.
for (k = 0; k < 4; k++)
{
int temp = 0;
// If this is a triangle.
if (k == 3 && !tempMFace->v4)
continue;
// TODO: other name for "temp" this gets all vertices of a face
if (k == 0)
temp = tempMFace->v1;
else if (k == 1)
temp = tempMFace->v2;
else if (k == 2)
temp = tempMFace->v3;
else if (k == 3)
temp = tempMFace->v4;
// for all Axes.
for (i = KDOP_START; i < KDOP_END; i++)
{
newminmax = INPR(bvh->current_xold[temp].co, KDOP_AXES[i]);
if ((newminmax < tempBV[(2 * i)]) || (k == 0 && j == 0))
tempBV[(2 * i)] = newminmax;
if ((newminmax > tempBV[(2 * i) + 1])|| (k == 0 && j == 0))
tempBV[(2 * i) + 1] = newminmax;
}
}
/* calculate normal of this face */
/* (code copied from cdderivedmesh.c) */
/*
if(tempMFace->v4)
CalcNormFloat4(bvh->current_xold[tempMFace->v1].co, bvh->current_xold[tempMFace->v2].co,
bvh->current_xold[tempMFace->v3].co, bvh->current_xold[tempMFace->v4].co, tree->normal);
else
CalcNormFloat(bvh->current_xold[tempMFace->v1].co, bvh->current_xold[tempMFace->v2].co,
bvh->current_xold[tempMFace->v3].co, tree->normal);
tree->alpha = 0;
*/
}
}
DO_INLINE void bvh_calc_DOP_hull_moving(BVH * bvh, CollisionTree **tri, int numfaces, float *bv, CollisionTree *tree)
{
MFace *tempMFace = bvh->mfaces;
float *tempBV = bv;
float newminmax;
int i, j, k;
/* TODO: calculate normals */
for (j = 0; j < numfaces; j++)
{
tempMFace = bvh->mfaces + (tri [j])->tri_index;
// 3 or 4 vertices per face.
for (k = 0; k < 4; k++)
{
int temp = 0;
// If this is a triangle.
if (k == 3 && !tempMFace->v4)
continue;
// TODO: other name for "temp" this gets all vertices of a face
if (k == 0)
temp = tempMFace->v1;
else if (k == 1)
temp = tempMFace->v2;
else if (k == 2)
temp = tempMFace->v3;
else if (k == 3)
temp = tempMFace->v4;
// for all Axes.
for (i = KDOP_START; i < KDOP_END; i++)
{
newminmax = INPR(bvh->current_xold[temp].co, KDOP_AXES[i]);
if ((newminmax < tempBV[(2 * i)]) || (k == 0 && j == 0))
tempBV[(2 * i)] = newminmax;
if ((newminmax > tempBV[(2 * i) + 1])|| (k == 0 && j == 0))
tempBV[(2 * i) + 1] = newminmax;
newminmax = INPR(bvh->current_x[temp].co, KDOP_AXES[i]);
if ((newminmax < tempBV[(2 * i)]) || (k == 0 && j == 0))
tempBV[(2 * i)] = newminmax;
if ((newminmax > tempBV[(2 * i) + 1])|| (k == 0 && j == 0))
tempBV[(2 * i) + 1] = newminmax;
}
}
}
}
static void bvh_div_env_node(BVH *bvh, CollisionTree *tree, CollisionTree **face_list, unsigned int start, unsigned int end, int lastaxis, LinkNode *nlink)
{
int i = 0;
CollisionTree *newtree = NULL;
int laxis = 0, max_nodes=4;
unsigned int tstart, tend;
LinkNode *nlink1 = nlink;
LinkNode *tnlink;
tree->traversed = 0;
// Determine which axis to split along
laxis = bvh_largest_axis(tree->bv);
// Sort along longest axis
if(laxis!=lastaxis)
bvh_sort_along_axis(face_list, start, end, laxis);
// maximum is 4 since we have a quad tree
max_nodes = MIN2((end-start + 1 ),4);
for (i = 0; i < max_nodes; i++)
{
tree->count_nodes++;
if(end-start+1 > 4)
{
int quarter = ((float)((float)(end - start + 1) / 4.0f));
tstart = start + i * quarter;
tend = tstart + quarter - 1;
// be sure that we get all faces
if(i==3)
{
tend = end;
}
}
else
{
tend = tstart = start + i;
}
// Build tree until 4 node left.
if ((tend-tstart + 1 ) > 1)
{
newtree = (CollisionTree *)MEM_callocN(sizeof(CollisionTree), "CollisionTree");
tnlink = BLI_linklist_append_fast(&nlink1->next, newtree);
newtree->nodes[0] = newtree->nodes[1] = newtree->nodes[2] = newtree->nodes[3] = NULL;
newtree->count_nodes = 0;
newtree->parent = tree;
newtree->isleaf = 0;
tree->nodes[i] = newtree;
nlink1 = tnlink;
bvh_calc_DOP_hull_from_faces(bvh, &face_list[tstart], tend-tstart + 1, tree->nodes[i]->bv);
bvh_div_env_node(bvh, tree->nodes[i], face_list, tstart, tend, laxis, nlink1);
}
else // ok, we have 1 left for this node
{
CollisionTree *tnode = face_list[tstart];
tree->nodes[i] = tnode;
tree->nodes[i]->parent = tree;
}
}
return;
}
/* function cannot be directly called - needs alloced bvh */
void bvh_build (BVH *bvh)
{
unsigned int i = 0, j = 0, k = 0;
CollisionTree **face_list=NULL;
CollisionTree *tree=NULL;
LinkNode *nlink = NULL;
bvh->flags = 0;
bvh->leaf_tree = NULL;
bvh->leaf_root = NULL;
bvh->tree = NULL;
if(!bvh->current_x)
{
bvh_free(bvh);
return;
}
bvh->current_xold = MEM_dupallocN(bvh->current_x);
tree = (CollisionTree *)MEM_callocN(sizeof(CollisionTree), "CollisionTree");
if (tree == NULL)
{
printf("bvh_build: Out of memory for nodes.\n");
bvh_free(bvh);
return;
}
BLI_linklist_append(&bvh->tree, tree);
nlink = bvh->tree;
bvh->root = bvh->tree->link;
bvh->root->isleaf = 0;
bvh->root->parent = NULL;
bvh->root->nodes[0] = bvh->root->nodes[1] = bvh->root->nodes[1] = bvh->root->nodes[3] = NULL;
if(bvh->numfaces<=1)
{
bvh->root->tri_index = 0; // Why that? --> only one face there
bvh->root->isleaf = 1;
bvh->root->traversed = 0;
bvh->root->count_nodes = 0;
bvh->leaf_root = bvh->root;
bvh->leaf_tree = bvh->root;
bvh->root->nextLeaf = NULL;
bvh->root->prevLeaf = NULL;
}
else
{
// create face boxes
face_list = MEM_callocN (bvh->numfaces * sizeof (CollisionTree *), "CollisionTree");
if (face_list == NULL)
{
printf("bvh_build: Out of memory for face_list.\n");
bvh_free(bvh);
return;
}
// create face boxes
for(i = 0, k = 0; i < bvh->numfaces; i++)
{
LinkNode *tnlink;
tree = (CollisionTree *)MEM_callocN(sizeof(CollisionTree), "CollisionTree");
// TODO: check succesfull alloc
tnlink = BLI_linklist_append_fast(&nlink->next, tree);
face_list[i] = tree;
tree->tri_index = i;
tree->isleaf = 1;
tree->nextLeaf = NULL;
tree->prevLeaf = bvh->leaf_tree;
tree->parent = NULL;
tree->count_nodes = 0;
if(i==0)
{
bvh->leaf_tree = bvh->leaf_root = tree;
}
else
{
bvh->leaf_tree->nextLeaf = tree;
bvh->leaf_tree = bvh->leaf_tree->nextLeaf;
}
tree->nodes[0] = tree->nodes[1] = tree->nodes[2] = tree->nodes[3] = NULL;
bvh_calc_DOP_hull_static(bvh, &face_list[i], 1, tree->bv, tree);
// inflate the bv with some epsilon
for (j = KDOP_START; j < KDOP_END; j++)
{
tree->bv[(2 * j)] -= bvh->epsilon; // minimum
tree->bv[(2 * j) + 1] += bvh->epsilon; // maximum
}
nlink = tnlink;
}
// build root bvh
bvh_calc_DOP_hull_from_faces(bvh, face_list, bvh->numfaces, bvh->root->bv);
// This is the traversal function.
bvh_div_env_node(bvh, bvh->root, face_list, 0, bvh->numfaces-1, 0, nlink);
if (face_list)
MEM_freeN(face_list);
}
}
// bvh_overlap - is it possbile for 2 bv's to collide ?
DO_INLINE int bvh_overlap(float *bv1, float *bv2)
{
int i = 0;
for (i = KDOP_START; i < KDOP_END; i++)
{
// Minimum test.
if (bv1[(2 * i)] > bv2[(2 * i) + 1])
{
return 0;
}
// Maxiumum test.
if (bv2[(2 * i)] > bv1[(2 * i) + 1])
{
return 0;
}
}
return 1;
}
// bvh_overlap_self - is it possbile for 2 bv's to selfcollide ?
DO_INLINE int bvh_overlap_self(CollisionTree * tree1, CollisionTree * tree2)
{
// printf("overlap: %f, q: %f\n", (saacos(INPR(tree1->normal, tree2->normal)) / 2.0)+MAX2(tree1->alpha, tree2->alpha), saacos(INPR(tree1->normal, tree2->normal)));
if((saacos(INPR(tree1->normal, tree2->normal)) / 2.0)+MAX2(tree1->alpha, tree2->alpha) > M_PI)
{
return 1;
}
else
return 0;
}
/**
* bvh_traverse - traverse two bvh trees looking for potential collisions.
*
* max collisions are n*n collisions --> every triangle collide with
* every other triangle that doesn't require any realloc, but uses
* much memory
*/
int bvh_traverse ( ModifierData * md1, ModifierData * md2, CollisionTree * tree1, CollisionTree * tree2, float step, CM_COLLISION_RESPONSE collision_response, int selfcollision)
{
int i = 0, ret=0, overlap = 0;
/*
// Shouldn't be possible
if(!tree1 || !tree2)
{
printf("Error: no tree there\n");
return 0;
}
*/
if(selfcollision)
overlap = bvh_overlap_self(tree1, tree2);
else
overlap = bvh_overlap(tree1->bv, tree2->bv);
if (overlap)
{
// Check if this node in the first tree is a leaf
if (tree1->isleaf)
{
// Check if this node in the second tree a leaf
if (tree2->isleaf)
{
// Provide the collision response.
if(collision_response)
collision_response (md1, md2, tree1, tree2);
return 1;
}
else
{
// Process the quad tree.
for (i = 0; i < 4; i++)
{
// Only traverse nodes that exist.
if (tree2->nodes[i] && bvh_traverse (md1, md2, tree1, tree2->nodes[i], step, collision_response, selfcollision))
ret = 1;
}
}
}
else
{
// Process the quad tree.
for (i = 0; i < 4; i++)
{
// Only traverse nodes that exist.
if (tree1->nodes [i] && bvh_traverse (md1, md2, tree1->nodes[i], tree2, step, collision_response, selfcollision))
ret = 1;
}
}
}
return ret;
}
// bottom up update of bvh tree:
// join the 4 children here
void bvh_join(CollisionTree *tree)
{
int i = 0, j = 0;
float max = 0;
if (!tree)
return;
for (i = 0; i < 4; i++)
{
if (tree->nodes[i])
{
for (j = KDOP_START; j < KDOP_END; j++)
{
// update minimum
if ((tree->nodes[i]->bv[(2 * j)] < tree->bv[(2 * j)]) || (i == 0))
{
tree->bv[(2 * j)] = tree->nodes[i]->bv[(2 * j)];
}
// update maximum
if ((tree->nodes[i]->bv[(2 * j) + 1] > tree->bv[(2 * j) + 1])|| (i == 0))
{
tree->bv[(2 * j) + 1] = tree->nodes[i]->bv[(2 * j) + 1];
}
}
/* for selfcollisions */
/*
if(!i)
{
tree->alpha = tree->nodes[i]->alpha;
VECCOPY(tree->normal, tree->nodes[i]->normal);
}
else
{
tree->alpha += saacos(INPR(tree->normal, tree->nodes[i]->normal)) / 2.0;
VECADD(tree->normal, tree->normal, tree->nodes[i]->normal);
VecMulf(tree->normal, 0.5);
max = MAX2(max, tree->nodes[i]->alpha);
}
*/
}
else
break;
}
tree->alpha += max;
}
// update static bvh
/* you have to update the bvh position before calling this function */
void bvh_update(BVH * bvh, int moving)
{
CollisionTree *leaf, *parent;
int traversecheck = 1; // if this is zero we don't go further
unsigned int j = 0;
for (leaf = bvh->leaf_root; leaf; leaf = leaf->nextLeaf)
{
traversecheck = 1;
if ((leaf->parent) && (leaf->parent->traversed == leaf->parent->count_nodes))
{
leaf->parent->traversed = 0;
}
if(!moving)
bvh_calc_DOP_hull_static(bvh, &leaf, 1, leaf->bv, leaf);
else
bvh_calc_DOP_hull_moving(bvh, &leaf, 1, leaf->bv, leaf);
// inflate the bv with some epsilon
for (j = KDOP_START; j < KDOP_END; j++)
{
leaf->bv[(2 * j)] -= bvh->epsilon; // minimum
leaf->bv[(2 * j) + 1] += bvh->epsilon; // maximum
}
for (parent = leaf->parent; parent; parent = parent->parent)
{
if (traversecheck)
{
parent->traversed++; // we tried to go up in hierarchy
if (parent->traversed < parent->count_nodes)
{
traversecheck = 0;
if (parent->parent)
{
if (parent->parent->traversed == parent->parent->count_nodes)
{
parent->parent->traversed = 0;
}
}
break; // we do not need to check further
}
else
{
bvh_join(parent);
}
}
}
}
}

View File

@@ -58,6 +58,7 @@
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_sph_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
@@ -90,6 +91,7 @@
#include "BKE_object.h"
#include "BKE_mesh.h"
#include "BKE_softbody.h"
#include "BKE_sph.h"
#include "BKE_cloth.h"
#include "BKE_material.h"
#include "BKE_particle.h"
@@ -5178,6 +5180,89 @@ static void clothModifier_freeData(ModifierData *md)
}
}
/* Smooth Particly Hydrodynamics */
static void sphModifier_initData(ModifierData *md)
{
SphModifierData *sphmd = (SphModifierData*) md;
sphmd->sim_parms = MEM_callocN(sizeof(SphSimSettings), "SPH sim parms");
sphmd->coll_parms = MEM_callocN(sizeof(SphCollSettings), "SPH coll parms");
/* check for alloc failing */
if(!sphmd->sim_parms || !sphmd->coll_parms)
return;
sph_init(sphmd);
}
static DerivedMesh *sphModifier_applyModifier(ModifierData *md, Object *ob,
DerivedMesh *derivedData, int useRenderParams, int isFinalCalc)
{
SphModifierData *sphmd = (SphModifierData*) md;
DerivedMesh *result=NULL;
/* check for alloc failing */
if(!sphmd->sim_parms || !sphmd->coll_parms)
return derivedData;
result = sphModifier_do(sphmd, ob, derivedData, useRenderParams, isFinalCalc);
if(result)
{
CDDM_calc_normals(result);
return result;
}
return derivedData;
}
static void sphModifier_updateDepgraph(
ModifierData *md, DagForest *forest, Object *ob,
DagNode *obNode)
{
SphModifierData *sphmd = (SphModifierData*) md;
Base *base;
}
CustomDataMask sphModifier_requiredDataMask(ModifierData *md)
{
CustomDataMask dataMask = 0;
/* ask for vertexgroups if we need them */
dataMask |= (1 << CD_MDEFORMVERT);
return dataMask;
}
static void sphModifier_copyData(ModifierData *md, ModifierData *target)
{
}
static int sphModifier_dependsOnTime(ModifierData *md)
{
return 1;
}
static void sphModifier_freeData(ModifierData *md)
{
SphModifierData *sphmd = (SphModifierData*) md;
if (sphmd)
{
sph_free_modifier(sphmd);
if(sphmd->sim_parms)
MEM_freeN(sphmd->sim_parms);
if(sphmd->coll_parms)
MEM_freeN(sphmd->coll_parms);
}
}
/* Collision */
static void collisionModifier_initData(ModifierData *md)
@@ -5191,7 +5276,7 @@ static void collisionModifier_initData(ModifierData *md)
collmd->current_v = NULL;
collmd->time = -1;
collmd->numverts = 0;
collmd->bvh = NULL;
collmd->bvhtree = NULL;
}
static void collisionModifier_freeData(ModifierData *md)
@@ -5200,8 +5285,8 @@ static void collisionModifier_freeData(ModifierData *md)
if (collmd)
{
if(collmd->bvh)
bvh_free(collmd->bvh);
if(collmd->bvhtree)
BLI_bvhtree_free(collmd->bvhtree);
if(collmd->x)
MEM_freeN(collmd->x);
if(collmd->xnew)
@@ -5212,7 +5297,6 @@ static void collisionModifier_freeData(ModifierData *md)
MEM_freeN(collmd->current_xnew);
if(collmd->current_v)
MEM_freeN(collmd->current_v);
if(collmd->mfaces)
MEM_freeN(collmd->mfaces);
@@ -5223,7 +5307,7 @@ static void collisionModifier_freeData(ModifierData *md)
collmd->current_v = NULL;
collmd->time = -1;
collmd->numverts = 0;
collmd->bvh = NULL;
collmd->bvhtree = NULL;
collmd->mfaces = NULL;
}
}
@@ -5291,9 +5375,8 @@ static void collisionModifier_deformVerts(
collmd->mfaces = dm->dupFaceArray(dm);
collmd->numfaces = dm->getNumFaces(dm);
// TODO: epsilon
// create bounding box hierarchy
collmd->bvh = bvh_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->x, numverts, ob->pd->pdef_sboft);
collmd->bvhtree = bvhtree_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->x, numverts, ob->pd->pdef_sboft);
collmd->time = current_time;
}
@@ -5316,25 +5399,25 @@ static void collisionModifier_deformVerts(
memcpy(collmd->current_x, collmd->x, numverts*sizeof(MVert));
/* check if GUI setting has changed for bvh */
if(collmd->bvh)
if(collmd->bvhtree)
{
if(ob->pd->pdef_sboft != collmd->bvh->epsilon)
if(ob->pd->pdef_sboft != BLI_bvhtree_getepsilon(collmd->bvhtree))
{
bvh_free(collmd->bvh);
collmd->bvh = bvh_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->current_x, numverts, ob->pd->pdef_sboft);
BLI_bvhtree_free(collmd->bvhtree);
collmd->bvhtree = bvhtree_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->current_x, numverts, ob->pd->pdef_sboft);
}
}
/* happens on file load (ONLY when i decomment changes in readfile.c */
if(!collmd->bvh)
/* happens on file load (ONLY when i decomment changes in readfile.c) */
if(!collmd->bvhtree)
{
collmd->bvh = bvh_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->current_x, numverts, ob->pd->pdef_sboft);
collmd->bvhtree = bvhtree_build_from_mvert(collmd->mfaces, collmd->numfaces, collmd->current_x, numverts, ob->pd->pdef_sboft);
}
else
{
// recalc static bounding boxes
bvh_update_from_mvert(collmd->bvh, collmd->current_x, numverts, NULL, 0);
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, NULL, collmd->numverts, 0 );
}
collmd->time = current_time;
@@ -7106,6 +7189,18 @@ ModifierTypeInfo *modifierType_getInfo(ModifierType type)
mti->requiredDataMask = bevelModifier_requiredDataMask;
mti->applyModifier = bevelModifier_applyModifier;
mti->applyModifierEM = bevelModifier_applyModifierEM;
mti = INIT_TYPE(Sph);
mti->type = eModifierTypeType_Nonconstructive;
mti->flags = eModifierTypeFlag_AcceptsMesh
| eModifierTypeFlag_UsesPointCache;
mti->initData = sphModifier_initData;
mti->copyData = sphModifier_copyData;
mti->requiredDataMask = sphModifier_requiredDataMask;
mti->applyModifier = sphModifier_applyModifier;
mti->dependsOnTime = sphModifier_dependsOnTime;
mti->freeData = sphModifier_freeData;
mti->updateDepgraph = sphModifier_updateDepgraph;
mti = INIT_TYPE(Displace);
mti->type = eModifierTypeType_OnlyDeform;

View File

@@ -0,0 +1,490 @@
/* pw.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* Contributor(s): Daniel Genrich
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <malloc.h>
#include "MEM_guardedalloc.h"
#include "BKE_sph.h"
#include "DNA_sph_types.h"
#include "sph_extern.h"
#include "DNA_effect_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_particle.h"
// necessary
#include "float.h"
#include "math.h"
#include "BLI_kdtree.h"
#include "BLI_arithb.h"
// #include "omp.h"
#ifdef _WIN32
void ststart ( void )
{}
void stend ( void )
{
}
double stval()
{
return 0;
}
#else
#include <sys/time.h>
static struct timeval _ststart, _stend;
static struct timezone stz;
void ststart(void)
{
gettimeofday(&_ststart, &stz);
}
void stend(void)
{
gettimeofday(&_stend,&stz);
}
double stval()
{
double t1, t2;
t1 = (double)_ststart.tv_sec + (double)_ststart.tv_usec/(1000*1000);
t2 = (double)_stend.tv_sec + (double)_stend.tv_usec/(1000*1000);
return t2-t1;
}
#endif
void sph_init (SphModifierData *sphmd)
{
/* fill modifier with standard settings */
sphmd->sim_parms->timestep = 0.001; // 0.001
sphmd->sim_parms->viscosity = 80000.0;
sphmd->sim_parms->incompressibility = 8000000.0;
sphmd->sim_parms->surfacetension = 8000.0;
sphmd->sim_parms->density = 1000.0;
sphmd->sim_parms->gravity[2] = -9.81;
sphmd->sim_parms->gravity[1] = 0.0;
sphmd->sim_parms->gravity[0] = 0.0;
sphmd->sim_parms->samplingdistance = 0.02; // length of one cell? 0.01
sphmd->sim_parms->smoothinglength = 2.5;
sphmd->sim_parms->flags = SPH_SIMSETTINGS_FLAG_GHOSTS | SPH_SIMSETTINGS_FLAG_OFFLINE | SPH_SIMSETTINGS_FLAG_MULTIRES | SPH_SIMSETTINGS_FLAG_DOMAIN;
sphmd->sim_parms->computesurfaceevery = 5; // 30000000
sphmd->sim_parms->fastmarchingevery = 5;
sphmd->sim_parms->dumppovrayevery = 300000;
sphmd->sim_parms->dumpimageevery = 30;
sphmd->sim_parms->totaltime = 0.01; // 40.0
sphmd->sim_parms->tangentialfriction = 0.1;
sphmd->sim_parms->normalfriction = 0.95;
sphmd->sim_parms->initiallevel = 1;
sphmd->sim_parms->rotation_angle = 0.0;
sphmd->sim_parms->rotation_axis[0] = 1.0;
sphmd->sim_parms->rotation_axis[1] = 1.0;
sphmd->sim_parms->rotation_axis[2] = 1.0;
sphmd->sim_parms->rotation_center[0] = 0.0;
sphmd->sim_parms->rotation_center[1] = 0.0;
sphmd->sim_parms->rotation_center[2] = 0.0;
sphmd->sim_parms->scenelowerbound[0] = -1.0;
sphmd->sim_parms->scenelowerbound[1] = -1.0;
sphmd->sim_parms->scenelowerbound[2] = -1.0;
sphmd->sim_parms->sceneupperbound[0] = 1.0;
sphmd->sim_parms->sceneupperbound[1] = 1.0;
sphmd->sim_parms->sceneupperbound[2] = 1.0;
sphmd->sim_parms->alpha = 2.0;
sphmd->sim_parms->beta = 3.0;
sphmd->sim_parms->gamma = 1.5;
sphmd->sim_parms->numverts = 0;
sphmd->sim_parms->numtris = 0;
sphmd->sim_parms->verts = NULL;
sphmd->sim_parms->tris = NULL;
sphmd->sim_parms->normals = NULL;
sphmd->sim_parms->resolution = 70;
sphmd->sim_parms->co = NULL;
sphmd->sim_parms->r = NULL;
sphmd->sim_parms->numpart = 0;
}
void sph_free_modifier (SphModifierData *sphmd)
{
// sph_free_cpp(sphmd);
if(sphmd->sim_parms->verts)
free(sphmd->sim_parms->verts);
if(sphmd->sim_parms->tris)
free(sphmd->sim_parms->tris);
if(sphmd->sim_parms->normals)
free(sphmd->sim_parms->normals);
if(sphmd->sim_parms->co)
MEM_freeN(sphmd->sim_parms->co);
if(sphmd->sim_parms->r)
free(sphmd->sim_parms->r);
}
DerivedMesh *sphModifier_do(SphModifierData *sphmd,Object *ob, DerivedMesh *dm, int useRenderParams, int isFinalCalc)
{
SphSimSettings *sim_parms = sphmd->sim_parms;
DerivedMesh *result = NULL;
MVert *mvert = NULL;
MFace *mface = NULL;
int a = 0;
float mat[4][4], imat[4][4];
Mat4CpyMat4(mat, ob->obmat);
Mat4Invert(imat, mat);
// only domain is simulated
if(!(sim_parms->flags & SPH_SIMSETTINGS_FLAG_DOMAIN) && !(sim_parms->flags & SPH_SIMSETTINGS_FLAG_BAKING))
{
return dm;
}
ststart();
if(!(sim_parms->flags & SPH_SIMSETTINGS_FLAG_INIT))
{
if(!sph_init_all (sphmd, dm, ob))
{
sphmd->sim_parms->flags &= ~SPH_SIMSETTINGS_FLAG_INIT;
return dm;
}
}
// sph_simulate_cpp(ob, sphmd, 1.0, NULL);
stend();
printf ( "SPH simulation time: %f\n", ( float ) stval() );
if(sim_parms->numverts && sim_parms->numtris)
{
result = CDDM_new ( sim_parms->numverts, 0, sim_parms->numtris);
// copy verts
mvert = CDDM_get_verts(result);
for(a=0; a<sim_parms->numverts; a++) {
MVert *mv = &mvert[a];
float *vbCo = &sim_parms->verts[a*3];
VECCOPY(mv->co, vbCo);
Mat4MulVecfl(imat, mv->co);
}
mface = CDDM_get_faces(result);
for(a=0; a<sim_parms->numtris; a++) {
MFace *mf = &mface[a];
int *tri = &sim_parms->tris[a*3];
mf->v1 = tri[0];
mf->v2 = tri[1];
mf->v3 = tri[2];
test_index_face(mf, NULL, 0, 3);
}
CDDM_calc_edges ( result );
CDDM_calc_normals ( result );
return result;
}
else
return dm;
}
static void set_min_max(float *min, float *max, float *co)
{
// also calc min + max of bounding box for 3d grid
min[0] = MIN2(min[0], co[0]);
min[1] = MIN2(min[1], co[1]);
min[2] = MIN2(min[2], co[2]);
max[0] = MAX2(max[0], co[0]);
max[1] = MAX2(max[1], co[1]);
max[2] = MAX2(max[2], co[2]);
}
long calc_distance_field(Object *ob, DerivedMesh *dm, SphModifierData *sphmd, float mat[4][4])
{
int numverts = dm->getNumVerts(dm);
int numfaces = dm->getNumFaces(dm);
MVert *mvert = dm->getVertArray(dm);
MFace *mface = dm->getFaceArray(dm);
int i, j, k;
KDTree *tree;
float co[3], co1[3], co2[3], co3[3], co4[3];
int index;
float min[3] = {FLT_MAX, FLT_MAX, FLT_MAX}, max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}, slice, maxdir;
int resx, resy, resz;
int maxres = 20;
float *dist;
float *normals;
int totpart = 0;
float *cos = NULL;
int maxpart = 0;
printf("calc_distance_field\n");
dist = MEM_callocN(maxres*maxres*maxres*sizeof(float), "distance_field");
normals = MEM_callocN(numfaces*3*sizeof(float), "triangle_normals");
/////////////////////////////////////////////////
// create + fill + balance kdtree
/////////////////////////////////////////////////
tree = BLI_kdtree_new(numverts);
for(i = 0; i < numfaces; i++)
{
VECCOPY(co1, mvert[mface[i].v1].co);
Mat4MulVecfl(mat, co1);
set_min_max(min, max, co1);
VECCOPY(co2, mvert[mface[i].v2].co);
Mat4MulVecfl(mat, co2);
set_min_max(min, max, co2);
VECCOPY(co3, mvert[mface[i].v3].co);
Mat4MulVecfl(mat, co3);
set_min_max(min, max, co3);
// calc triangle center
VECCOPY(co, co1);
VECADD(co, co, co2);
VECADD(co, co, co3);
if(mface[i].v4)
{
VECCOPY(co4, mvert[mface[i].v4].co);
Mat4MulVecfl(mat, co4);
set_min_max(min, max, co4);
VECADD(co, co, co4);
VecMulf(co, 0.25);
}
else
VecMulf(co, 1.0 / 3.0);
if(mface[i].v4)
CalcNormFloat4(mvert[mface[i].v1].co, mvert[mface[i].v2].co, mvert[mface[i].v3].co, mvert[mface[i].v4].co, &normals[i*3]);
else
CalcNormFloat(mvert[mface[i].v1].co, mvert[mface[i].v2].co, mvert[mface[i].v3].co, &normals[i*3]);
BLI_kdtree_insert(tree, i, co, NULL);
}
BLI_kdtree_balance(tree);
/////////////////////////////////////////////////
// calculate slice height + width
maxdir = max[0] - min[0];
maxdir = MAX2(max[1]-min[1], maxdir);
maxdir = MAX2(max[2]-min[2], maxdir);
slice = maxdir / (float)maxres;
resx = MIN2(maxres, ceil((max[0] - min[0]) / slice));
resy = MIN2(maxres, ceil((max[1] - min[1]) / slice));
resz = MIN2(maxres, ceil((max[2] - min[2]) / slice));
// adjust max
max[0] = min[0] + slice * resx;
max[1] = min[1] + slice * resy;
max[2] = min[2] + slice * resz;
if(sphmd->sim_parms->co)
MEM_freeN(sphmd->sim_parms->co);
cos = sphmd->sim_parms->co = MEM_callocN(sizeof(float)*3*resx*resy*resz, "sph_cos");
// r = calloc(1, sizeof(float)*resx*resy*resz);
maxpart = sizeof(float)*3*resx*resy*resz;
// #pragma omp parallel for private(i,j,k) schedule(static)
for(i = 0; i < resx; i ++)
{
for(j = 0; j < resy; j++)
{
for(k = 0; k < resz; k++)
{
KDTreeNearest nearest;
float tco[3];
tco[0] = min[0] + slice * i + slice * 0.5;
tco[1] = min[1] + slice * j + slice * 0.5;
tco[2] = min[2] + slice * k + slice * 0.5;
index = BLI_kdtree_find_nearest(tree, tco, NULL, &nearest);
if(index != -1)
{
float t[3];
float sgn;
VECSUB(t, tco, nearest.co);
sgn = INPR(t, &normals[nearest.index*3]);
if(sgn < 0.0)
sgn = -1.0;
else
sgn = 1.0;
dist[(i*resy*resz)+(j*resz)+k] = sgn * nearest.dist;
if((int)sgn < 0)
{
// create particle if inside object
VECCOPY(&cos[totpart*3], tco);
totpart++;
}
}
else
{
printf("Error: no nearest point!\n");
}
}
}
}
printf("maxpart: %d, totpart: %d\n", maxpart, totpart);
sphmd->sim_parms->numpart = totpart;
MEM_freeN(dist);
MEM_freeN(normals);
BLI_kdtree_free(tree);
return totpart;
}
/* add constraints, inflows, fluid, ... */
int sph_init_all (SphModifierData *sphmd, DerivedMesh *dm, Object *ob)
{
Base *base=NULL;
Object *fobject = NULL;
SphModifierData *fsphmd = NULL;
int fluids = 0; // only one fluid object possible
DerivedMesh *fdm = NULL;
sphmd->sim_parms->flags |= SPH_SIMSETTINGS_FLAG_INIT;
CDDM_calc_normals ( dm );
/* create C++ object */
// sph_init_cpp(sphmd);
sphmd->sim_parms->numpart = calc_distance_field(ob, dm, sphmd, ob->obmat);
return 1;
/* create fluid domain */
// sph_set_domain(sphmd, dm, ob->obmat);
// check for constraints, fluid, etc. but ignore domains
for ( base = G.scene->base.first; base; base = base->next )
{
fobject = base->object;
fsphmd = ( SphModifierData * ) modifiers_findByType ( fobject, eModifierType_Sph );
// TODO I could check for linked groups, too
if ( !fsphmd )
{
// TODO
}
else
{
if(fsphmd == sphmd)
continue;
if(fsphmd->sim_parms)
{
// check for fluid
if(((short)fsphmd->sim_parms->flags == SPH_SIMSETTINGS_FLAG_FLUID) && (!fluids))
{
// create fluids
// particles have to be created AFTER constraints
// TODO: no particles = crash
// get derivedmesh from object
fdm = mesh_get_derived_final(fobject, CD_MASK_BAREMESH);
// create fluid object
/*
if(!sph_add_particles(sphmd, fdm, fobject->obmat, fsphmd->sim_parms->resolution))
{
fluids--;
}
*/
if(fdm)
fdm->release(fdm);
fluids++;
}
else if((short)fsphmd->sim_parms->flags & SPH_SIMSETTINGS_FLAG_OBSTACLE)
{
}
}
}
}
if(!fluids)
return 0;
return 1;
}

View File

@@ -0,0 +1,63 @@
/**
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2006 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel (Genscher)
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifndef BLI_KDOPBVH_H
#define BLI_KDOPBVH_H
#include <float.h>
struct BVHTree;
typedef struct BVHTree BVHTree;
typedef struct BVHTreeOverlap {
int indexA;
int indexB;
} BVHTreeOverlap;
BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis);
void BLI_bvhtree_free(BVHTree *tree);
/* construct: first insert points, then call balance */
int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints);
void BLI_bvhtree_balance(BVHTree *tree);
/* update: first update points/nodes, then call update_tree to refit the bounding volumes */
int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints);
void BLI_bvhtree_update_tree(BVHTree *tree);
/* collision/overlap: check two trees if they overlap, alloc's *overlap with length of the int return value */
BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result);
float BLI_bvhtree_getepsilon(BVHTree *tree);
#endif // BLI_KDOPBVH_H

View File

@@ -0,0 +1,786 @@
/* kdop.c
*
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel Genrich
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "math.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "BLI_kdopbvh.h"
#ifdef _OPENMP
#include <omp.h>
#endif
typedef struct BVHNode
{
struct BVHNode *children[8]; // max 8 children
struct BVHNode *parent; // needed for bottom - top update
float bv[26]; // Bounding volume of all nodes, max 13 axis
int index; /* face, edge, vertex index */
char totnode; // how many nodes are used, used for speedup
char traversed; // how many nodes already traversed until this level?
char main_axis;
} BVHNode;
struct BVHTree
{
BVHNode **nodes;
BVHNode *nodearray; /* pre-alloc branch nodes */
int *orig_index; /* mapping for orig_index to node_index */
float epsilon; /* epslion is used for inflation of the k-dop */
int totleaf; // leafs
int totbranch;
char tree_type; // type of tree (4 => quadtree)
char axis; // kdop type (6 => OBB, 7 => AABB, ...)
char start_axis, stop_axis; // KDOP_AXES array indices according to axis
};
typedef struct BVHOverlapData
{
BVHTree *tree1, *tree2;
BVHTreeOverlap *overlap;
int i, max_overlap; /* i is number of overlaps */
} BVHOverlapData;
////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
// Bounding Volume Hierarchy Definition
//
// Notes: From OBB until 26-DOP --> all bounding volumes possible, just choose type below
// Notes: You have to choose the type at compile time ITM
// Notes: You can choose the tree type --> binary, quad, octree, choose below
////////////////////////////////////////////////////////////////////////
static float KDOP_AXES[13][3] =
{ {1.0, 0, 0}, {0, 1.0, 0}, {0, 0, 1.0}, {1.0, 1.0, 1.0}, {1.0, -1.0, 1.0}, {1.0, 1.0, -1.0},
{1.0, -1.0, -1.0}, {1.0, 1.0, 0}, {1.0, 0, 1.0}, {0, 1.0, 1.0}, {1.0, -1.0, 0}, {1.0, 0, -1.0},
{0, 1.0, -1.0}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////
// Introsort
// with permission deriven from the following Java code:
// http://ralphunden.net/content/tutorials/a-guide-to-introsort/
// and he derived it from the SUN STL
//////////////////////////////////////////////////////////////////////////////////////////////////////
static int size_threshold = 16;
/*
* Common methods for all algorithms
*/
static void bvh_exchange(BVHNode **a, int i, int j)
{
BVHNode *t=a[i];
a[i]=a[j];
a[j]=t;
}
static int floor_lg(int a)
{
return (int)(floor(log(a)/log(2)));
}
/*
* Insertion sort algorithm
*/
static void bvh_insertionsort(BVHNode **a, int lo, int hi, int axis)
{
int i,j;
BVHNode *t;
for (i=lo; i < hi; i++)
{
j=i;
t = a[i];
while((j!=lo) && (t->bv[axis] < (a[j-1])->bv[axis]))
{
a[j] = a[j-1];
j--;
}
a[j] = t;
}
}
static int bvh_partition(BVHNode **a, int lo, int hi, BVHNode * x, int axis)
{
int i=lo, j=hi;
while (1)
{
while ((a[i])->bv[axis] < x->bv[axis]) i++;
j=j-1;
while (x->bv[axis] < (a[j])->bv[axis]) j=j-1;
if(!(i < j))
return i;
bvh_exchange(a, i,j);
i++;
}
}
/*
* Heapsort algorithm
*/
static void bvh_downheap(BVHNode **a, int i, int n, int lo, int axis)
{
BVHNode * d = a[lo+i-1];
int child;
while (i<=n/2)
{
child = 2*i;
if ((child < n) && ((a[lo+child-1])->bv[axis] < (a[lo+child])->bv[axis]))
{
child++;
}
if (!(d->bv[axis] < (a[lo+child-1])->bv[axis])) break;
a[lo+i-1] = a[lo+child-1];
i = child;
}
a[lo+i-1] = d;
}
static void bvh_heapsort(BVHNode **a, int lo, int hi, int axis)
{
int n = hi-lo, i;
for (i=n/2; i>=1; i=i-1)
{
bvh_downheap(a, i,n,lo, axis);
}
for (i=n; i>1; i=i-1)
{
bvh_exchange(a, lo,lo+i-1);
bvh_downheap(a, 1,i-1,lo, axis);
}
}
static BVHNode *bvh_medianof3(BVHNode **a, int lo, int mid, int hi, int axis) // returns Sortable
{
if ((a[mid])->bv[axis] < (a[lo])->bv[axis])
{
if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
return a[mid];
else
{
if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
return a[hi];
else
return a[lo];
}
}
else
{
if ((a[hi])->bv[axis] < (a[mid])->bv[axis])
{
if ((a[hi])->bv[axis] < (a[lo])->bv[axis])
return a[lo];
else
return a[hi];
}
else
return a[mid];
}
}
/*
* Quicksort algorithm modified for Introsort
*/
static void bvh_introsort_loop (BVHNode **a, int lo, int hi, int depth_limit, int axis)
{
int p;
while (hi-lo > size_threshold)
{
if (depth_limit == 0)
{
bvh_heapsort(a, lo, hi, axis);
return;
}
depth_limit=depth_limit-1;
p=bvh_partition(a, lo, hi, bvh_medianof3(a, lo, lo+((hi-lo)/2)+1, hi-1, axis), axis);
bvh_introsort_loop(a, p, hi, depth_limit, axis);
hi=p;
}
}
static void sort(BVHNode **a0, int begin, int end, int axis)
{
if (begin < end)
{
BVHNode **a=a0;
bvh_introsort_loop(a, begin, end, 2*floor_lg(end-begin), axis);
bvh_insertionsort(a, begin, end, axis);
}
}
void sort_along_axis(BVHTree *tree, int start, int end, int axis)
{
sort(tree->nodes, start, end, axis);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////
void BLI_bvhtree_free(BVHTree *tree)
{
if(tree)
{
MEM_freeN(tree->nodes);
MEM_freeN(tree->nodearray);
MEM_freeN(tree->orig_index);
MEM_freeN(tree);
}
}
BVHTree *BLI_bvhtree_new(int maxsize, float epsilon, char tree_type, char axis)
{
BVHTree *tree;
int numbranches=0, i;
// only support up to octree
if(tree_type > 8)
return NULL;
tree = (BVHTree *)MEM_callocN(sizeof(BVHTree), "BVHTree");
if(tree)
{
// calculate max number of branches, our bvh kdop is "almost perfect"
for(i = 1; i <= (int)ceil((float)((float)log(maxsize)/(float)log(tree_type))); i++)
numbranches += (pow(tree_type, i) / tree_type);
tree->nodes = (BVHNode **)MEM_callocN(sizeof(BVHNode *)*(numbranches+maxsize + tree_type), "BVHNodes");
if(!tree->nodes)
{
MEM_freeN(tree);
return NULL;
}
tree->nodearray = (BVHNode *)MEM_callocN(sizeof(BVHNode)*(numbranches+maxsize + tree_type), "BVHNodeArray");
if(!tree->nodearray)
{
MEM_freeN(tree);
MEM_freeN(tree->nodes);
return NULL;
}
tree->orig_index = (int *)MEM_callocN(sizeof(int)*(numbranches+maxsize + tree_type), "BVHIndexArray");
if(!tree->orig_index)
{
MEM_freeN(tree);
MEM_freeN(tree->nodes);
MEM_freeN(tree->nodearray);
return NULL;
}
tree->epsilon = epsilon;
tree->tree_type = tree_type;
tree->axis = axis;
if(axis == 26)
{
tree->start_axis = 0;
tree->stop_axis = 13;
}
else if(axis == 18)
{
tree->start_axis = 7;
tree->stop_axis = 13;
}
else if(axis == 14)
{
tree->start_axis = 0;
tree->stop_axis = 7;
}
else if(axis == 8) // AABB
{
tree->start_axis = 0;
tree->stop_axis = 4;
}
else if(axis == 6) // OBB
{
tree->start_axis = 0;
tree->stop_axis = 3;
}
else
{
BLI_bvhtree_free(tree);
return NULL;
}
}
return tree;
}
static void create_kdop_hull(BVHTree *tree, BVHNode *node, float *co, int numpoints, int moving)
{
float newminmax;
int i, k;
// don't init boudings for the moving case
if(!moving)
{
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[2*i] = FLT_MAX;
node->bv[2*i + 1] = -FLT_MAX;
}
}
for(k = 0; k < numpoints; k++)
{
// for all Axes.
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
newminmax = INPR(&co[k * 3], KDOP_AXES[i]);
if (newminmax < node->bv[2 * i])
node->bv[2 * i] = newminmax;
if (newminmax > node->bv[(2 * i) + 1])
node->bv[(2 * i) + 1] = newminmax;
}
}
}
// depends on the fact that the BVH's for each face is already build
static void refit_kdop_hull(BVHTree *tree, int start, int end, float *bv)
{
float newmin,newmax;
int i, j;
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
bv[2*i] = FLT_MAX;
bv[2*i + 1] = -FLT_MAX;
}
for (j = start; j < end; j++)
{
// for all Axes.
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
newmin = tree->nodes[j]->bv[(2 * i)];
if ((newmin < bv[(2 * i)]))
bv[(2 * i)] = newmin;
newmax = tree->nodes[j]->bv[(2 * i) + 1];
if ((newmax > bv[(2 * i) + 1]))
bv[(2 * i) + 1] = newmax;
}
}
}
int BLI_bvhtree_insert(BVHTree *tree, int index, float *co, int numpoints)
{
BVHNode *node= NULL;
int i;
// insert should only possible as long as tree->totbranch is 0
if(tree->totbranch > 0)
return 0;
if(tree->totleaf+1 >= MEM_allocN_len(tree->nodes))
return 0;
// TODO check if have enough nodes in array
node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
tree->totleaf++;
create_kdop_hull(tree, node, co, numpoints, 0);
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[(2 * i)] -= tree->epsilon; // minimum
node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
node->index= index;
return 1;
}
// only supports x,y,z axis in the moment
// but we should use a plain and simple function here for speed sake
static char get_largest_axis(float *bv)
{
float middle_point[3];
middle_point[0] = (bv[1]) - (bv[0]); // x axis
middle_point[1] = (bv[3]) - (bv[2]); // y axis
middle_point[2] = (bv[5]) - (bv[4]); // z axis
if (middle_point[0] > middle_point[1])
{
if (middle_point[0] > middle_point[2])
return 1; // max x axis
else
return 5; // max z axis
}
else
{
if (middle_point[1] > middle_point[2])
return 3; // max y axis
else
return 5; // max z axis
}
}
static void bvh_div_nodes(BVHTree *tree, BVHNode *node, int start, int end, char lastaxis)
{
char laxis;
int i, tend;
BVHNode *tnode;
int slice = (end-start+tree->tree_type-1)/tree->tree_type; //division rounded up
// Determine which axis to split along
laxis = get_largest_axis(node->bv);
// Sort along longest axis
if(laxis!=lastaxis)
sort_along_axis(tree, start, end, laxis);
// split nodes along longest axis
for (i=0; start < end; start += slice, i++) //i counts the current child
{
tend = start + slice;
if(tend > end) tend = end;
if(tend-start == 1) // ok, we have 1 left for this node
{
node->children[i] = tree->nodes[start];
node->children[i]->parent = node;
}
else
{
tnode = node->children[i] = tree->nodes[tree->totleaf + tree->totbranch] = &(tree->nodearray[tree->totbranch + tree->totleaf]);
tree->totbranch++;
tnode->parent = node;
refit_kdop_hull(tree, start, tend, tnode->bv);
bvh_div_nodes(tree, tnode, start, tend, laxis);
}
node->totnode++;
}
return;
}
static void verify_tree(BVHTree *tree)
{
int i, j, check = 0;
// check the pointer list
for(i = 0; i < tree->totleaf; i++)
{
if(tree->nodes[i]->parent == NULL)
printf("Leaf has no parent: %d\n", i);
else
{
for(j = 0; j < tree->tree_type; j++)
{
if(tree->nodes[i]->parent->children[j] == tree->nodes[i])
check = 1;
}
if(!check)
{
printf("Parent child relationship doesn't match: %d\n", i);
}
check = 0;
}
}
// check the leaf list
for(i = 0; i < tree->totleaf; i++)
{
if(tree->nodearray[i].parent == NULL)
printf("Leaf has no parent: %d\n", i);
else
{
for(j = 0; j < tree->tree_type; j++)
{
if(tree->nodearray[i].parent->children[j] == &tree->nodearray[i])
check = 1;
}
if(!check)
{
printf("Parent child relationship doesn't match: %d\n", i);
}
check = 0;
}
}
printf("branches: %d, leafs: %d, total: %d\n", tree->totbranch, tree->totleaf, tree->totbranch + tree->totleaf);
}
void BLI_bvhtree_balance(BVHTree *tree)
{
BVHNode *node;
int i;
if(tree->totleaf == 0)
return;
// create root node
node = tree->nodes[tree->totleaf] = &(tree->nodearray[tree->totleaf]);
tree->totbranch++;
// refit root bvh node
refit_kdop_hull(tree, 0, tree->totleaf, tree->nodes[tree->totleaf]->bv);
// create + balance tree
bvh_div_nodes(tree, tree->nodes[tree->totleaf], 0, tree->totleaf, 0);
// put indices into array for O(1) access
for(i = 0; i < tree->totleaf; i++)
{
tree->orig_index[tree->nodes[i]->index] = i;
}
verify_tree(tree);
}
// overlap - is it possbile for 2 bv's to collide ?
static int tree_overlap(float *bv1, float *bv2, int start_axis, int stop_axis)
{
float *bv1_end = bv1 + (stop_axis<<1);
bv1 += start_axis<<1;
bv2 += start_axis<<1;
// test all axis if min + max overlap
for (; bv1 != bv1_end; bv1+=2, bv2+=2)
{
if ((*(bv1) > *(bv2 + 1)) || (*(bv2) > *(bv1 + 1)))
return 0;
}
return 1;
}
static void traverse(BVHOverlapData *data, BVHNode *node1, BVHNode *node2)
{
int j;
if(tree_overlap(node1->bv, node2->bv, MIN2(data->tree1->start_axis, data->tree2->start_axis), MIN2(data->tree1->stop_axis, data->tree2->stop_axis)))
{
// check if node1 is a leaf
if(node1->index)
{
// check if node2 is a leaf
if(node2->index)
{
if(node1 == node2)
{
return;
}
if(data->i >= data->max_overlap)
{
// try to make alloc'ed memory bigger
data->overlap = realloc(data->overlap, sizeof(BVHTreeOverlap)*data->max_overlap*2);
if(!data->overlap)
{
printf("Out of Memory in traverse\n");
return;
}
data->max_overlap *= 2;
}
// both leafs, insert overlap!
data->overlap[data->i].indexA = node1->index;
data->overlap[data->i].indexB = node2->index;
data->i++;
}
else
{
for(j = 0; j < data->tree2->tree_type; j++)
{
if(node2->children[j])
traverse(data, node1, node2->children[j]);
}
}
}
else
{
for(j = 0; j < data->tree2->tree_type; j++)
{
if(node1->children[j])
traverse(data, node1->children[j], node2);
}
}
}
return;
}
BVHTreeOverlap *BLI_bvhtree_overlap(BVHTree *tree1, BVHTree *tree2, int *result)
{
int j, total = 0;
BVHTreeOverlap *overlap = NULL, *to = NULL;
BVHOverlapData *data[tree1->tree_type];
// check for compatibility of both trees (can't compare 14-DOP with 18-DOP)
if((tree1->axis != tree2->axis) && ((tree1->axis == 14) || tree2->axis == 14))
return 0;
// fast check root nodes for collision before doing big splitting + traversal
if(!tree_overlap(tree1->nodes[tree1->totleaf]->bv, tree2->nodes[tree2->totleaf]->bv, MIN2(tree1->start_axis, tree2->start_axis), MIN2(tree1->stop_axis, tree2->stop_axis)))
return 0;
for(j = 0; j < tree1->tree_type; j++)
{
data[j] = (BVHOverlapData *)MEM_callocN(sizeof(BVHOverlapData), "BVHOverlapData");
// init BVHOverlapData
data[j]->overlap = (BVHTreeOverlap *)malloc(sizeof(BVHTreeOverlap)*MAX2(tree1->totleaf, tree2->totleaf));
data[j]->tree1 = tree1;
data[j]->tree2 = tree2;
data[j]->max_overlap = MAX2(tree1->totleaf, tree2->totleaf);
data[j]->i = 0;
}
#pragma omp parallel for private(j) schedule(static)
for(j = 0; j < tree1->tree_type; j++)
{
traverse(data[j], tree1->nodes[tree1->totleaf]->children[j], tree2->nodes[tree2->totleaf]);
}
for(j = 0; j < tree1->tree_type; j++)
total += data[j]->i;
to = overlap = (BVHTreeOverlap *)MEM_callocN(sizeof(BVHTreeOverlap)*total, "BVHTreeOverlap");
for(j = 0; j < tree1->tree_type; j++)
{
memcpy(to, data[j]->overlap, data[j]->i*sizeof(BVHTreeOverlap));
to+=data[j]->i;
}
for(j = 0; j < tree1->tree_type; j++)
{
free(data[j]->overlap);
MEM_freeN(data[j]);
}
(*result) = total;
return overlap;
}
// bottom up update of bvh tree:
// join the 4 children here
static void node_join(BVHTree *tree, BVHNode *node)
{
int i, j;
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[2*i] = FLT_MAX;
node->bv[2*i + 1] = -FLT_MAX;
}
for (i = 0; i < tree->tree_type; i++)
{
if (node->children[i])
{
for (j = tree->start_axis; j < tree->stop_axis; j++)
{
// update minimum
if (node->children[i]->bv[(2 * j)] < node->bv[(2 * j)])
node->bv[(2 * j)] = node->children[i]->bv[(2 * j)];
// update maximum
if (node->children[i]->bv[(2 * j) + 1] > node->bv[(2 * j) + 1])
node->bv[(2 * j) + 1] = node->children[i]->bv[(2 * j) + 1];
}
}
else
break;
}
}
// call before BLI_bvhtree_update_tree()
int BLI_bvhtree_update_node(BVHTree *tree, int index, float *co, float *co_moving, int numpoints)
{
BVHNode *node= NULL;
int i = 0;
// check if index exists
if(index > tree->totleaf)
return 0;
node = tree->nodes[tree->orig_index[index]];
create_kdop_hull(tree, node, co, numpoints, 0);
if(co_moving)
create_kdop_hull(tree, node, co_moving, numpoints, 1);
// inflate the bv with some epsilon
for (i = tree->start_axis; i < tree->stop_axis; i++)
{
node->bv[(2 * i)] -= tree->epsilon; // minimum
node->bv[(2 * i) + 1] += tree->epsilon; // maximum
}
return 1;
}
// call BLI_bvhtree_update_node() first for every node/point/triangle
void BLI_bvhtree_update_tree(BVHTree *tree)
{
BVHNode *leaf, *parent;
// reset tree traversing flag
for (leaf = tree->nodearray + tree->totleaf; leaf != tree->nodearray + tree->totleaf + tree->totbranch; leaf++)
leaf->traversed = 0;
for (leaf = tree->nodearray; leaf != tree->nodearray + tree->totleaf; leaf++)
{
for (parent = leaf->parent; parent; parent = parent->parent)
{
parent->traversed++; // we tried to go up in hierarchy
if (parent->traversed < parent->totnode)
break; // we do not need to check further
else
node_join(tree, parent);
}
}
}
float BLI_bvhtree_getepsilon(BVHTree *tree)
{
return tree->epsilon;
}

View File

@@ -3073,6 +3073,7 @@ static void direct_link_modifiers(FileData *fd, ListBase *lb)
clmd->sim_parms= newdataadr(fd, clmd->sim_parms);
clmd->coll_parms= newdataadr(fd, clmd->coll_parms);
clmd->point_cache= newdataadr(fd, clmd->point_cache);
if(clmd->point_cache)
@@ -3082,22 +3083,16 @@ static void direct_link_modifiers(FileData *fd, ListBase *lb)
if(clmd->sim_parms->presets > 10)
clmd->sim_parms->presets = 0;
}
else
{
/* Collision modifier without parameters?? */
}
}
else if (md->type==eModifierType_Collision) {
CollisionModifierData *collmd = (CollisionModifierData*) md;
/*
// TODO: CollisionModifier should use pointcache
// + have proper reset events before enabling this
collmd->x = newdataadr(fd, collmd->x);
collmd->xnew = newdataadr(fd, collmd->xnew);
collmd->mfaces = newdataadr(fd, collmd->mfaces);
collmd->current_x = MEM_callocN(sizeof(MVert)*collmd->numverts,"current_x");
collmd->current_xnew = MEM_callocN(sizeof(MVert)*collmd->numverts,"current_xnew");
collmd->current_v = MEM_callocN(sizeof(MVert)*collmd->numverts,"current_v");
*/
collmd->x = NULL;
collmd->xnew = NULL;
@@ -3106,9 +3101,8 @@ static void direct_link_modifiers(FileData *fd, ListBase *lb)
collmd->current_v = NULL;
collmd->time = -1;
collmd->numverts = 0;
collmd->bvh = NULL;
collmd->bvhtree = NULL;
collmd->mfaces = NULL;
}
else if (md->type==eModifierType_Hook) {
HookModifierData *hmd = (HookModifierData*) md;

View File

@@ -297,6 +297,10 @@ void curvemap_buttons(struct uiBlock *block, struct CurveMapping *cumap, char la
/* Cloth sim button defines */
#define B_CLOTH_CHANGEPREROLL 1480
/* SPH sim button defines */
#define B_SPH_BAKE 1490
/* *********************** */
#define B_WORLDBUTS 1600

View File

@@ -35,6 +35,7 @@ typedef enum ModifierType {
eModifierType_Cloth,
eModifierType_Collision,
eModifierType_Bevel,
eModifierType_Sph,
NUM_MODIFIER_TYPES
} ModifierType;
@@ -374,6 +375,14 @@ typedef struct ClothModifierData {
struct PointCache *point_cache; /* definition is in DNA_object_force.h */
} ClothModifierData;
typedef struct SphModifierData {
ModifierData modifier;
struct SPH *sph; /* pointer to cpp sph sim */
struct SphSimSettings *sim_parms; /* definition is in DNA_sph_types.h */
struct SphCollSettings *coll_parms; /* definition is in DNA_sph_types.h */
} SphModifierData;
typedef struct CollisionModifierData {
ModifierData modifier;
@@ -390,7 +399,7 @@ typedef struct CollisionModifierData {
unsigned int numfaces;
int pad;
float time; /* cfra time of modifier */
struct BVH *bvh; /* bounding volume hierarchy for this cloth object */
struct BVHTree *bvhtree; /* bounding volume hierarchy for this cloth object */
} CollisionModifierData;
typedef enum {

View File

@@ -0,0 +1,102 @@
/**
* $Id: DNA_cloth_types.h,v 1.1 2007/08/01 02:28:34 daniel Exp $
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2006 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Daniel (Genscher)
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#ifndef DNA_SPH_TYPES_H
#define DNA_SPH_TYPES_H
// string scene, constraint, backup: missing
// string _file;
// string pov;
// string rendered;
typedef struct SphSimSettings
{
int flags; // see pw_extern.h
float timestep;
float viscosity;
float incompressibility; /* how incompressible is the fluid? */
float surfacetension;
float density;
float gravity[3]; /* gravity on the domain */
float samplingdistance;
float smoothinglength;
float controlviscosity;
int dumpimageevery;
int computesurfaceevery;
int fastmarchingevery;
int dumppovrayevery;
float totaltime;
float tangentialfriction; /* constraint tangential friction */
float normalfriction; /* constraint normal friction */
float rotation_angle;
float rotation_axis[3];
float rotation_center[3];
float scenelowerbound[3];
float sceneupperbound[3];
int initiallevel;
float alpha;
float beta;
float gamma;
/* needed for better direct resolution input for constraints, fluids,... */
int resolution; /* can also be calculated by (Max-Min) / samplingdistance */
int pad;
float *verts;
float *normals;
int *tris;
unsigned int numverts;
unsigned int numtris;
float *co; /* particle positions */
float *r; /* particle radius */
long numpart;
int pad2;
}
SphSimSettings;
typedef struct SphCollSettings
{
float epsilon; /* min distance for collisions. */
float self_friction; /* Fiction/damping with self contact. */
float friction; /* Friction/damping applied on contact with other object.*/
short self_loop_count; /* How many iterations for the selfcollision loop */
short loop_count; /* How many iterations for the collision loop. */
struct LinkNode *collision_list; /* e.g. pointer to temp memory for collisions */
int flags; /* collision flags defined in BKE_cloth.h */
float selfepsilon; /* for selfcollision */
}
SphCollSettings;
#endif // DNA_SPH_TYPES_H

View File

@@ -985,7 +985,7 @@ static uiBlock *modifiers_add_menu(void *ob_v)
/* Only allow adding through appropriate other interfaces */
if(ELEM3(i, eModifierType_Softbody, eModifierType_Hook, eModifierType_ParticleSystem)) continue;
if(ELEM(i, eModifierType_Cloth, eModifierType_Collision)) continue;
if(ELEM3(i, eModifierType_Cloth, eModifierType_Collision, eModifierType_Sph)) continue;
if((mti->flags&eModifierTypeFlag_AcceptsCVs) ||
(ob->type==OB_MESH && (mti->flags&eModifierTypeFlag_AcceptsMesh))) {
@@ -1807,6 +1807,8 @@ static void draw_modifier(uiBlock *block, Object *ob, ModifierData *md, int *xco
height = 31;
} else if (md->type==eModifierType_Collision) {
height = 31;
} else if (md->type==eModifierType_Sph) {
height = 31;
} else if (md->type==eModifierType_Boolean) {
height = 48;
} else if (md->type==eModifierType_Array) {
@@ -1837,7 +1839,7 @@ static void draw_modifier(uiBlock *block, Object *ob, ModifierData *md, int *xco
uiButSetFunc(but, modifiers_applyModifier, ob, md);
}
if (md->type!=eModifierType_Softbody && md->type!=eModifierType_ParticleSystem && (md->type!=eModifierType_Cloth)) {
if (md->type!=eModifierType_Softbody && md->type!=eModifierType_ParticleSystem && (md->type!=eModifierType_Cloth) && (md->type!=eModifierType_Sph)) {
but = uiDefBut(block, BUT, B_MODIFIER_RECALC, "Copy", lx,(cy-=19),60,19, 0, 0, 0, 0, 0, "Duplicate the current modifier at the same position in the stack");
uiButSetFunc(but, modifiers_copyModifier, ob, md);
}
@@ -2229,6 +2231,8 @@ static void draw_modifier(uiBlock *block, Object *ob, ModifierData *md, int *xco
uiDefBut(block, LABEL, 1, "See Soft Body panel.", lx, (cy-=19), buttonWidth,19, NULL, 0.0, 0.0, 0, 0, "");
} else if (md->type==eModifierType_Cloth) {
uiDefBut(block, LABEL, 1, "See Cloth panel.", lx, (cy-=19), buttonWidth,19, NULL, 0.0, 0.0, 0, 0, "");
} else if (md->type==eModifierType_Sph) {
uiDefBut(block, LABEL, 1, "See Sph panel.", lx, (cy-=19), buttonWidth,19, NULL, 0.0, 0.0, 0, 0, "");
} else if (md->type==eModifierType_Collision) {
uiDefBut(block, LABEL, 1, "See Collision panel.", lx, (cy-=19), buttonWidth,19, NULL, 0.0, 0.0, 0, 0, "");
} else if (md->type==eModifierType_Boolean) {

View File

@@ -52,6 +52,8 @@
#include "BKE_utildefines.h"
#include "BKE_particle.h"
#include "BKE_pointcache.h"
#include "BKE_sph.h"
#include "BLI_blenlib.h"
#include "BLI_arithb.h"
@@ -107,6 +109,7 @@
#include "DNA_particle_types.h"
#include "DNA_radio_types.h"
#include "DNA_screen_types.h"
#include "DNA_sph_types.h"
#include "DNA_sound_types.h"
#include "DNA_texture_types.h"
#include "DNA_userdef_types.h"
@@ -135,6 +138,7 @@
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_sound.h"
#include "BKE_sph.h"
#include "BKE_texture.h"
#include "BKE_utildefines.h"
#include "BKE_DerivedMesh.h"
@@ -2476,6 +2480,27 @@ void do_object_panels(unsigned short event)
allqueue(REDRAWVIEW3D, 0);
}
break;
case B_SPH_BAKE:
{
SphModifierData *sphmd = (SphModifierData *)modifiers_findByType(ob, eModifierType_Sph);
int i = 0;
if(sphmd && sphmd->sim_parms)
{
sphmd->sim_parms->flags |= SPH_SIMSETTINGS_FLAG_BAKING;
// call baking function
for(i = 0; i < 1; i++)
{
CFRA++;
update_for_newframe();
}
sphmd->sim_parms->flags &= ~SPH_SIMSETTINGS_FLAG_BAKING;
}
}
break;
}
}
@@ -5650,6 +5675,116 @@ static void object_panel_cloth_III(Object *ob)
}
static void object_sph__enabletoggle(void *ob_v, void *arg2)
{
Object *ob = ob_v;
ModifierData *md = modifiers_findByType(ob, eModifierType_Sph);
if (!md) {
// create particle modifier
ParticleSettings *part = psys_new_settings("PSys", G.main);
ParticleSystem *psys = MEM_callocN(sizeof(ParticleSystem), "particle_system");
ParticleSystemModifierData *psmd;
md = modifier_new(eModifierType_Sph);
BLI_addtail(&ob->modifiers, md);
part->type = PART_FLUID;
psys->part = part;
psys->pointcache = BKE_ptcache_add();
psys->flag |= PSYS_ENABLED;
BLI_addtail(&ob->particlesystem,psys);
md= modifier_new(eModifierType_ParticleSystem);
sprintf(md->name, "SphParticleSystem" );
psmd= (ParticleSystemModifierData*) md;
psmd->psys=psys;
BLI_addtail(&ob->modifiers, md);
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
allqueue(REDRAWBUTSEDIT, 0);
allqueue(REDRAWVIEW3D, 0);
}
else {
Object *ob = ob_v;
ModifierData *md = modifiers_findByType(ob, eModifierType_Sph);
if (!md)
return;
BLI_remlink(&ob->modifiers, md);
modifier_free(md);
BIF_undo_push("Del modifier");
// ob->softflag |= OB_SB_RESET;
allqueue(REDRAWBUTSEDIT, 0);
allqueue(REDRAWVIEW3D, 0);
allqueue(REDRAWIMAGE, 0);
allqueue(REDRAWOOPS, 0);
DAG_object_flush_update(G.scene, ob, OB_RECALC_DATA);
object_handle_update(ob);
countall();
}
}
static void object_panel_sph(Object *ob)
{
uiBlock *block=NULL;
uiBut *but=NULL;
static int val;
SphModifierData *sphmd = (SphModifierData *)modifiers_findByType(ob, eModifierType_Sph);
block= uiNewBlock(&curarea->uiblocks, "object_sph", UI_EMBOSS, UI_HELV, curarea->win);
if(uiNewPanel(curarea, block, "Sph ", "Physics", 640, 0, 318, 204)==0) return;
uiSetButLock(object_data_is_libdata(ob), ERROR_LIBDATA_MESSAGE);
val = (sphmd ? 1:0);
but = uiDefButI(block, TOG, REDRAWBUTSOBJECT, "Sph", 10,200,130,20, &val, 0, 0, 0, 0, "Sets object to become Sph");
uiButSetFunc(but, object_sph__enabletoggle, ob, NULL);
uiDefBut(block, LABEL, 0, "",10,10,300,0, NULL, 0.0, 0, 0, 0, ""); /* tell UI we go to 10,10*/
if(sphmd)
{
if(sphmd->sim_parms && (sphmd->sim_parms->flags & SPH_SIMSETTINGS_FLAG_DOMAIN))
{
uiDefBut(block, BUT, B_SPH_BAKE, "BAKE",10, 180,300,20, NULL, 0.0, 0.0, 10, 0, "Perform simulation and output and surface&preview meshes for each frame.");
}
uiDefButS(block, ROW, REDRAWBUTSOBJECT ,"Domain", 10, 160, 100, 20, (short *)&sphmd->sim_parms->flags, 15.0, SPH_SIMSETTINGS_FLAG_DOMAIN, 0.0, 0.0, " ");
uiDefButS(block, ROW, REDRAWBUTSOBJECT ,"Fluid", 110, 160, 100, 20, (short *)&sphmd->sim_parms->flags, 15.0, SPH_SIMSETTINGS_FLAG_FLUID, 0.0, 0.0, " ");
uiDefButS(block, ROW, REDRAWBUTSOBJECT ,"Obstacle", 210, 160, 100, 20, (short *)&sphmd->sim_parms->flags, 15.0, SPH_SIMSETTINGS_FLAG_OBSTACLE, 0.0, 0.0, " ");
if(sphmd->sim_parms && (sphmd->sim_parms->flags & SPH_SIMSETTINGS_FLAG_DOMAIN))
{
uiDefButBitI(block, TOG, SPH_SIMSETTINGS_FLAG_GHOSTS, REDRAWBUTSOBJECT, "Ghosts",10,140,100,20, &sphmd->sim_parms->flags, 0, 0, 0, 0, " ");
uiDefButBitI(block, TOG, SPH_SIMSETTINGS_FLAG_MULTIRES, REDRAWBUTSOBJECT, "Multires",110,140,100,20, &sphmd->sim_parms->flags, 0, 0, 0, 0, " ");
uiDefButBitI(block, TOG, SPH_SIMSETTINGS_FLAG_VORTICITY, REDRAWBUTSOBJECT, "Vorticity",210,140,100,20, &sphmd->sim_parms->flags, 0, 0, 0, 0, " ");
// timestep
uiDefButF(block, NUM, REDRAWBUTSOBJECT, "Timestep:",10,120,100,20, &sphmd->sim_parms->timestep, 0.0, 1.0, 0.0001f, 0, " ");
// totaltime
uiDefButF(block, NUM, REDRAWBUTSOBJECT, "Totaltime:",110,120,100,20, &sphmd->sim_parms->totaltime, 0.0, 10000.0, 0.001f, 0, " ");
uiDefButF(block, NUM, REDRAWBUTSOBJECT, "Sampling distance:",210,120,100,20, &sphmd->sim_parms->samplingdistance, 0.0, 1.0, 0.0001f, 0, " ");
uiDefButF(block, NUM, REDRAWBUTSOBJECT, "Smoothing Length:",10,100,100,20, &sphmd->sim_parms->smoothinglength, 0.0, 10.0, 0.1f, 0, " ");
uiDefButI(block, NUM, REDRAWBUTSOBJECT, "Surface:",110,100,100,20, &sphmd->sim_parms->computesurfaceevery, 0.0, 1000.0, 1.0, 0, " ");
uiDefButI(block, NUM, REDRAWBUTSOBJECT, "Fast Marching:",210,100,100,20, &sphmd->sim_parms->fastmarchingevery, 0.0, 1000.0, 1.0, 0, " ");
}
else if(sphmd->sim_parms && (sphmd->sim_parms->flags & SPH_SIMSETTINGS_FLAG_FLUID))
{
uiDefButI(block, NUM, REDRAWBUTSOBJECT, "Resolution:",10,120,100,20, &sphmd->sim_parms->resolution, 1.0, 1000.0, 1.0f, 0, " ");
}
}
uiBlockEndAlign(block);
}
void object_panels()
{
Object *ob;
@@ -5682,6 +5817,7 @@ void physics_panels()
object_panel_cloth(ob);
object_panel_cloth_II(ob);
object_panel_cloth_III(ob);
object_panel_sph(ob);
object_panel_fluidsim(ob);
}
}

View File

@@ -1883,11 +1883,13 @@ static void draw_em_measure_stats(Object *ob, EditMesh *em)
{
EditEdge *eed;
EditFace *efa;
EditVert *eve;
float v1[3], v2[3], v3[3], v4[3];
float fvec[3];
char val[32]; /* Stores the measurement display text here */
char conv_float[5]; /* Use a float conversion matching the grid size */
float area, col[3]; /* area of the face, color of the text to draw */
int i = 0;
/* make the precission of the pronted value proportionate to the gridsize */
if ((G.vd->grid) < 0.01)
@@ -1941,7 +1943,7 @@ static void draw_em_measure_stats(Object *ob, EditMesh *em)
if(col[1]> 0.5) {col[0]*=0.7; col[2]*= 0.7;}
else col[1]= col[1]*0.7 + 0.3;
glColor3fv(col);
/*
for(efa= em->faces.first; efa; efa= efa->next) {
if((efa->f & SELECT) || (G.moving && faceselectedOR(efa, SELECT)) ) {
VECCOPY(v1, efa->v1->co);
@@ -1966,6 +1968,24 @@ static void draw_em_measure_stats(Object *ob, EditMesh *em)
glRasterPos3fv(efa->cent);
BMF_DrawString( G.fonts, val);
}
}*/
/* draw IDs of mesh vertexes */
for(eve = em->verts.first; eve; eve = eve->next) {
char val[32];
float fvec[3];
VecLerpf(fvec, ob->loc, eve->co, 1.1);
glRasterPos3f(fvec[0], fvec[1], fvec[2]);
sprintf(val, "%d", eve->keyindex);
BMF_DrawString(G.fonts, val);
}
for(efa= em->faces.first; efa; efa= efa->next) {
char val[32];
sprintf(val, "%d", i);
glRasterPos3fv(efa->cent);
BMF_DrawString( G.fonts, val);
i++;
}
}