This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/source/renderdatabase.c

1496 lines
37 KiB
C
Raw Normal View History

/*
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
* ***** BEGIN GPL LICENSE BLOCK *****
2002-10-12 11:37:38 +00:00
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
* of the License, or (at your option) any later version.
2002-10-12 11:37:38 +00:00
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
2010-02-12 13:34:04 +00:00
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
2002-10-12 11:37:38 +00:00
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
* Contributor(s): 2004-2006, Blender Foundation, full recode
2002-10-12 11:37:38 +00:00
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
2011-02-27 19:31:27 +00:00
/** \file blender/render/intern/source/renderdatabase.c
* \ingroup render
*/
2002-10-12 11:37:38 +00:00
/*
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
* Storage, retrieval and query of render specific data.
*
* All data from a Blender scene is converted by the renderconverter/
2002-10-12 11:37:38 +00:00
* into a special format that is used by the render module to make
* images out of. These functions interface to the render-specific
* database.
*
* The blo{ha/ve/vl} arrays store pointers to blocks of 256 data
* entries each.
*
* The index of an entry is >>8 (the highest 24 * bits), to find an
* offset in a 256-entry block.
*
* - If the 256-entry block entry has an entry in the
* vertnodes/vlaknodes/bloha array of the current block, the i-th entry in
2002-10-12 11:37:38 +00:00
* that block is allocated to this entry.
*
* - If the entry has no block allocated for it yet, memory is
* allocated.
*
2012-07-16 23:23:33 +00:00
* The pointer to the correct entry is returned. Memory is guaranteed
2002-10-12 11:37:38 +00:00
* to exist (as long as the malloc does not break). Since guarded
* allocation is used, memory _must_ be available. Otherwise, an
* exit(0) would occur.
*
*/
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include <limits.h>
2002-10-12 11:37:38 +00:00
#include <math.h>
Phew, a lot of work, and no new features... Main target was to make the inner rendering loop using no globals anymore. This is essential for proper usage while raytracing, it caused a lot of hacks in the raycode as well, which even didn't work correctly for all situations (textures especially). Done this by creating a new local struct RenderInput, which replaces usage of the global struct Render R. The latter now only is used to denote image size, viewmatrix, and the like. Making the inner render loops using no globals caused 1000s of vars to be changed... but the result definitely is much nicer code, which enables making 'real' shaders in a next stage. It also enabled me to remove the hacks from ray.c Then i went to the task of removing redundant code. Especially the calculus of texture coords took place (identical) in three locations. Most obvious is the change in the unified render part, which is much less code now; it uses the same rendering routines as normal render now. (Note; not for halos yet!) I also removed 6 files called 'shadowbuffer' something. This was experimen- tal stuff from NaN days. And again saved a lot of double used code. Finally I went over the blenkernel and blender/src calls to render stuff. Here the same local data is used now, resulting in less dependency. I also moved render-texture to the render module, this was still in Kernel. (new file: texture.c) So! After this commit I will check on the autofiles, to try to fix that. MSVC people have to do it themselves. This commit will need quite some testing help, but I'm around!
2003-12-21 21:52:51 +00:00
#include <string.h>
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
2002-10-12 11:37:38 +00:00
#include "MEM_guardedalloc.h"
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
#include "BLI_math.h"
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
2002-10-12 11:37:38 +00:00
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
#include "DNA_material_types.h"
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include "DNA_meshdata_types.h"
2002-10-12 11:37:38 +00:00
#include "DNA_texture_types.h"
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
2002-10-12 11:37:38 +00:00
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include "RE_render_ext.h" /* externtex */
#include "rayintersection.h"
Raytrace modifications from the Render Branch. These should not have any effect on render results, except in some cases with you have overlapping faces, where the noise seems to be slightly reduced. There are some performance improvements, for simple scenes I wouldn't expect more than 5-10% to be cut off the render time, for sintel scenes we got about 50% on average, that's with millions of polygons on intel quad cores. This because memory access / cache misses were the main bottleneck for those scenes, and the optimizations improve that. Interal changes: * Remove RE_raytrace.h, raytracer is now only used by render engine again. * Split non-public parts rayobject.h into rayobject_internal.h, hopefully makes it clearer how the API is used. * Added rayintersection.h to contain some of the stuff from RE_raytrace.h * Change Isect.vec/labda to Isect.dir/dist, previously vec was sometimes normalized and sometimes not, confusing... now dir is always normalized and dist contains the distance. * Change VECCOPY and similar to BLI_math functions. * Force inlining of auxiliary functions for ray-triangle/quad intersection, helps a few percentages. * Reorganize svbvh code so all the traversal functions are in one file * Don't do test for root so that push_childs can be inlined * Make shadow a template parameter so it doesn't need to be runtime checked * Optimization in raytree building, was computing bounding boxes more often than necessary. * Leave out logf() factor in SAH, makes tree build quicker with no noticeable influence on raytracing on performance? * Set max childs to 4, simplifies traversal code a bit, but also seems to help slightly in general. * Store child pointers and child bb just as fixed arrays of size 4 in nodes, nearly all nodes have this many children, so overall it actually reduces memory usage a bit and avoids a pointer indirection.
2011-02-05 13:41:29 +00:00
#include "rayobject.h"
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include "renderpipeline.h"
#include "render_types.h"
#include "renderdatabase.h"
#include "texture.h"
#include "strand.h"
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
#include "zbuf.h"
2002-10-12 11:37:38 +00:00
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* ------------------------------------------------------------------------- */
2012-03-18 07:38:51 +00:00
/* More dynamic allocation of options for render vertices and faces, so we don't
2012-03-09 18:28:30 +00:00
* have to reserve this space inside vertices.
* Important; vertices and faces, should have been created already (to get tables
* checked) that's a reason why the calls demand VertRen/VlakRen * as arg, not
* the index */
/* NOTE! the hardcoded table size 256 is used still in code for going quickly over vertices/faces */
#define RE_STRESS_ELEMS 1
#define RE_RAD_ELEMS 4
#define RE_STRAND_ELEMS 1
#define RE_TANGENT_ELEMS 3
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
#define RE_WINSPEED_ELEMS 4
#define RE_MTFACE_ELEMS 1
#define RE_MCOL_ELEMS 4
#define RE_UV_ELEMS 2
#define RE_VLAK_ORIGINDEX_ELEMS 1
#define RE_VERT_ORIGINDEX_ELEMS 1
#define RE_SURFNOR_ELEMS 3
#define RE_RADFACE_ELEMS 1
#define RE_SIMPLIFY_ELEMS 2
#define RE_FACE_ELEMS 1
#define RE_NMAP_TANGENT_ELEMS 16
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_vertren_get_stress(ObjectRen *obr, VertRen *ver, int verify)
{
float *stress;
int nr= ver->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
stress= obr->vertnodes[nr].stress;
if (stress==NULL) {
if (verify)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
stress= obr->vertnodes[nr].stress= MEM_mallocN(256*RE_STRESS_ELEMS*sizeof(float), "stress table");
else
return NULL;
}
return stress + (ver->index & 255)*RE_STRESS_ELEMS;
}
/* this one callocs! */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_vertren_get_rad(ObjectRen *obr, VertRen *ver, int verify)
{
float *rad;
int nr= ver->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
rad= obr->vertnodes[nr].rad;
if (rad==NULL) {
if (verify)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
rad= obr->vertnodes[nr].rad= MEM_callocN(256*RE_RAD_ELEMS*sizeof(float), "rad table");
else
return NULL;
}
return rad + (ver->index & 255)*RE_RAD_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_vertren_get_strand(ObjectRen *obr, VertRen *ver, int verify)
{
float *strand;
int nr= ver->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
strand= obr->vertnodes[nr].strand;
if (strand==NULL) {
if (verify)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
strand= obr->vertnodes[nr].strand= MEM_mallocN(256*RE_STRAND_ELEMS*sizeof(float), "strand table");
else
return NULL;
}
return strand + (ver->index & 255)*RE_STRAND_ELEMS;
}
/* needs calloc */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_vertren_get_tangent(ObjectRen *obr, VertRen *ver, int verify)
{
float *tangent;
int nr= ver->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
tangent= obr->vertnodes[nr].tangent;
if (tangent==NULL) {
if (verify)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
tangent= obr->vertnodes[nr].tangent= MEM_callocN(256*RE_TANGENT_ELEMS*sizeof(float), "tangent table");
else
return NULL;
}
return tangent + (ver->index & 255)*RE_TANGENT_ELEMS;
}
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
/* needs calloc! not all renderverts have them */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* also winspeed is exception, it is stored per instance */
float *RE_vertren_get_winspeed(ObjectInstanceRen *obi, VertRen *ver, int verify)
{
float *winspeed;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
int totvector;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
winspeed= obi->vectors;
if (winspeed==NULL) {
if (verify) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
totvector= obi->obr->totvert + obi->obr->totstrand;
winspeed= obi->vectors= MEM_callocN(totvector*RE_WINSPEED_ELEMS*sizeof(float), "winspeed table");
}
else
return NULL;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return winspeed + ver->index*RE_WINSPEED_ELEMS;
}
int *RE_vertren_get_origindex(ObjectRen *obr, VertRen *ver, int verify)
{
int *origindex;
int nr= ver->index>>8;
origindex= obr->vertnodes[nr].origindex;
if (origindex==NULL) {
if (verify)
origindex= obr->vertnodes[nr].origindex= MEM_mallocN(256*RE_VERT_ORIGINDEX_ELEMS*sizeof(int), "origindex table");
else
return NULL;
}
return origindex + (ver->index & 255)*RE_VERT_ORIGINDEX_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VertRen *RE_vertren_copy(ObjectRen *obr, VertRen *ver)
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VertRen *v1= RE_findOrAddVert(obr, obr->totvert++);
float *fp1, *fp2;
int *int1, *int2;
int index= v1->index;
*v1= *ver;
v1->index= index;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp1= RE_vertren_get_stress(obr, ver, 0);
if (fp1) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp2= RE_vertren_get_stress(obr, v1, 1);
memcpy(fp2, fp1, RE_STRESS_ELEMS*sizeof(float));
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp1= RE_vertren_get_rad(obr, ver, 0);
if (fp1) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp2= RE_vertren_get_rad(obr, v1, 1);
memcpy(fp2, fp1, RE_RAD_ELEMS*sizeof(float));
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp1= RE_vertren_get_strand(obr, ver, 0);
if (fp1) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp2= RE_vertren_get_strand(obr, v1, 1);
memcpy(fp2, fp1, RE_STRAND_ELEMS*sizeof(float));
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp1= RE_vertren_get_tangent(obr, ver, 0);
if (fp1) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
fp2= RE_vertren_get_tangent(obr, v1, 1);
memcpy(fp2, fp1, RE_TANGENT_ELEMS*sizeof(float));
}
int1= RE_vertren_get_origindex(obr, ver, 0);
if (int1) {
int2= RE_vertren_get_origindex(obr, v1, 1);
memcpy(int2, int1, RE_VERT_ORIGINDEX_ELEMS*sizeof(int));
}
return v1;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VertRen *RE_findOrAddVert(ObjectRen *obr, int nr)
2002-10-12 11:37:38 +00:00
{
VertTableNode *temp;
VertRen *v;
2002-10-12 11:37:38 +00:00
int a;
if (nr<0) {
2012-04-29 15:47:02 +00:00
printf("error in findOrAddVert: %d\n", nr);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
return NULL;
2002-10-12 11:37:38 +00:00
}
a= nr>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
if (a>=obr->vertnodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
temp= obr->vertnodes;
2012-04-29 15:47:02 +00:00
obr->vertnodes= MEM_mallocN(sizeof(VertTableNode)*(obr->vertnodeslen+TABLEINITSIZE), "vertnodes");
if (temp) memcpy(obr->vertnodes, temp, obr->vertnodeslen*sizeof(VertTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memset(obr->vertnodes+obr->vertnodeslen, 0, TABLEINITSIZE*sizeof(VertTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->vertnodeslen+=TABLEINITSIZE;
if (temp) MEM_freeN(temp);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
v= obr->vertnodes[a].vert;
if (v==NULL) {
int i;
2012-04-29 15:47:02 +00:00
v= (VertRen *)MEM_callocN(256*sizeof(VertRen), "findOrAddVert");
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->vertnodes[a].vert= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++) {
v[a].index= i;
}
2002-10-12 11:37:38 +00:00
}
v+= (nr & 255);
return v;
}
/* ------------------------------------------------------------------------ */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MTFace *RE_vlakren_get_tface(ObjectRen *obr, VlakRen *vlr, int n, char **name, int verify)
{
VlakTableNode *node;
int nr= vlr->index>>8, vlakindex= (vlr->index&255);
int index= (n<<8) + vlakindex;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node= &obr->vlaknodes[nr];
if (verify) {
if (n>=node->totmtface) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MTFace *mtface= node->mtface;
int size= (n+1)*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node->mtface= MEM_callocN(size*sizeof(MTFace), "Vlak mtface");
if (mtface) {
size= node->totmtface*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memcpy(node->mtface, mtface, size*sizeof(MTFace));
MEM_freeN(mtface);
}
node->totmtface= n+1;
}
}
else {
if (n>=node->totmtface)
return NULL;
if (name) *name= obr->mtface[n];
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return node->mtface + index;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MCol *RE_vlakren_get_mcol(ObjectRen *obr, VlakRen *vlr, int n, char **name, int verify)
{
VlakTableNode *node;
int nr= vlr->index>>8, vlakindex= (vlr->index&255);
int index= (n<<8) + vlakindex;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node= &obr->vlaknodes[nr];
if (verify) {
if (n>=node->totmcol) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MCol *mcol= node->mcol;
int size= (n+1)*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node->mcol= MEM_callocN(size*sizeof(MCol)*RE_MCOL_ELEMS, "Vlak mcol");
if (mcol) {
size= node->totmcol*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memcpy(node->mcol, mcol, size*sizeof(MCol)*RE_MCOL_ELEMS);
MEM_freeN(mcol);
}
node->totmcol= n+1;
}
}
else {
if (n>=node->totmcol)
return NULL;
if (name) *name= obr->mcol[n];
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return node->mcol + index*RE_MCOL_ELEMS;
}
int *RE_vlakren_get_origindex(ObjectRen *obr, VlakRen *vlak, int verify)
{
int *origindex;
int nr= vlak->index>>8;
origindex= obr->vlaknodes[nr].origindex;
if (origindex==NULL) {
if (verify)
origindex= obr->vlaknodes[nr].origindex= MEM_callocN(256*RE_VLAK_ORIGINDEX_ELEMS*sizeof(int), "origindex table");
else
return NULL;
}
return origindex + (vlak->index & 255)*RE_VLAK_ORIGINDEX_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_vlakren_get_surfnor(ObjectRen *obr, VlakRen *vlak, int verify)
{
float *surfnor;
int nr= vlak->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
surfnor= obr->vlaknodes[nr].surfnor;
if (surfnor==NULL) {
if (verify)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
surfnor= obr->vlaknodes[nr].surfnor= MEM_callocN(256*RE_SURFNOR_ELEMS*sizeof(float), "surfnor table");
else
return NULL;
}
return surfnor + (vlak->index & 255)*RE_SURFNOR_ELEMS;
}
float *RE_vlakren_get_nmap_tangent(ObjectRen *obr, VlakRen *vlak, int verify)
{
float *tangent;
int nr= vlak->index>>8;
tangent= obr->vlaknodes[nr].tangent;
if (tangent==NULL) {
if (verify)
tangent= obr->vlaknodes[nr].tangent= MEM_callocN(256*RE_NMAP_TANGENT_ELEMS*sizeof(float), "tangent table");
else
return NULL;
}
return tangent + (vlak->index & 255)*RE_NMAP_TANGENT_ELEMS;
}
RadFace **RE_vlakren_get_radface(ObjectRen *obr, VlakRen *vlak, int verify)
{
RadFace **radface;
int nr= vlak->index>>8;
radface= obr->vlaknodes[nr].radface;
if (radface==NULL) {
if (verify)
2012-12-28 14:19:05 +00:00
radface = obr->vlaknodes[nr].radface= MEM_callocN(256 * RE_RADFACE_ELEMS * sizeof(void *), "radface table");
else
return NULL;
}
return radface + (vlak->index & 255)*RE_RADFACE_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VlakRen *RE_vlakren_copy(ObjectRen *obr, VlakRen *vlr)
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VlakRen *vlr1 = RE_findOrAddVlak(obr, obr->totvlak++);
MTFace *mtface, *mtface1;
MCol *mcol, *mcol1;
float *surfnor, *surfnor1, *tangent, *tangent1;
int *origindex, *origindex1;
RadFace **radface, **radface1;
int i, index = vlr1->index;
char *name;
*vlr1= *vlr;
vlr1->index= index;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
for (i=0; (mtface=RE_vlakren_get_tface(obr, vlr, i, &name, 0)) != NULL; i++) {
mtface1= RE_vlakren_get_tface(obr, vlr1, i, &name, 1);
memcpy(mtface1, mtface, sizeof(MTFace)*RE_MTFACE_ELEMS);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
for (i=0; (mcol=RE_vlakren_get_mcol(obr, vlr, i, &name, 0)) != NULL; i++) {
mcol1= RE_vlakren_get_mcol(obr, vlr1, i, &name, 1);
memcpy(mcol1, mcol, sizeof(MCol)*RE_MCOL_ELEMS);
}
origindex= RE_vlakren_get_origindex(obr, vlr, 0);
if (origindex) {
origindex1= RE_vlakren_get_origindex(obr, vlr1, 1);
/* Just an int, but memcpy for consistency. */
memcpy(origindex1, origindex, sizeof(int)*RE_VLAK_ORIGINDEX_ELEMS);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
surfnor= RE_vlakren_get_surfnor(obr, vlr, 0);
if (surfnor) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
surfnor1= RE_vlakren_get_surfnor(obr, vlr1, 1);
copy_v3_v3(surfnor1, surfnor);
}
tangent= RE_vlakren_get_nmap_tangent(obr, vlr, 0);
if (tangent) {
tangent1= RE_vlakren_get_nmap_tangent(obr, vlr1, 1);
memcpy(tangent1, tangent, sizeof(float)*RE_NMAP_TANGENT_ELEMS);
}
radface= RE_vlakren_get_radface(obr, vlr, 0);
if (radface) {
radface1= RE_vlakren_get_radface(obr, vlr1, 1);
*radface1= *radface;
}
return vlr1;
}
void RE_vlakren_get_normal(Render *UNUSED(re), ObjectInstanceRen *obi, VlakRen *vlr, float r_nor[3])
{
float (*nmat)[3]= obi->nmat;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
if (obi->flag & R_TRANSFORMED) {
mul_v3_m3v3(r_nor, nmat, vlr->n);
normalize_v3(r_nor);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
else {
copy_v3_v3(r_nor, vlr->n);
}
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
void RE_set_customdata_names(ObjectRen *obr, CustomData *data)
{
/* CustomData layer names are stored per object here, because the
2012-03-09 18:28:30 +00:00
* DerivedMesh which stores the layers is freed */
CustomDataLayer *layer;
int numtf = 0, numcol = 0, i, mtfn, mcn;
if (CustomData_has_layer(data, CD_MTFACE)) {
numtf= CustomData_number_of_layers(data, CD_MTFACE);
obr->mtface= MEM_callocN(sizeof(*obr->mtface)*numtf, "mtfacenames");
}
if (CustomData_has_layer(data, CD_MCOL)) {
numcol= CustomData_number_of_layers(data, CD_MCOL);
obr->mcol= MEM_callocN(sizeof(*obr->mcol)*numcol, "mcolnames");
}
for (i=0, mtfn=0, mcn=0; i < data->totlayer; i++) {
layer= &data->layers[i];
if (layer->type == CD_MTFACE) {
BLI_strncpy(obr->mtface[mtfn++], layer->name, sizeof(layer->name));
obr->actmtface= CLAMPIS(layer->active_rnd, 0, numtf);
obr->bakemtface= layer->active;
}
else if (layer->type == CD_MCOL) {
BLI_strncpy(obr->mcol[mcn++], layer->name, sizeof(layer->name));
obr->actmcol= CLAMPIS(layer->active_rnd, 0, numcol);
}
}
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
VlakRen *RE_findOrAddVlak(ObjectRen *obr, int nr)
{
VlakTableNode *temp;
VlakRen *v;
int a;
if (nr<0) {
2012-04-29 15:47:02 +00:00
printf("error in findOrAddVlak: %d\n", nr);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return obr->vlaknodes[0].vlak;
}
a= nr>>8;
if (a>=obr->vlaknodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
temp= obr->vlaknodes;
2012-04-29 15:47:02 +00:00
obr->vlaknodes= MEM_mallocN(sizeof(VlakTableNode)*(obr->vlaknodeslen+TABLEINITSIZE), "vlaknodes");
if (temp) memcpy(obr->vlaknodes, temp, obr->vlaknodeslen*sizeof(VlakTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memset(obr->vlaknodes+obr->vlaknodeslen, 0, TABLEINITSIZE*sizeof(VlakTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->vlaknodeslen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
v= obr->vlaknodes[a].vlak;
if (v==NULL) {
int i;
2012-04-29 15:47:02 +00:00
v= (VlakRen *)MEM_callocN(256*sizeof(VlakRen), "findOrAddVlak");
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->vlaknodes[a].vlak= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++)
v[a].index= i;
}
v+= (nr & 255);
return v;
}
/* ------------------------------------------------------------------------ */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_strandren_get_surfnor(ObjectRen *obr, StrandRen *strand, int verify)
{
float *surfnor;
int nr= strand->index>>8;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
surfnor= obr->strandnodes[nr].surfnor;
if (surfnor==NULL) {
if (verify)
surfnor= obr->strandnodes[nr].surfnor= MEM_callocN(256*RE_SURFNOR_ELEMS*sizeof(float), "surfnor strand table");
else
return NULL;
}
return surfnor + (strand->index & 255)*RE_SURFNOR_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *RE_strandren_get_uv(ObjectRen *obr, StrandRen *strand, int n, char **name, int verify)
{
StrandTableNode *node;
int nr= strand->index>>8, strandindex= (strand->index&255);
int index= (n<<8) + strandindex;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node= &obr->strandnodes[nr];
if (verify) {
if (n>=node->totuv) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
float *uv= node->uv;
int size= (n+1)*256;
node->uv= MEM_callocN(size*sizeof(float)*RE_UV_ELEMS, "strand uv table");
if (uv) {
size= node->totuv*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memcpy(node->uv, uv, size*sizeof(float)*RE_UV_ELEMS);
MEM_freeN(uv);
}
node->totuv= n+1;
}
}
else {
if (n>=node->totuv)
return NULL;
if (name) *name= obr->mtface[n];
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return node->uv + index*RE_UV_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MCol *RE_strandren_get_mcol(ObjectRen *obr, StrandRen *strand, int n, char **name, int verify)
{
StrandTableNode *node;
int nr= strand->index>>8, strandindex= (strand->index&255);
int index= (n<<8) + strandindex;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
node= &obr->strandnodes[nr];
if (verify) {
if (n>=node->totmcol) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MCol *mcol= node->mcol;
int size= (n+1)*256;
node->mcol= MEM_callocN(size*sizeof(MCol)*RE_MCOL_ELEMS, "strand mcol table");
if (mcol) {
size= node->totmcol*256;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memcpy(node->mcol, mcol, size*sizeof(MCol)*RE_MCOL_ELEMS);
MEM_freeN(mcol);
}
node->totmcol= n+1;
}
}
else {
if (n>=node->totmcol)
return NULL;
if (name) *name= obr->mcol[n];
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return node->mcol + index*RE_MCOL_ELEMS;
}
float *RE_strandren_get_simplify(struct ObjectRen *obr, struct StrandRen *strand, int verify)
{
float *simplify;
int nr= strand->index>>8;
simplify= obr->strandnodes[nr].simplify;
if (simplify==NULL) {
if (verify)
simplify= obr->strandnodes[nr].simplify= MEM_callocN(256*RE_SIMPLIFY_ELEMS*sizeof(float), "simplify strand table");
else
return NULL;
}
return simplify + (strand->index & 255)*RE_SIMPLIFY_ELEMS;
}
int *RE_strandren_get_face(ObjectRen *obr, StrandRen *strand, int verify)
{
int *face;
int nr= strand->index>>8;
face= obr->strandnodes[nr].face;
if (face==NULL) {
if (verify)
face= obr->strandnodes[nr].face= MEM_callocN(256*RE_FACE_ELEMS*sizeof(int), "face strand table");
else
return NULL;
}
return face + (strand->index & 255)*RE_FACE_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* winspeed is exception, it is stored per instance */
float *RE_strandren_get_winspeed(ObjectInstanceRen *obi, StrandRen *strand, int verify)
{
float *winspeed;
int totvector;
winspeed= obi->vectors;
if (winspeed==NULL) {
if (verify) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
totvector= obi->obr->totvert + obi->obr->totstrand;
winspeed= obi->vectors= MEM_callocN(totvector*RE_WINSPEED_ELEMS*sizeof(float), "winspeed strand table");
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
else
return NULL;
}
return winspeed + (obi->obr->totvert + strand->index)*RE_WINSPEED_ELEMS;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
StrandRen *RE_findOrAddStrand(ObjectRen *obr, int nr)
{
StrandTableNode *temp;
StrandRen *v;
int a;
if (nr<0) {
2012-04-29 15:47:02 +00:00
printf("error in findOrAddStrand: %d\n", nr);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return obr->strandnodes[0].strand;
}
a= nr>>8;
if (a>=obr->strandnodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
temp= obr->strandnodes;
2012-04-29 15:47:02 +00:00
obr->strandnodes= MEM_mallocN(sizeof(StrandTableNode)*(obr->strandnodeslen+TABLEINITSIZE), "strandnodes");
if (temp) memcpy(obr->strandnodes, temp, obr->strandnodeslen*sizeof(StrandTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
memset(obr->strandnodes+obr->strandnodeslen, 0, TABLEINITSIZE*sizeof(StrandTableNode));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->strandnodeslen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
v= obr->strandnodes[a].strand;
if (v==NULL) {
int i;
2012-04-29 15:47:02 +00:00
v= (StrandRen *)MEM_callocN(256*sizeof(StrandRen), "findOrAddStrand");
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->strandnodes[a].strand= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++)
v[a].index= i;
}
v+= (nr & 255);
return v;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
StrandBuffer *RE_addStrandBuffer(ObjectRen *obr, int totvert)
{
StrandBuffer *strandbuf;
strandbuf= MEM_callocN(sizeof(StrandBuffer), "StrandBuffer");
strandbuf->vert= MEM_callocN(sizeof(StrandVert)*totvert, "StrandVert");
strandbuf->totvert= totvert;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
strandbuf->obr= obr;
obr->strandbuf= strandbuf;
return strandbuf;
}
/* ------------------------------------------------------------------------ */
ObjectRen *RE_addRenderObject(Render *re, Object *ob, Object *par, int index, int psysindex, int lay)
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
ObjectRen *obr= MEM_callocN(sizeof(ObjectRen), "object render struct");
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
BLI_addtail(&re->objecttable, obr);
obr->ob= ob;
obr->par= par;
obr->index= index;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->psysindex= psysindex;
obr->lay= lay;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
return obr;
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
}
void free_renderdata_vertnodes(VertTableNode *vertnodes)
{
int a;
if (vertnodes==NULL) return;
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
for (a=0; vertnodes[a].vert; a++) {
MEM_freeN(vertnodes[a].vert);
if (vertnodes[a].rad)
MEM_freeN(vertnodes[a].rad);
if (vertnodes[a].strand)
MEM_freeN(vertnodes[a].strand);
if (vertnodes[a].tangent)
MEM_freeN(vertnodes[a].tangent);
if (vertnodes[a].stress)
MEM_freeN(vertnodes[a].stress);
if (vertnodes[a].winspeed)
MEM_freeN(vertnodes[a].winspeed);
if (vertnodes[a].origindex)
MEM_freeN(vertnodes[a].origindex);
}
MEM_freeN(vertnodes);
}
void free_renderdata_vlaknodes(VlakTableNode *vlaknodes)
{
int a;
if (vlaknodes==NULL) return;
for (a=0; vlaknodes[a].vlak; a++) {
MEM_freeN(vlaknodes[a].vlak);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if (vlaknodes[a].mtface)
MEM_freeN(vlaknodes[a].mtface);
if (vlaknodes[a].mcol)
MEM_freeN(vlaknodes[a].mcol);
if (vlaknodes[a].origindex)
MEM_freeN(vlaknodes[a].origindex);
if (vlaknodes[a].surfnor)
MEM_freeN(vlaknodes[a].surfnor);
if (vlaknodes[a].tangent)
MEM_freeN(vlaknodes[a].tangent);
if (vlaknodes[a].radface)
MEM_freeN(vlaknodes[a].radface);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
MEM_freeN(vlaknodes);
}
static void free_renderdata_strandnodes(StrandTableNode *strandnodes)
{
int a;
if (strandnodes==NULL) return;
for (a=0; strandnodes[a].strand; a++) {
MEM_freeN(strandnodes[a].strand);
if (strandnodes[a].uv)
MEM_freeN(strandnodes[a].uv);
if (strandnodes[a].mcol)
MEM_freeN(strandnodes[a].mcol);
if (strandnodes[a].winspeed)
MEM_freeN(strandnodes[a].winspeed);
if (strandnodes[a].surfnor)
MEM_freeN(strandnodes[a].surfnor);
if (strandnodes[a].simplify)
MEM_freeN(strandnodes[a].simplify);
if (strandnodes[a].face)
MEM_freeN(strandnodes[a].face);
}
MEM_freeN(strandnodes);
}
void free_renderdata_tables(Render *re)
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
ObjectInstanceRen *obi;
ObjectRen *obr;
StrandBuffer *strandbuf;
int a=0;
for (obr=re->objecttable.first; obr; obr=obr->next) {
if (obr->vertnodes) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
free_renderdata_vertnodes(obr->vertnodes);
obr->vertnodes= NULL;
obr->vertnodeslen= 0;
}
if (obr->vlaknodes) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
free_renderdata_vlaknodes(obr->vlaknodes);
obr->vlaknodes= NULL;
obr->vlaknodeslen= 0;
obr->totvlak= 0;
}
if (obr->bloha) {
for (a=0; obr->bloha[a]; a++)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(obr->bloha[a]);
MEM_freeN(obr->bloha);
obr->bloha= NULL;
obr->blohalen= 0;
}
if (obr->strandnodes) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
free_renderdata_strandnodes(obr->strandnodes);
obr->strandnodes= NULL;
obr->strandnodeslen= 0;
}
strandbuf= obr->strandbuf;
if (strandbuf) {
if (strandbuf->vert) MEM_freeN(strandbuf->vert);
if (strandbuf->bound) MEM_freeN(strandbuf->bound);
MEM_freeN(strandbuf);
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if (obr->mtface)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(obr->mtface);
if (obr->mcol)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(obr->mcol);
if (obr->rayfaces) {
MEM_freeN(obr->rayfaces);
obr->rayfaces = NULL;
}
if (obr->rayprimitives) {
MEM_freeN(obr->rayprimitives);
obr->rayprimitives = NULL;
}
if (obr->raytree) {
RE_rayobject_free(obr->raytree);
obr->raytree = NULL;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
if (re->objectinstance) {
for (obi=re->instancetable.first; obi; obi=obi->next) {
if (obi->vectors)
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(obi->vectors);
if (obi->raytree)
RE_rayobject_free(obi->raytree);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(re->objectinstance);
re->objectinstance= NULL;
re->totinstance= 0;
re->instancetable.first= re->instancetable.last= NULL;
}
if (re->sortedhalos) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
MEM_freeN(re->sortedhalos);
re->sortedhalos= NULL;
}
BLI_freelistN(&re->customdata_names);
iImage based Vector Blur After a couple of experiments with variable blur filters, I tried a more interesting, and who knows... original approach. :) First watch results here: http://www.blender.org/bf/rt0001_0030.avi http://www.blender.org/bf/hand0001_0060.avi These are the steps in producing such results: - In preprocess, the speed vectors to previous and next frame are calculated. Speed vectors are screen-aligned and in pixel size. - while rendering, these vectors get calculated per sample, and accumulated in the vector buffer checking for "minimum speed". (on start the vector buffer is initialized on max speed). - After render: - The entire image, all pixels, then is converted to quad polygons. - Also the z value of the pixels is assigned to the polygons - The vertices for the quads use averaged speed vectors (of the 4 corner faces), using a 'minimum but non-zero' speed rule. This minimal speed trick works very well to prevent 'tearing' apart when multiple faces move in different directions in a pixel, or to be able to separate moving pixels clearly from non-moving ones - So, now we have a sort of 'mask' of quad polygons. The previous steps guaranteed that this mask doesn't have antialias color info, and has speed vectors that ensure individual parts to move nicely without tearing effects. The Z allows multiple layers of moving masks. - Then, in temporal buffer, faces get tagged if they move or not - These tags then go to an anti-alias routine, which assigns alpha values to edge faces, based on the method we used in past to antialias bitmaps (still in our code, check the antialias.c in imbuf!) - finally, the tag buffer is used to tag which z values of the original image have to be included (to allow blur go behind stuff). - OK, now we're ready for accumulating! In a loop, all faces then get drawn (with zbuffer) with increasing influence of their speed vectors. The resulting image then is accumulated on top of the original with a decreasing weighting value. It sounds all quite complex... but the speed is still encouraging. Above images have 64 mblur steps, which takes about 1-3 seconds per frame. Usage notes: - Make sure the render-layer has passes 'Vector' and 'Z' on. - add in Compositor the VectorBlur node, and connect the image, Z and speed to the inputs. - The node allows to set amount of steps (10 steps = 10 forward, 10 back). and to set a maximum speed in pixels... to prevent extreme moving things to blur too wide.
2006-02-06 22:11:50 +00:00
BLI_freelistN(&re->objecttable);
BLI_freelistN(&re->instancetable);
}
2002-10-12 11:37:38 +00:00
/* ------------------------------------------------------------------------ */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
HaloRen *RE_findOrAddHalo(ObjectRen *obr, int nr)
2002-10-12 11:37:38 +00:00
{
HaloRen *h, **temp;
2002-10-12 11:37:38 +00:00
int a;
if (nr<0) {
2012-04-29 15:47:02 +00:00
printf("error in findOrAddHalo: %d\n", nr);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
return NULL;
2002-10-12 11:37:38 +00:00
}
a= nr>>8;
if (a>=obr->blohalen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
//printf("Allocating %i more halo groups. %i total.\n",
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
// TABLEINITSIZE, obr->blohalen+TABLEINITSIZE );
temp=obr->bloha;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
2013-03-18 11:44:56 +00:00
obr->bloha = (HaloRen **)MEM_callocN(sizeof(void *) * (obr->blohalen + TABLEINITSIZE), "Bloha");
2012-12-28 14:19:05 +00:00
if (temp) memcpy(obr->bloha, temp, obr->blohalen*sizeof(void *));
memset(&(obr->bloha[obr->blohalen]), 0, TABLEINITSIZE * sizeof(void *));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->blohalen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
h= obr->bloha[a];
if (h==NULL) {
2012-04-29 15:47:02 +00:00
h= (HaloRen *)MEM_callocN(256*sizeof(HaloRen), "findOrAdHalo");
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obr->bloha[a]= h;
2002-10-12 11:37:38 +00:00
}
h+= (nr & 255);
return h;
}
/* ------------------------------------------------------------------------- */
HaloRen *RE_inithalo(Render *re, ObjectRen *obr, Material *ma,
const float vec[3], const float vec1[3],
const float *orco, float hasize, float vectsize, int seed)
2002-10-12 11:37:38 +00:00
{
HaloRen *har;
MTex *mtex;
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
float tin, tr, tg, tb, ta;
2002-10-12 11:37:38 +00:00
float xn, yn, zn, texvec[3], hoco[4], hoco1[4];
if (hasize==0.0f) return NULL;
2002-10-12 11:37:38 +00:00
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
projectverto(vec, re->winmat, hoco);
if (hoco[3]==0.0f) return NULL;
if (vec1) {
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
projectverto(vec1, re->winmat, hoco1);
if (hoco1[3]==0.0f) return NULL;
2002-10-12 11:37:38 +00:00
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
har= RE_findOrAddHalo(obr, obr->tothalo++);
copy_v3_v3(har->co, vec);
2002-10-12 11:37:38 +00:00
har->hasize= hasize;
/* actual projectvert is done in function project_renderdata() because of parts/border/pano */
/* we do it here for sorting of halos */
zn= hoco[3];
har->xs= 0.5f*re->winx*(hoco[0]/zn);
har->ys= 0.5f*re->winy*(hoco[1]/zn);
har->zs= 0x7FFFFF*(hoco[2]/zn);
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
2002-10-12 11:37:38 +00:00
/* halovect */
if (vec1) {
2002-10-12 11:37:38 +00:00
har->type |= HA_VECT;
xn= har->xs - 0.5f*re->winx*(hoco1[0]/hoco1[3]);
yn= har->ys - 0.5f*re->winy*(hoco1[1]/hoco1[3]);
if (xn==0.0f || (xn==0.0f && yn==0.0f)) zn= 0.0f;
2002-10-12 11:37:38 +00:00
else zn= atan2(yn, xn);
har->sin= sin(zn);
har->cos= cos(zn);
zn= len_v3v3(vec1, vec);
2002-10-12 11:37:38 +00:00
har->hasize= vectsize*zn + (1.0f-vectsize)*hasize;
2002-10-12 11:37:38 +00:00
sub_v3_v3v3(har->no, vec, vec1);
normalize_v3(har->no);
2002-10-12 11:37:38 +00:00
}
if (ma->mode & MA_HALO_XALPHA) har->type |= HA_XALPHA;
2002-10-12 11:37:38 +00:00
har->alfa= ma->alpha;
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
har->r= ma->r;
har->g= ma->g;
har->b= ma->b;
har->add= (255.0f*ma->add);
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
har->mat= ma;
2002-10-12 11:37:38 +00:00
har->hard= ma->har;
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
har->seed= seed % 256;
2002-10-12 11:37:38 +00:00
if (ma->mode & MA_STAR) har->starpoints= ma->starc;
if (ma->mode & MA_HALO_LINES) har->linec= ma->linec;
if (ma->mode & MA_HALO_RINGS) har->ringc= ma->ringc;
if (ma->mode & MA_HALO_FLARE) har->flarec= ma->flarec;
2002-10-12 11:37:38 +00:00
if (ma->mtex[0]) {
2002-10-12 11:37:38 +00:00
2012-10-07 09:48:59 +00:00
if (ma->mode & MA_HALOTEX) {
har->tex = 1;
}
else if (har->mat->septex & (1 << 0)) {
/* only 1 level textures */
}
2002-10-12 11:37:38 +00:00
else {
mtex= ma->mtex[0];
copy_v3_v3(texvec, vec);
2002-10-12 11:37:38 +00:00
if (mtex->texco & TEXCO_NORM) {
2002-10-12 11:37:38 +00:00
;
}
else if (mtex->texco & TEXCO_OBJECT) {
2002-10-12 11:37:38 +00:00
/* texvec[0]+= imatbase->ivec[0]; */
/* texvec[1]+= imatbase->ivec[1]; */
/* texvec[2]+= imatbase->ivec[2]; */
/* mul_m3_v3(imatbase->imat, texvec); */
2002-10-12 11:37:38 +00:00
}
else {
if (orco) {
copy_v3_v3(texvec, orco);
2002-10-12 11:37:38 +00:00
}
}
externtex(mtex, texvec, &tin, &tr, &tg, &tb, &ta, 0, re->pool);
2002-10-12 11:37:38 +00:00
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
yn= tin*mtex->colfac;
//zn= tin*mtex->alphafac;
2002-10-12 11:37:38 +00:00
if (mtex->mapto & MAP_COL) {
zn= 1.0f-yn;
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
har->r= (yn*tr+ zn*ma->r);
har->g= (yn*tg+ zn*ma->g);
har->b= (yn*tb+ zn*ma->b);
2002-10-12 11:37:38 +00:00
}
if (mtex->texco & TEXCO_UV) {
Biiig commit! Thanks to 2-3 weeks of cvs freeze... Render: - New; support for dual CPU render (SDL thread) Currently only works with alternating scanlines, but gives excellent performance. For both normal render as unified implemented. Note the "mutex" locks on z-transp buffer render and imbuf loads. - This has been made possible by major cleanups in render code, especially getting rid of globals (example Tin Tr Tg Tb Ta for textures) or struct OSA or using Materials or Texture data to write to. - Made normal render fully 4x32 floats too, and removed all old optimizes with chars or shorts. - Made normal render and unified render use same code for sky and halo render, giving equal (and better) results for halo render. Old render now also uses PostProcess options (brightness, mul, gamma) - Added option ("FBuf") in F10 Output Panel, this keeps a 4x32 bits buffer after render. Using PostProcess menu you will note an immediate re- display of image too (32 bits RGBA) - Added "Hue" and "Saturation" sliders to PostProcess options - Render module is still not having a "nice" API, but amount of dependencies went down a lot. Next todo: remove abusive "previewrender" code. The last main global in Render (struct Render) now can be re-used for fully controlling a render, to allow multiple "instances" of render to open. - Renderwindow now displays a smal bar on top with the stats, and keeps the stats after render too. Including "spare" page support. Not only easier visible that way, but also to remove the awkward code that was drawing stats in the Info header (extreme slow on some ATIs too) - Cleaned up blendef.h and BKE_utildefines.h, these two had overlapping defines. - I might have forgotten stuff... and will write a nice doc on the architecture!
2004-12-27 19:28:52 +00:00
har->alfa= tin;
2002-10-12 11:37:38 +00:00
}
if (mtex->mapto & MAP_ALPHA)
har->alfa= tin;
2002-10-12 11:37:38 +00:00
}
}
har->pool = re->pool;
2002-10-12 11:37:38 +00:00
return har;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
HaloRen *RE_inithalo_particle(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma,
const float vec[3], const float vec1[3],
const float *orco, const float *uvco, float hasize, float vectsize, int seed, const float pa_co[3])
{
HaloRen *har;
MTex *mtex;
float tin, tr, tg, tb, ta;
2012-04-29 15:47:02 +00:00
float xn, yn, zn, texvec[3], hoco[4], hoco1[4], in[3], tex[3], out[3];
int i, hasrgb;
if (hasize==0.0f) return NULL;
projectverto(vec, re->winmat, hoco);
if (hoco[3]==0.0f) return NULL;
if (vec1) {
projectverto(vec1, re->winmat, hoco1);
if (hoco1[3]==0.0f) return NULL;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
har= RE_findOrAddHalo(obr, obr->tothalo++);
copy_v3_v3(har->co, vec);
har->hasize= hasize;
/* actual projectvert is done in function project_renderdata() because of parts/border/pano */
/* we do it here for sorting of halos */
zn= hoco[3];
har->xs= 0.5f*re->winx*(hoco[0]/zn);
har->ys= 0.5f*re->winy*(hoco[1]/zn);
har->zs= 0x7FFFFF*(hoco[2]/zn);
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
/* halovect */
if (vec1) {
har->type |= HA_VECT;
xn= har->xs - 0.5f*re->winx*(hoco1[0]/hoco1[3]);
yn= har->ys - 0.5f*re->winy*(hoco1[1]/hoco1[3]);
if (xn==0.0f || (xn==0.0f && yn==0.0f)) zn= 0.0;
else zn= atan2(yn, xn);
har->sin= sin(zn);
har->cos= cos(zn);
zn= len_v3v3(vec1, vec)*0.5f;
har->hasize= vectsize*zn + (1.0f-vectsize)*hasize;
sub_v3_v3v3(har->no, vec, vec1);
normalize_v3(har->no);
}
if (ma->mode & MA_HALO_XALPHA) har->type |= HA_XALPHA;
har->alfa= ma->alpha;
har->r= ma->r;
har->g= ma->g;
har->b= ma->b;
har->add= (255.0f*ma->add);
har->mat= ma;
har->hard= ma->har;
har->seed= seed % 256;
if (ma->mode & MA_STAR) har->starpoints= ma->starc;
if (ma->mode & MA_HALO_LINES) har->linec= ma->linec;
if (ma->mode & MA_HALO_RINGS) har->ringc= ma->ringc;
if (ma->mode & MA_HALO_FLARE) har->flarec= ma->flarec;
if ((ma->mode & MA_HALOTEX) && ma->mtex[0])
har->tex= 1;
for (i=0; i<MAX_MTEX; i++)
if (ma->mtex[i] && (ma->septex & (1<<i))==0) {
mtex= ma->mtex[i];
copy_v3_v3(texvec, vec);
if (mtex->texco & TEXCO_NORM) {
;
}
else if (mtex->texco & TEXCO_OBJECT) {
if (mtex->object)
2012-04-29 15:47:02 +00:00
mul_m4_v3(mtex->object->imat_ren, texvec);
}
else if (mtex->texco & TEXCO_GLOB) {
2012-04-29 15:47:02 +00:00
copy_v3_v3(texvec, vec);
}
else if (mtex->texco & TEXCO_UV && uvco) {
2012-04-29 15:47:02 +00:00
int uv_index=CustomData_get_named_layer_index(&dm->faceData, CD_MTFACE, mtex->uvname);
if (uv_index<0)
2012-04-29 15:47:02 +00:00
uv_index=CustomData_get_active_layer_index(&dm->faceData, CD_MTFACE);
2012-04-29 15:47:02 +00:00
uv_index-=CustomData_get_layer_index(&dm->faceData, CD_MTFACE);
texvec[0]=2.0f*uvco[2*uv_index]-1.0f;
texvec[1]=2.0f*uvco[2*uv_index+1]-1.0f;
texvec[2]=0.0f;
}
else if (mtex->texco & TEXCO_PARTICLE) {
2012-04-29 15:47:02 +00:00
/* particle coordinates in range [0, 1] */
texvec[0] = 2.f * pa_co[0] - 1.f;
texvec[1] = 2.f * pa_co[1] - 1.f;
texvec[2] = pa_co[2];
}
else if (orco) {
copy_v3_v3(texvec, orco);
}
hasrgb = externtex(mtex, texvec, &tin, &tr, &tg, &tb, &ta, 0, re->pool);
//yn= tin*mtex->colfac;
//zn= tin*mtex->alphafac;
if (mtex->mapto & MAP_COL) {
tex[0]=tr;
tex[1]=tg;
tex[2]=tb;
out[0]=har->r;
out[1]=har->g;
out[2]=har->b;
2012-04-29 15:47:02 +00:00
texture_rgb_blend(in, tex, out, tin, mtex->colfac, mtex->blendtype);
// zn= 1.0-yn;
//har->r= (yn*tr+ zn*ma->r);
//har->g= (yn*tg+ zn*ma->g);
//har->b= (yn*tb+ zn*ma->b);
har->r= in[0];
har->g= in[1];
har->b= in[2];
}
/* alpha returned, so let's use it instead of intensity */
if (hasrgb)
tin = ta;
if (mtex->mapto & MAP_ALPHA)
2012-04-29 15:47:02 +00:00
har->alfa = texture_value_blend(mtex->def_var, har->alfa, tin, mtex->alphafac, mtex->blendtype);
if (mtex->mapto & MAP_HAR)
2012-04-29 15:47:02 +00:00
har->hard = 1.0f+126.0f*texture_value_blend(mtex->def_var, ((float)har->hard)/127.0f, tin, mtex->hardfac, mtex->blendtype);
if (mtex->mapto & MAP_RAYMIRR)
2012-04-29 15:47:02 +00:00
har->hasize = 100.0f*texture_value_blend(mtex->def_var, har->hasize/100.0f, tin, mtex->raymirrfac, mtex->blendtype);
if (mtex->mapto & MAP_TRANSLU) {
2012-04-29 15:47:02 +00:00
float add = texture_value_blend(mtex->def_var, (float)har->add/255.0f, tin, mtex->translfac, mtex->blendtype);
CLAMP(add, 0.f, 1.f);
har->add = 255.0f*add;
}
/* now what on earth is this good for?? */
2012-04-21 12:51:47 +00:00
//if (mtex->texco & 16) {
// har->alfa= tin;
//}
}
har->pool = re->pool;
return har;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
/* -------------------------- operations on entire database ----------------------- */
/* ugly function for halos in panorama */
static int panotestclip(Render *re, bool do_pano, float v[4])
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
{
/* part size (ensure we run RE_parts_clamp first) */
BLI_assert(re->partx == min_ii(re->r.tilex, re->rectx));
BLI_assert(re->party == min_ii(re->r.tiley, re->recty));
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if (do_pano == false) {
return testclip(v);
}
else {
/* to be used for halos en infos */
float abs4;
short c = 0;
int xparts = (re->rectx + re->partx - 1) / re->partx;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
abs4= fabsf(v[3]);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if (v[2]< -abs4) c=16; /* this used to be " if (v[2]<0) ", see clippz() */
else if (v[2]> abs4) c+= 32;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if ( v[1]>abs4) c+=4;
else if ( v[1]< -abs4) c+=8;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
abs4*= xparts;
if ( v[0]>abs4) c+=2;
else if ( v[0]< -abs4) c+=1;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
return c;
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
2012-03-09 18:28:30 +00:00
/**
* This adds the hcs coordinates to vertices. It iterates over all
* vertices, halos and faces. After the conversion, we clip in hcs.
*
* Elsewhere, all primites are converted to vertices.
* Called in
* - envmapping (envmap.c)
* - shadow buffering (shadbuf.c)
*/
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
void project_renderdata(Render *re,
void (*projectfunc)(const float *, float mat[4][4], float *),
bool do_pano, float xoffs, bool UNUSED(do_buckets))
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
ObjectRen *obr;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
HaloRen *har = NULL;
float zn, vec[3], hoco[4];
int a;
if (do_pano) {
Recoded Panorama rendering. The old implementation was added quite hackish (talking about 10 yr ago). You also had to make a small image slice, which was extended Xparts in size. That also required to adjust the camera angle. Very clumsy. Now; when enabling the Panorama option, it will automatically apply the panorama effect on the vertically aligned tiles. You can just enable or disable the "Pano" button, to get a subtle lens effect like this: (without pano) http://www.blender.org/bf/rt.jpg (with pano) http://www.blender.org/bf/rt1.jpg For Panorama render, the minimum slice size has been hardcoded to be 8 pixels. The XParts button goes up to 512 to allow that. In practice, rendering 64 slices will already give very good images for a wide angle lens of 90 degrees, the curvature of straight lines then is equal to a circle of 256 points. Rendering a full 360 degree panorama you do by creating an extreme wide angle camera. The theory says camera-lens 5 should do 360 degrees, but for some reason my tests reveil it's 5.1... there's a rounding error somewhere, maybe related to the clipping plane start? Will look at that later. :) Also note that for each Xpart slice, the entire database needs to be rotated around camera to correct for panorama, on huge scenes that might give some overhead. Threaded render goes fine for Panorama too, but it can only render the vertically aligned parts in parallel. For the next panorama slice it has to wait for all threads of the current slice to be ready. On reading old files, I convert the settings to match as closely as possible the new situation. Since I cannot bump up the version #, the code detects for old panorama by checking for the image size. If image width is smaller than height, it assumes it's an old file (only if Panoroma option was set).
2006-02-27 12:39:36 +00:00
float panophi= xoffs;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
re->panosi= sin(panophi);
re->panoco= cos(panophi);
}
for (obr=re->objecttable.first; obr; obr=obr->next) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* calculate view coordinates (and zbuffer value) */
for (a=0; a<obr->tothalo; a++) {
if ((a & 255)==0) har= obr->bloha[a>>8];
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
else har++;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if (do_pano) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
vec[0]= re->panoco*har->co[0] + re->panosi*har->co[2];
vec[1]= har->co[1];
vec[2]= -re->panosi*har->co[0] + re->panoco*har->co[2];
}
else {
copy_v3_v3(vec, har->co);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
projectfunc(vec, re->winmat, hoco);
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* we clip halos less critical, but not for the Z */
hoco[0]*= 0.5f;
hoco[1]*= 0.5f;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
if ( panotestclip(re, do_pano, hoco) ) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
har->miny= har->maxy= -10000; /* that way render clips it */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
else if (hoco[3]<0.0f) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
har->miny= har->maxy= -10000; /* render clips it */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
else { /* do the projection...*/
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* bring back hocos */
hoco[0]*= 2.0f;
hoco[1]*= 2.0f;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
zn= hoco[3];
har->xs= 0.5f*re->winx*(1.0f+hoco[0]/zn); /* the 0.5 negates the previous 2...*/
har->ys= 0.5f*re->winy*(1.0f+hoco[1]/zn);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* this should be the zbuffer coordinate */
har->zs= 0x7FFFFF*(hoco[2]/zn);
/* taking this from the face clip functions? seems ok... */
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
vec[0]+= har->hasize;
projectfunc(vec, re->winmat, hoco);
vec[0]-= har->hasize;
zn= hoco[3];
har->rad= fabsf(har->xs- 0.5f*re->winx*(1.0f+hoco[0]/zn));
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
/* this clip is not really OK, to prevent stars to become too large */
if (har->type & HA_ONLYSKY) {
if (har->rad>3.0f) har->rad= 3.0f;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
har->radsq= har->rad*har->rad;
har->miny= har->ys - har->rad/re->ycor;
har->maxy= har->ys + har->rad/re->ycor;
/* the Zd value is still not really correct for pano */
2012-07-21 15:27:40 +00:00
vec[2] -= har->hasize; /* z negative, otherwise it's clipped */
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
projectfunc(vec, re->winmat, hoco);
2012-07-21 15:27:40 +00:00
zn = hoco[3];
zn = fabsf((float)har->zs - 0x7FFFFF * (hoco[2] / zn));
har->zd = CLAMPIS(zn, 0, INT_MAX);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
}
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
2002-10-12 11:37:38 +00:00
/* ------------------------------------------------------------------------- */
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
ObjectInstanceRen *RE_addRenderInstance(Render *re, ObjectRen *obr, Object *ob, Object *par, int index, int psysindex, float mat[4][4], int lay)
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
{
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
ObjectInstanceRen *obi;
float mat3[3][3];
obi= MEM_callocN(sizeof(ObjectInstanceRen), "ObjectInstanceRen");
obi->obr= obr;
obi->ob= ob;
obi->par= par;
obi->index= index;
obi->psysindex= psysindex;
obi->lay= lay;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
if (mat) {
copy_m4_m4(obi->mat, mat);
copy_m3_m4(mat3, mat);
invert_m3_m3(obi->nmat, mat3);
transpose_m3(obi->nmat);
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obi->flag |= R_DUPLI_TRANSFORMED;
}
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
BLI_addtail(&re->instancetable, obi);
return obi;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
}
void RE_makeRenderInstances(Render *re)
{
ObjectInstanceRen *obi, *oldobi;
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
ListBase newlist;
int tot;
/* convert list of object instances to an array for index based lookup */
tot= BLI_countlist(&re->instancetable);
re->objectinstance= MEM_callocN(sizeof(ObjectInstanceRen)*tot, "ObjectInstance");
re->totinstance= tot;
newlist.first= newlist.last= NULL;
obi= re->objectinstance;
for (oldobi=re->instancetable.first; oldobi; oldobi=oldobi->next) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
*obi= *oldobi;
if (obi->obr) {
Render Instancing ================= Big commit, but little user visible changes. - Dupliverts and duplifaces are now rendered as instances, instead of storing all of the geometry for each dupli, now an instance is created with a matrix transform refering to the source object. This should allow us to render tree leaves more memory efficient. - Radiosity and to some degree raytracing of such objects is not really efficient still. For radiosity this is fundamentally hard to solve, but raytracing an octree could be created for each object, but the current octree code with it's fixed size doesn't allow this efficiently. - The regression tests survived, but with I expect that some bugs will pop up .. hopefully not too many :). Implementation Notes ==================== - Dupligroups and linked meshes are not rendered as instances yet, since they can in fact be different due to various reasons, instancing of these types of duplis that are the same can be added for them at a later point. - Each ObjectRen now stores it's own database, instead of there being one big databases of faces, verts, .. . Which objects that are actually rendered are defined by the list of ObjectRenInstances, which all refer to an ObjectRen. - Homogeneous coordinatess and clipping is now not stored in vertices anymore, but instead computed on the fly. This couldn't work for instances. That does mean some extra computation has to be done, but memory lookups can be slow too, and this saves some memory. Overall I didn't find a significant speed impact. - OSA rendering for solid and ztransp now is different. Instead of e.g. going 8 times over the databases times and rendering the z-buffer, it now goes over the database once and renders each polygon 8 times. That was necessary to keep instances efficient, and can also give some performance improvement without instances. - There was already instancing support in the yafray export code, now it uses Blender's render instances for export. - UV and color layer storage in the render was a bit messy before, now should be easier to understand. - convertblender.c was reorganized somewhat. Regular render, speedvector and baking now use a single function to create the database, previously there was code duplicated for it. - Some of these changes were done with future multithreading of scene and shadow buffer creation in mind, though especially for scene creation much work remains to be done to make it threadsafe, since it also involves a lot of code from blenkernel, and there is an ugly conflict with the way dupli groups work here .. though in the render code itself it's almost there.
2007-12-15 20:41:45 +00:00
obi->prev= obi->next= NULL;
BLI_addtail(&newlist, obi);
obi++;
}
else
re->totinstance--;
}
BLI_freelistN(&re->instancetable);
re->instancetable= newlist;
Giant commit! A full detailed description of this will be done later... is several days of work. Here's a summary: Render: - Full cleanup of render code, removing *all* globals and bad level calls all over blender. Render module is now not called abusive anymore - API-fied calls to rendering - Full recode of internal render pipeline. Is now rendering tiles by default, prepared for much smarter 'bucket' render later. - Each thread now can render a full part - Renders were tested with 4 threads, goes fine, apart from some lookup tables in softshadow and AO still - Rendering is prepared to do multiple layers and passes - No single 32 bits trick in render code anymore, all 100% floats now. Writing images/movies - moved writing images to blender kernel (bye bye 'schrijfplaatje'!) - made a new Movie handle system, also in kernel. This will enable much easier use of movies in Blender PreviewRender: - Using new render API, previewrender (in buttons) now uses regular render code to generate images. - new datafile 'preview.blend.c' has the preview scenes in it - previews get rendered in exact displayed size (1 pixel = 1 pixel) 3D Preview render - new; press Pkey in 3d window, for a panel that continuously renders (pkey is for games, i know... but we dont do that in orange now!) - this render works nearly identical to buttons-preview render, so it stops rendering on any event (mouse, keyboard, etc) - on moving/scaling the panel, the render code doesn't recreate all geometry - same for shifting/panning view - all other operations (now) regenerate the full render database still. - this is WIP... but big fun, especially for simple scenes! Compositor - Using same node system as now in use for shaders, you can composit images - works pretty straightforward... needs much more options/tools and integration with rendering still - is not threaded yet, nor is so smart to only recalculate changes... will be done soon! - the "Render Result" node will get all layers/passes as output sockets - The "Output" node renders to a builtin image, which you can view in the Image window. (yes, output nodes to render-result, and to files, is on the list!) The Bad News - "Unified Render" is removed. It might come back in some stage, but this system should be built from scratch. I can't really understand this code... I expect it is not much needed, especially with advanced layer/passes control - Panorama render, Field render, Motion blur, is not coded yet... (I had to recode every single feature in render, so...!) - Lens Flare is also not back... needs total revision, might become composit effect though (using zbuffer for visibility) - Part render is gone! (well, thats obvious, its default now). - The render window is only restored with limited functionality... I am going to check first the option to render to a Image window, so Blender can become a true single-window application. :) For example, the 'Spare render buffer' (jkey) doesnt work. - Render with border, now default creates a smaller image - No zbuffers are written yet... on the todo! - Scons files and MSVC will need work to get compiling again OK... thats what I can quickly recall. Now go compiling!
2006-01-23 22:05:47 +00:00
}
/* four functions to facilitate envmap rotation for raytrace */
void RE_instance_rotate_ray_start(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
copy_v3_v3(is->origstart, is->start);
mul_m4_v3(obi->imat, is->start);
}
}
void RE_instance_rotate_ray_dir(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
float end[3];
copy_v3_v3(is->origdir, is->dir);
add_v3_v3v3(end, is->origstart, is->dir);
mul_m4_v3(obi->imat, end);
sub_v3_v3v3(is->dir, end, is->start);
}
}
void RE_instance_rotate_ray(ObjectInstanceRen *obi, Isect *is)
{
RE_instance_rotate_ray_start(obi, is);
RE_instance_rotate_ray_dir(obi, is);
}
void RE_instance_rotate_ray_restore(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
copy_v3_v3(is->start, is->origstart);
copy_v3_v3(is->dir, is->origdir);
}
}
int clip_render_object(float boundbox[2][3], float bounds[4], float winmat[4][4])
{
float mat[4][4], vec[4];
int a, fl, flag = -1;
copy_m4_m4(mat, winmat);
for (a=0; a < 8; a++) {
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
vec[3]= 1.0;
mul_m4_v4(mat, vec);
fl = 0;
if (bounds) {
if (vec[0] < bounds[0] * vec[3]) fl |= 1;
else if (vec[0] > bounds[1] * vec[3]) fl |= 2;
if (vec[1] > bounds[3] * vec[3]) fl |= 4;
else if (vec[1] < bounds[2] * vec[3]) fl |= 8;
}
else {
if (vec[0] < -vec[3]) fl |= 1;
else if (vec[0] > vec[3]) fl |= 2;
if (vec[1] > vec[3]) fl |= 4;
else if (vec[1] < -vec[3]) fl |= 8;
}
if (vec[2] < -vec[3]) fl |= 16;
else if (vec[2] > vec[3]) fl |= 32;
flag &= fl;
if (flag == 0) {
return 0;
}
}
return flag;
}