This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/source/renderdatabase.c
Campbell Barton 4ca67869cc Code cleanup: remove unused includes
Opted to keep includes if they are used indirectly (even if removing is possible).
2014-05-01 04:47:51 +10:00

1496 lines
37 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): 2004-2006, Blender Foundation, full recode
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/renderdatabase.c
* \ingroup render
*/
/*
* Storage, retrieval and query of render specific data.
*
* All data from a Blender scene is converted by the renderconverter/
* into a special format that is used by the render module to make
* images out of. These functions interface to the render-specific
* database.
*
* The blo{ha/ve/vl} arrays store pointers to blocks of 256 data
* entries each.
*
* The index of an entry is >>8 (the highest 24 * bits), to find an
* offset in a 256-entry block.
*
* - If the 256-entry block entry has an entry in the
* vertnodes/vlaknodes/bloha array of the current block, the i-th entry in
* that block is allocated to this entry.
*
* - If the entry has no block allocated for it yet, memory is
* allocated.
*
* The pointer to the correct entry is returned. Memory is guaranteed
* to exist (as long as the malloc does not break). Since guarded
* allocation is used, memory _must_ be available. Otherwise, an
* exit(0) would occur.
*
*/
#include <limits.h>
#include <math.h>
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "DNA_material_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_texture_types.h"
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
#include "RE_render_ext.h" /* externtex */
#include "rayintersection.h"
#include "rayobject.h"
#include "renderpipeline.h"
#include "render_types.h"
#include "renderdatabase.h"
#include "texture.h"
#include "strand.h"
#include "zbuf.h"
/* ------------------------------------------------------------------------- */
/* More dynamic allocation of options for render vertices and faces, so we don't
* have to reserve this space inside vertices.
* Important; vertices and faces, should have been created already (to get tables
* checked) that's a reason why the calls demand VertRen/VlakRen * as arg, not
* the index */
/* NOTE! the hardcoded table size 256 is used still in code for going quickly over vertices/faces */
#define RE_STRESS_ELEMS 1
#define RE_RAD_ELEMS 4
#define RE_STRAND_ELEMS 1
#define RE_TANGENT_ELEMS 3
#define RE_WINSPEED_ELEMS 4
#define RE_MTFACE_ELEMS 1
#define RE_MCOL_ELEMS 4
#define RE_UV_ELEMS 2
#define RE_VLAK_ORIGINDEX_ELEMS 1
#define RE_VERT_ORIGINDEX_ELEMS 1
#define RE_SURFNOR_ELEMS 3
#define RE_RADFACE_ELEMS 1
#define RE_SIMPLIFY_ELEMS 2
#define RE_FACE_ELEMS 1
#define RE_NMAP_TANGENT_ELEMS 16
float *RE_vertren_get_stress(ObjectRen *obr, VertRen *ver, int verify)
{
float *stress;
int nr= ver->index>>8;
stress= obr->vertnodes[nr].stress;
if (stress==NULL) {
if (verify)
stress= obr->vertnodes[nr].stress= MEM_mallocN(256*RE_STRESS_ELEMS*sizeof(float), "stress table");
else
return NULL;
}
return stress + (ver->index & 255)*RE_STRESS_ELEMS;
}
/* this one callocs! */
float *RE_vertren_get_rad(ObjectRen *obr, VertRen *ver, int verify)
{
float *rad;
int nr= ver->index>>8;
rad= obr->vertnodes[nr].rad;
if (rad==NULL) {
if (verify)
rad= obr->vertnodes[nr].rad= MEM_callocN(256*RE_RAD_ELEMS*sizeof(float), "rad table");
else
return NULL;
}
return rad + (ver->index & 255)*RE_RAD_ELEMS;
}
float *RE_vertren_get_strand(ObjectRen *obr, VertRen *ver, int verify)
{
float *strand;
int nr= ver->index>>8;
strand= obr->vertnodes[nr].strand;
if (strand==NULL) {
if (verify)
strand= obr->vertnodes[nr].strand= MEM_mallocN(256*RE_STRAND_ELEMS*sizeof(float), "strand table");
else
return NULL;
}
return strand + (ver->index & 255)*RE_STRAND_ELEMS;
}
/* needs calloc */
float *RE_vertren_get_tangent(ObjectRen *obr, VertRen *ver, int verify)
{
float *tangent;
int nr= ver->index>>8;
tangent= obr->vertnodes[nr].tangent;
if (tangent==NULL) {
if (verify)
tangent= obr->vertnodes[nr].tangent= MEM_callocN(256*RE_TANGENT_ELEMS*sizeof(float), "tangent table");
else
return NULL;
}
return tangent + (ver->index & 255)*RE_TANGENT_ELEMS;
}
/* needs calloc! not all renderverts have them */
/* also winspeed is exception, it is stored per instance */
float *RE_vertren_get_winspeed(ObjectInstanceRen *obi, VertRen *ver, int verify)
{
float *winspeed;
int totvector;
winspeed= obi->vectors;
if (winspeed==NULL) {
if (verify) {
totvector= obi->obr->totvert + obi->obr->totstrand;
winspeed= obi->vectors= MEM_callocN(totvector*RE_WINSPEED_ELEMS*sizeof(float), "winspeed table");
}
else
return NULL;
}
return winspeed + ver->index*RE_WINSPEED_ELEMS;
}
int *RE_vertren_get_origindex(ObjectRen *obr, VertRen *ver, int verify)
{
int *origindex;
int nr= ver->index>>8;
origindex= obr->vertnodes[nr].origindex;
if (origindex==NULL) {
if (verify)
origindex= obr->vertnodes[nr].origindex= MEM_mallocN(256*RE_VERT_ORIGINDEX_ELEMS*sizeof(int), "origindex table");
else
return NULL;
}
return origindex + (ver->index & 255)*RE_VERT_ORIGINDEX_ELEMS;
}
VertRen *RE_vertren_copy(ObjectRen *obr, VertRen *ver)
{
VertRen *v1= RE_findOrAddVert(obr, obr->totvert++);
float *fp1, *fp2;
int *int1, *int2;
int index= v1->index;
*v1= *ver;
v1->index= index;
fp1= RE_vertren_get_stress(obr, ver, 0);
if (fp1) {
fp2= RE_vertren_get_stress(obr, v1, 1);
memcpy(fp2, fp1, RE_STRESS_ELEMS*sizeof(float));
}
fp1= RE_vertren_get_rad(obr, ver, 0);
if (fp1) {
fp2= RE_vertren_get_rad(obr, v1, 1);
memcpy(fp2, fp1, RE_RAD_ELEMS*sizeof(float));
}
fp1= RE_vertren_get_strand(obr, ver, 0);
if (fp1) {
fp2= RE_vertren_get_strand(obr, v1, 1);
memcpy(fp2, fp1, RE_STRAND_ELEMS*sizeof(float));
}
fp1= RE_vertren_get_tangent(obr, ver, 0);
if (fp1) {
fp2= RE_vertren_get_tangent(obr, v1, 1);
memcpy(fp2, fp1, RE_TANGENT_ELEMS*sizeof(float));
}
int1= RE_vertren_get_origindex(obr, ver, 0);
if (int1) {
int2= RE_vertren_get_origindex(obr, v1, 1);
memcpy(int2, int1, RE_VERT_ORIGINDEX_ELEMS*sizeof(int));
}
return v1;
}
VertRen *RE_findOrAddVert(ObjectRen *obr, int nr)
{
VertTableNode *temp;
VertRen *v;
int a;
if (nr<0) {
printf("error in findOrAddVert: %d\n", nr);
return NULL;
}
a= nr>>8;
if (a>=obr->vertnodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
temp= obr->vertnodes;
obr->vertnodes= MEM_mallocN(sizeof(VertTableNode)*(obr->vertnodeslen+TABLEINITSIZE), "vertnodes");
if (temp) memcpy(obr->vertnodes, temp, obr->vertnodeslen*sizeof(VertTableNode));
memset(obr->vertnodes+obr->vertnodeslen, 0, TABLEINITSIZE*sizeof(VertTableNode));
obr->vertnodeslen+=TABLEINITSIZE;
if (temp) MEM_freeN(temp);
}
v= obr->vertnodes[a].vert;
if (v==NULL) {
int i;
v= (VertRen *)MEM_callocN(256*sizeof(VertRen), "findOrAddVert");
obr->vertnodes[a].vert= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++) {
v[a].index= i;
}
}
v+= (nr & 255);
return v;
}
/* ------------------------------------------------------------------------ */
MTFace *RE_vlakren_get_tface(ObjectRen *obr, VlakRen *vlr, int n, char **name, int verify)
{
VlakTableNode *node;
int nr= vlr->index>>8, vlakindex= (vlr->index&255);
int index= (n<<8) + vlakindex;
node= &obr->vlaknodes[nr];
if (verify) {
if (n>=node->totmtface) {
MTFace *mtface= node->mtface;
int size= (n+1)*256;
node->mtface= MEM_callocN(size*sizeof(MTFace), "Vlak mtface");
if (mtface) {
size= node->totmtface*256;
memcpy(node->mtface, mtface, size*sizeof(MTFace));
MEM_freeN(mtface);
}
node->totmtface= n+1;
}
}
else {
if (n>=node->totmtface)
return NULL;
if (name) *name= obr->mtface[n];
}
return node->mtface + index;
}
MCol *RE_vlakren_get_mcol(ObjectRen *obr, VlakRen *vlr, int n, char **name, int verify)
{
VlakTableNode *node;
int nr= vlr->index>>8, vlakindex= (vlr->index&255);
int index= (n<<8) + vlakindex;
node= &obr->vlaknodes[nr];
if (verify) {
if (n>=node->totmcol) {
MCol *mcol= node->mcol;
int size= (n+1)*256;
node->mcol= MEM_callocN(size*sizeof(MCol)*RE_MCOL_ELEMS, "Vlak mcol");
if (mcol) {
size= node->totmcol*256;
memcpy(node->mcol, mcol, size*sizeof(MCol)*RE_MCOL_ELEMS);
MEM_freeN(mcol);
}
node->totmcol= n+1;
}
}
else {
if (n>=node->totmcol)
return NULL;
if (name) *name= obr->mcol[n];
}
return node->mcol + index*RE_MCOL_ELEMS;
}
int *RE_vlakren_get_origindex(ObjectRen *obr, VlakRen *vlak, int verify)
{
int *origindex;
int nr= vlak->index>>8;
origindex= obr->vlaknodes[nr].origindex;
if (origindex==NULL) {
if (verify)
origindex= obr->vlaknodes[nr].origindex= MEM_callocN(256*RE_VLAK_ORIGINDEX_ELEMS*sizeof(int), "origindex table");
else
return NULL;
}
return origindex + (vlak->index & 255)*RE_VLAK_ORIGINDEX_ELEMS;
}
float *RE_vlakren_get_surfnor(ObjectRen *obr, VlakRen *vlak, int verify)
{
float *surfnor;
int nr= vlak->index>>8;
surfnor= obr->vlaknodes[nr].surfnor;
if (surfnor==NULL) {
if (verify)
surfnor= obr->vlaknodes[nr].surfnor= MEM_callocN(256*RE_SURFNOR_ELEMS*sizeof(float), "surfnor table");
else
return NULL;
}
return surfnor + (vlak->index & 255)*RE_SURFNOR_ELEMS;
}
float *RE_vlakren_get_nmap_tangent(ObjectRen *obr, VlakRen *vlak, int verify)
{
float *tangent;
int nr= vlak->index>>8;
tangent= obr->vlaknodes[nr].tangent;
if (tangent==NULL) {
if (verify)
tangent= obr->vlaknodes[nr].tangent= MEM_callocN(256*RE_NMAP_TANGENT_ELEMS*sizeof(float), "tangent table");
else
return NULL;
}
return tangent + (vlak->index & 255)*RE_NMAP_TANGENT_ELEMS;
}
RadFace **RE_vlakren_get_radface(ObjectRen *obr, VlakRen *vlak, int verify)
{
RadFace **radface;
int nr= vlak->index>>8;
radface= obr->vlaknodes[nr].radface;
if (radface==NULL) {
if (verify)
radface = obr->vlaknodes[nr].radface= MEM_callocN(256 * RE_RADFACE_ELEMS * sizeof(void *), "radface table");
else
return NULL;
}
return radface + (vlak->index & 255)*RE_RADFACE_ELEMS;
}
VlakRen *RE_vlakren_copy(ObjectRen *obr, VlakRen *vlr)
{
VlakRen *vlr1 = RE_findOrAddVlak(obr, obr->totvlak++);
MTFace *mtface, *mtface1;
MCol *mcol, *mcol1;
float *surfnor, *surfnor1, *tangent, *tangent1;
int *origindex, *origindex1;
RadFace **radface, **radface1;
int i, index = vlr1->index;
char *name;
*vlr1= *vlr;
vlr1->index= index;
for (i=0; (mtface=RE_vlakren_get_tface(obr, vlr, i, &name, 0)) != NULL; i++) {
mtface1= RE_vlakren_get_tface(obr, vlr1, i, &name, 1);
memcpy(mtface1, mtface, sizeof(MTFace)*RE_MTFACE_ELEMS);
}
for (i=0; (mcol=RE_vlakren_get_mcol(obr, vlr, i, &name, 0)) != NULL; i++) {
mcol1= RE_vlakren_get_mcol(obr, vlr1, i, &name, 1);
memcpy(mcol1, mcol, sizeof(MCol)*RE_MCOL_ELEMS);
}
origindex= RE_vlakren_get_origindex(obr, vlr, 0);
if (origindex) {
origindex1= RE_vlakren_get_origindex(obr, vlr1, 1);
/* Just an int, but memcpy for consistency. */
memcpy(origindex1, origindex, sizeof(int)*RE_VLAK_ORIGINDEX_ELEMS);
}
surfnor= RE_vlakren_get_surfnor(obr, vlr, 0);
if (surfnor) {
surfnor1= RE_vlakren_get_surfnor(obr, vlr1, 1);
copy_v3_v3(surfnor1, surfnor);
}
tangent= RE_vlakren_get_nmap_tangent(obr, vlr, 0);
if (tangent) {
tangent1= RE_vlakren_get_nmap_tangent(obr, vlr1, 1);
memcpy(tangent1, tangent, sizeof(float)*RE_NMAP_TANGENT_ELEMS);
}
radface= RE_vlakren_get_radface(obr, vlr, 0);
if (radface) {
radface1= RE_vlakren_get_radface(obr, vlr1, 1);
*radface1= *radface;
}
return vlr1;
}
void RE_vlakren_get_normal(Render *UNUSED(re), ObjectInstanceRen *obi, VlakRen *vlr, float r_nor[3])
{
float (*nmat)[3]= obi->nmat;
if (obi->flag & R_TRANSFORMED) {
mul_v3_m3v3(r_nor, nmat, vlr->n);
normalize_v3(r_nor);
}
else {
copy_v3_v3(r_nor, vlr->n);
}
}
void RE_set_customdata_names(ObjectRen *obr, CustomData *data)
{
/* CustomData layer names are stored per object here, because the
* DerivedMesh which stores the layers is freed */
CustomDataLayer *layer;
int numtf = 0, numcol = 0, i, mtfn, mcn;
if (CustomData_has_layer(data, CD_MTFACE)) {
numtf= CustomData_number_of_layers(data, CD_MTFACE);
obr->mtface= MEM_callocN(sizeof(*obr->mtface)*numtf, "mtfacenames");
}
if (CustomData_has_layer(data, CD_MCOL)) {
numcol= CustomData_number_of_layers(data, CD_MCOL);
obr->mcol= MEM_callocN(sizeof(*obr->mcol)*numcol, "mcolnames");
}
for (i=0, mtfn=0, mcn=0; i < data->totlayer; i++) {
layer= &data->layers[i];
if (layer->type == CD_MTFACE) {
BLI_strncpy(obr->mtface[mtfn++], layer->name, sizeof(layer->name));
obr->actmtface= CLAMPIS(layer->active_rnd, 0, numtf);
obr->bakemtface= layer->active;
}
else if (layer->type == CD_MCOL) {
BLI_strncpy(obr->mcol[mcn++], layer->name, sizeof(layer->name));
obr->actmcol= CLAMPIS(layer->active_rnd, 0, numcol);
}
}
}
VlakRen *RE_findOrAddVlak(ObjectRen *obr, int nr)
{
VlakTableNode *temp;
VlakRen *v;
int a;
if (nr<0) {
printf("error in findOrAddVlak: %d\n", nr);
return obr->vlaknodes[0].vlak;
}
a= nr>>8;
if (a>=obr->vlaknodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
temp= obr->vlaknodes;
obr->vlaknodes= MEM_mallocN(sizeof(VlakTableNode)*(obr->vlaknodeslen+TABLEINITSIZE), "vlaknodes");
if (temp) memcpy(obr->vlaknodes, temp, obr->vlaknodeslen*sizeof(VlakTableNode));
memset(obr->vlaknodes+obr->vlaknodeslen, 0, TABLEINITSIZE*sizeof(VlakTableNode));
obr->vlaknodeslen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
v= obr->vlaknodes[a].vlak;
if (v==NULL) {
int i;
v= (VlakRen *)MEM_callocN(256*sizeof(VlakRen), "findOrAddVlak");
obr->vlaknodes[a].vlak= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++)
v[a].index= i;
}
v+= (nr & 255);
return v;
}
/* ------------------------------------------------------------------------ */
float *RE_strandren_get_surfnor(ObjectRen *obr, StrandRen *strand, int verify)
{
float *surfnor;
int nr= strand->index>>8;
surfnor= obr->strandnodes[nr].surfnor;
if (surfnor==NULL) {
if (verify)
surfnor= obr->strandnodes[nr].surfnor= MEM_callocN(256*RE_SURFNOR_ELEMS*sizeof(float), "surfnor strand table");
else
return NULL;
}
return surfnor + (strand->index & 255)*RE_SURFNOR_ELEMS;
}
float *RE_strandren_get_uv(ObjectRen *obr, StrandRen *strand, int n, char **name, int verify)
{
StrandTableNode *node;
int nr= strand->index>>8, strandindex= (strand->index&255);
int index= (n<<8) + strandindex;
node= &obr->strandnodes[nr];
if (verify) {
if (n>=node->totuv) {
float *uv= node->uv;
int size= (n+1)*256;
node->uv= MEM_callocN(size*sizeof(float)*RE_UV_ELEMS, "strand uv table");
if (uv) {
size= node->totuv*256;
memcpy(node->uv, uv, size*sizeof(float)*RE_UV_ELEMS);
MEM_freeN(uv);
}
node->totuv= n+1;
}
}
else {
if (n>=node->totuv)
return NULL;
if (name) *name= obr->mtface[n];
}
return node->uv + index*RE_UV_ELEMS;
}
MCol *RE_strandren_get_mcol(ObjectRen *obr, StrandRen *strand, int n, char **name, int verify)
{
StrandTableNode *node;
int nr= strand->index>>8, strandindex= (strand->index&255);
int index= (n<<8) + strandindex;
node= &obr->strandnodes[nr];
if (verify) {
if (n>=node->totmcol) {
MCol *mcol= node->mcol;
int size= (n+1)*256;
node->mcol= MEM_callocN(size*sizeof(MCol)*RE_MCOL_ELEMS, "strand mcol table");
if (mcol) {
size= node->totmcol*256;
memcpy(node->mcol, mcol, size*sizeof(MCol)*RE_MCOL_ELEMS);
MEM_freeN(mcol);
}
node->totmcol= n+1;
}
}
else {
if (n>=node->totmcol)
return NULL;
if (name) *name= obr->mcol[n];
}
return node->mcol + index*RE_MCOL_ELEMS;
}
float *RE_strandren_get_simplify(struct ObjectRen *obr, struct StrandRen *strand, int verify)
{
float *simplify;
int nr= strand->index>>8;
simplify= obr->strandnodes[nr].simplify;
if (simplify==NULL) {
if (verify)
simplify= obr->strandnodes[nr].simplify= MEM_callocN(256*RE_SIMPLIFY_ELEMS*sizeof(float), "simplify strand table");
else
return NULL;
}
return simplify + (strand->index & 255)*RE_SIMPLIFY_ELEMS;
}
int *RE_strandren_get_face(ObjectRen *obr, StrandRen *strand, int verify)
{
int *face;
int nr= strand->index>>8;
face= obr->strandnodes[nr].face;
if (face==NULL) {
if (verify)
face= obr->strandnodes[nr].face= MEM_callocN(256*RE_FACE_ELEMS*sizeof(int), "face strand table");
else
return NULL;
}
return face + (strand->index & 255)*RE_FACE_ELEMS;
}
/* winspeed is exception, it is stored per instance */
float *RE_strandren_get_winspeed(ObjectInstanceRen *obi, StrandRen *strand, int verify)
{
float *winspeed;
int totvector;
winspeed= obi->vectors;
if (winspeed==NULL) {
if (verify) {
totvector= obi->obr->totvert + obi->obr->totstrand;
winspeed= obi->vectors= MEM_callocN(totvector*RE_WINSPEED_ELEMS*sizeof(float), "winspeed strand table");
}
else
return NULL;
}
return winspeed + (obi->obr->totvert + strand->index)*RE_WINSPEED_ELEMS;
}
StrandRen *RE_findOrAddStrand(ObjectRen *obr, int nr)
{
StrandTableNode *temp;
StrandRen *v;
int a;
if (nr<0) {
printf("error in findOrAddStrand: %d\n", nr);
return obr->strandnodes[0].strand;
}
a= nr>>8;
if (a>=obr->strandnodeslen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
temp= obr->strandnodes;
obr->strandnodes= MEM_mallocN(sizeof(StrandTableNode)*(obr->strandnodeslen+TABLEINITSIZE), "strandnodes");
if (temp) memcpy(obr->strandnodes, temp, obr->strandnodeslen*sizeof(StrandTableNode));
memset(obr->strandnodes+obr->strandnodeslen, 0, TABLEINITSIZE*sizeof(StrandTableNode));
obr->strandnodeslen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
v= obr->strandnodes[a].strand;
if (v==NULL) {
int i;
v= (StrandRen *)MEM_callocN(256*sizeof(StrandRen), "findOrAddStrand");
obr->strandnodes[a].strand= v;
for (i= (nr & 0xFFFFFF00), a=0; a<256; a++, i++)
v[a].index= i;
}
v+= (nr & 255);
return v;
}
StrandBuffer *RE_addStrandBuffer(ObjectRen *obr, int totvert)
{
StrandBuffer *strandbuf;
strandbuf= MEM_callocN(sizeof(StrandBuffer), "StrandBuffer");
strandbuf->vert= MEM_callocN(sizeof(StrandVert)*totvert, "StrandVert");
strandbuf->totvert= totvert;
strandbuf->obr= obr;
obr->strandbuf= strandbuf;
return strandbuf;
}
/* ------------------------------------------------------------------------ */
ObjectRen *RE_addRenderObject(Render *re, Object *ob, Object *par, int index, int psysindex, int lay)
{
ObjectRen *obr= MEM_callocN(sizeof(ObjectRen), "object render struct");
BLI_addtail(&re->objecttable, obr);
obr->ob= ob;
obr->par= par;
obr->index= index;
obr->psysindex= psysindex;
obr->lay= lay;
return obr;
}
void free_renderdata_vertnodes(VertTableNode *vertnodes)
{
int a;
if (vertnodes==NULL) return;
for (a=0; vertnodes[a].vert; a++) {
MEM_freeN(vertnodes[a].vert);
if (vertnodes[a].rad)
MEM_freeN(vertnodes[a].rad);
if (vertnodes[a].strand)
MEM_freeN(vertnodes[a].strand);
if (vertnodes[a].tangent)
MEM_freeN(vertnodes[a].tangent);
if (vertnodes[a].stress)
MEM_freeN(vertnodes[a].stress);
if (vertnodes[a].winspeed)
MEM_freeN(vertnodes[a].winspeed);
if (vertnodes[a].origindex)
MEM_freeN(vertnodes[a].origindex);
}
MEM_freeN(vertnodes);
}
void free_renderdata_vlaknodes(VlakTableNode *vlaknodes)
{
int a;
if (vlaknodes==NULL) return;
for (a=0; vlaknodes[a].vlak; a++) {
MEM_freeN(vlaknodes[a].vlak);
if (vlaknodes[a].mtface)
MEM_freeN(vlaknodes[a].mtface);
if (vlaknodes[a].mcol)
MEM_freeN(vlaknodes[a].mcol);
if (vlaknodes[a].origindex)
MEM_freeN(vlaknodes[a].origindex);
if (vlaknodes[a].surfnor)
MEM_freeN(vlaknodes[a].surfnor);
if (vlaknodes[a].tangent)
MEM_freeN(vlaknodes[a].tangent);
if (vlaknodes[a].radface)
MEM_freeN(vlaknodes[a].radface);
}
MEM_freeN(vlaknodes);
}
static void free_renderdata_strandnodes(StrandTableNode *strandnodes)
{
int a;
if (strandnodes==NULL) return;
for (a=0; strandnodes[a].strand; a++) {
MEM_freeN(strandnodes[a].strand);
if (strandnodes[a].uv)
MEM_freeN(strandnodes[a].uv);
if (strandnodes[a].mcol)
MEM_freeN(strandnodes[a].mcol);
if (strandnodes[a].winspeed)
MEM_freeN(strandnodes[a].winspeed);
if (strandnodes[a].surfnor)
MEM_freeN(strandnodes[a].surfnor);
if (strandnodes[a].simplify)
MEM_freeN(strandnodes[a].simplify);
if (strandnodes[a].face)
MEM_freeN(strandnodes[a].face);
}
MEM_freeN(strandnodes);
}
void free_renderdata_tables(Render *re)
{
ObjectInstanceRen *obi;
ObjectRen *obr;
StrandBuffer *strandbuf;
int a=0;
for (obr=re->objecttable.first; obr; obr=obr->next) {
if (obr->vertnodes) {
free_renderdata_vertnodes(obr->vertnodes);
obr->vertnodes= NULL;
obr->vertnodeslen= 0;
}
if (obr->vlaknodes) {
free_renderdata_vlaknodes(obr->vlaknodes);
obr->vlaknodes= NULL;
obr->vlaknodeslen= 0;
obr->totvlak= 0;
}
if (obr->bloha) {
for (a=0; obr->bloha[a]; a++)
MEM_freeN(obr->bloha[a]);
MEM_freeN(obr->bloha);
obr->bloha= NULL;
obr->blohalen= 0;
}
if (obr->strandnodes) {
free_renderdata_strandnodes(obr->strandnodes);
obr->strandnodes= NULL;
obr->strandnodeslen= 0;
}
strandbuf= obr->strandbuf;
if (strandbuf) {
if (strandbuf->vert) MEM_freeN(strandbuf->vert);
if (strandbuf->bound) MEM_freeN(strandbuf->bound);
MEM_freeN(strandbuf);
}
if (obr->mtface)
MEM_freeN(obr->mtface);
if (obr->mcol)
MEM_freeN(obr->mcol);
if (obr->rayfaces) {
MEM_freeN(obr->rayfaces);
obr->rayfaces = NULL;
}
if (obr->rayprimitives) {
MEM_freeN(obr->rayprimitives);
obr->rayprimitives = NULL;
}
if (obr->raytree) {
RE_rayobject_free(obr->raytree);
obr->raytree = NULL;
}
}
if (re->objectinstance) {
for (obi=re->instancetable.first; obi; obi=obi->next) {
if (obi->vectors)
MEM_freeN(obi->vectors);
if (obi->raytree)
RE_rayobject_free(obi->raytree);
}
MEM_freeN(re->objectinstance);
re->objectinstance= NULL;
re->totinstance= 0;
re->instancetable.first= re->instancetable.last= NULL;
}
if (re->sortedhalos) {
MEM_freeN(re->sortedhalos);
re->sortedhalos= NULL;
}
BLI_freelistN(&re->customdata_names);
BLI_freelistN(&re->objecttable);
BLI_freelistN(&re->instancetable);
}
/* ------------------------------------------------------------------------ */
HaloRen *RE_findOrAddHalo(ObjectRen *obr, int nr)
{
HaloRen *h, **temp;
int a;
if (nr<0) {
printf("error in findOrAddHalo: %d\n", nr);
return NULL;
}
a= nr>>8;
if (a>=obr->blohalen-1) { /* Need to allocate more columns..., and keep last element NULL for free loop */
//printf("Allocating %i more halo groups. %i total.\n",
// TABLEINITSIZE, obr->blohalen+TABLEINITSIZE );
temp=obr->bloha;
obr->bloha = (HaloRen **)MEM_callocN(sizeof(void *) * (obr->blohalen + TABLEINITSIZE), "Bloha");
if (temp) memcpy(obr->bloha, temp, obr->blohalen*sizeof(void *));
memset(&(obr->bloha[obr->blohalen]), 0, TABLEINITSIZE * sizeof(void *));
obr->blohalen+=TABLEINITSIZE; /*Does this really need to be power of 2?*/
if (temp) MEM_freeN(temp);
}
h= obr->bloha[a];
if (h==NULL) {
h= (HaloRen *)MEM_callocN(256*sizeof(HaloRen), "findOrAdHalo");
obr->bloha[a]= h;
}
h+= (nr & 255);
return h;
}
/* ------------------------------------------------------------------------- */
HaloRen *RE_inithalo(Render *re, ObjectRen *obr, Material *ma,
const float vec[3], const float vec1[3],
const float *orco, float hasize, float vectsize, int seed)
{
HaloRen *har;
MTex *mtex;
float tin, tr, tg, tb, ta;
float xn, yn, zn, texvec[3], hoco[4], hoco1[4];
if (hasize==0.0f) return NULL;
projectverto(vec, re->winmat, hoco);
if (hoco[3]==0.0f) return NULL;
if (vec1) {
projectverto(vec1, re->winmat, hoco1);
if (hoco1[3]==0.0f) return NULL;
}
har= RE_findOrAddHalo(obr, obr->tothalo++);
copy_v3_v3(har->co, vec);
har->hasize= hasize;
/* actual projectvert is done in function project_renderdata() because of parts/border/pano */
/* we do it here for sorting of halos */
zn= hoco[3];
har->xs= 0.5f*re->winx*(hoco[0]/zn);
har->ys= 0.5f*re->winy*(hoco[1]/zn);
har->zs= 0x7FFFFF*(hoco[2]/zn);
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
/* halovect */
if (vec1) {
har->type |= HA_VECT;
xn= har->xs - 0.5f*re->winx*(hoco1[0]/hoco1[3]);
yn= har->ys - 0.5f*re->winy*(hoco1[1]/hoco1[3]);
if (xn==0.0f || (xn==0.0f && yn==0.0f)) zn= 0.0f;
else zn= atan2(yn, xn);
har->sin= sin(zn);
har->cos= cos(zn);
zn= len_v3v3(vec1, vec);
har->hasize= vectsize*zn + (1.0f-vectsize)*hasize;
sub_v3_v3v3(har->no, vec, vec1);
normalize_v3(har->no);
}
if (ma->mode & MA_HALO_XALPHA) har->type |= HA_XALPHA;
har->alfa= ma->alpha;
har->r= ma->r;
har->g= ma->g;
har->b= ma->b;
har->add= (255.0f*ma->add);
har->mat= ma;
har->hard= ma->har;
har->seed= seed % 256;
if (ma->mode & MA_STAR) har->starpoints= ma->starc;
if (ma->mode & MA_HALO_LINES) har->linec= ma->linec;
if (ma->mode & MA_HALO_RINGS) har->ringc= ma->ringc;
if (ma->mode & MA_HALO_FLARE) har->flarec= ma->flarec;
if (ma->mtex[0]) {
if (ma->mode & MA_HALOTEX) {
har->tex = 1;
}
else if (har->mat->septex & (1 << 0)) {
/* only 1 level textures */
}
else {
mtex= ma->mtex[0];
copy_v3_v3(texvec, vec);
if (mtex->texco & TEXCO_NORM) {
;
}
else if (mtex->texco & TEXCO_OBJECT) {
/* texvec[0]+= imatbase->ivec[0]; */
/* texvec[1]+= imatbase->ivec[1]; */
/* texvec[2]+= imatbase->ivec[2]; */
/* mul_m3_v3(imatbase->imat, texvec); */
}
else {
if (orco) {
copy_v3_v3(texvec, orco);
}
}
externtex(mtex, texvec, &tin, &tr, &tg, &tb, &ta, 0, re->pool);
yn= tin*mtex->colfac;
//zn= tin*mtex->alphafac;
if (mtex->mapto & MAP_COL) {
zn= 1.0f-yn;
har->r= (yn*tr+ zn*ma->r);
har->g= (yn*tg+ zn*ma->g);
har->b= (yn*tb+ zn*ma->b);
}
if (mtex->texco & TEXCO_UV) {
har->alfa= tin;
}
if (mtex->mapto & MAP_ALPHA)
har->alfa= tin;
}
}
har->pool = re->pool;
return har;
}
HaloRen *RE_inithalo_particle(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma,
const float vec[3], const float vec1[3],
const float *orco, const float *uvco, float hasize, float vectsize, int seed, const float pa_co[3])
{
HaloRen *har;
MTex *mtex;
float tin, tr, tg, tb, ta;
float xn, yn, zn, texvec[3], hoco[4], hoco1[4], in[3], tex[3], out[3];
int i, hasrgb;
if (hasize==0.0f) return NULL;
projectverto(vec, re->winmat, hoco);
if (hoco[3]==0.0f) return NULL;
if (vec1) {
projectverto(vec1, re->winmat, hoco1);
if (hoco1[3]==0.0f) return NULL;
}
har= RE_findOrAddHalo(obr, obr->tothalo++);
copy_v3_v3(har->co, vec);
har->hasize= hasize;
/* actual projectvert is done in function project_renderdata() because of parts/border/pano */
/* we do it here for sorting of halos */
zn= hoco[3];
har->xs= 0.5f*re->winx*(hoco[0]/zn);
har->ys= 0.5f*re->winy*(hoco[1]/zn);
har->zs= 0x7FFFFF*(hoco[2]/zn);
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
/* halovect */
if (vec1) {
har->type |= HA_VECT;
xn= har->xs - 0.5f*re->winx*(hoco1[0]/hoco1[3]);
yn= har->ys - 0.5f*re->winy*(hoco1[1]/hoco1[3]);
if (xn==0.0f || (xn==0.0f && yn==0.0f)) zn= 0.0;
else zn= atan2(yn, xn);
har->sin= sin(zn);
har->cos= cos(zn);
zn= len_v3v3(vec1, vec)*0.5f;
har->hasize= vectsize*zn + (1.0f-vectsize)*hasize;
sub_v3_v3v3(har->no, vec, vec1);
normalize_v3(har->no);
}
if (ma->mode & MA_HALO_XALPHA) har->type |= HA_XALPHA;
har->alfa= ma->alpha;
har->r= ma->r;
har->g= ma->g;
har->b= ma->b;
har->add= (255.0f*ma->add);
har->mat= ma;
har->hard= ma->har;
har->seed= seed % 256;
if (ma->mode & MA_STAR) har->starpoints= ma->starc;
if (ma->mode & MA_HALO_LINES) har->linec= ma->linec;
if (ma->mode & MA_HALO_RINGS) har->ringc= ma->ringc;
if (ma->mode & MA_HALO_FLARE) har->flarec= ma->flarec;
if ((ma->mode & MA_HALOTEX) && ma->mtex[0])
har->tex= 1;
for (i=0; i<MAX_MTEX; i++)
if (ma->mtex[i] && (ma->septex & (1<<i))==0) {
mtex= ma->mtex[i];
copy_v3_v3(texvec, vec);
if (mtex->texco & TEXCO_NORM) {
;
}
else if (mtex->texco & TEXCO_OBJECT) {
if (mtex->object)
mul_m4_v3(mtex->object->imat_ren, texvec);
}
else if (mtex->texco & TEXCO_GLOB) {
copy_v3_v3(texvec, vec);
}
else if (mtex->texco & TEXCO_UV && uvco) {
int uv_index=CustomData_get_named_layer_index(&dm->faceData, CD_MTFACE, mtex->uvname);
if (uv_index<0)
uv_index=CustomData_get_active_layer_index(&dm->faceData, CD_MTFACE);
uv_index-=CustomData_get_layer_index(&dm->faceData, CD_MTFACE);
texvec[0]=2.0f*uvco[2*uv_index]-1.0f;
texvec[1]=2.0f*uvco[2*uv_index+1]-1.0f;
texvec[2]=0.0f;
}
else if (mtex->texco & TEXCO_PARTICLE) {
/* particle coordinates in range [0, 1] */
texvec[0] = 2.f * pa_co[0] - 1.f;
texvec[1] = 2.f * pa_co[1] - 1.f;
texvec[2] = pa_co[2];
}
else if (orco) {
copy_v3_v3(texvec, orco);
}
hasrgb = externtex(mtex, texvec, &tin, &tr, &tg, &tb, &ta, 0, re->pool);
//yn= tin*mtex->colfac;
//zn= tin*mtex->alphafac;
if (mtex->mapto & MAP_COL) {
tex[0]=tr;
tex[1]=tg;
tex[2]=tb;
out[0]=har->r;
out[1]=har->g;
out[2]=har->b;
texture_rgb_blend(in, tex, out, tin, mtex->colfac, mtex->blendtype);
// zn= 1.0-yn;
//har->r= (yn*tr+ zn*ma->r);
//har->g= (yn*tg+ zn*ma->g);
//har->b= (yn*tb+ zn*ma->b);
har->r= in[0];
har->g= in[1];
har->b= in[2];
}
/* alpha returned, so let's use it instead of intensity */
if (hasrgb)
tin = ta;
if (mtex->mapto & MAP_ALPHA)
har->alfa = texture_value_blend(mtex->def_var, har->alfa, tin, mtex->alphafac, mtex->blendtype);
if (mtex->mapto & MAP_HAR)
har->hard = 1.0f+126.0f*texture_value_blend(mtex->def_var, ((float)har->hard)/127.0f, tin, mtex->hardfac, mtex->blendtype);
if (mtex->mapto & MAP_RAYMIRR)
har->hasize = 100.0f*texture_value_blend(mtex->def_var, har->hasize/100.0f, tin, mtex->raymirrfac, mtex->blendtype);
if (mtex->mapto & MAP_TRANSLU) {
float add = texture_value_blend(mtex->def_var, (float)har->add/255.0f, tin, mtex->translfac, mtex->blendtype);
CLAMP(add, 0.f, 1.f);
har->add = 255.0f*add;
}
/* now what on earth is this good for?? */
//if (mtex->texco & 16) {
// har->alfa= tin;
//}
}
har->pool = re->pool;
return har;
}
/* -------------------------- operations on entire database ----------------------- */
/* ugly function for halos in panorama */
static int panotestclip(Render *re, bool do_pano, float v[4])
{
/* part size (ensure we run RE_parts_clamp first) */
BLI_assert(re->partx == min_ii(re->r.tilex, re->rectx));
BLI_assert(re->party == min_ii(re->r.tiley, re->recty));
if (do_pano == false) {
return testclip(v);
}
else {
/* to be used for halos en infos */
float abs4;
short c = 0;
int xparts = (re->rectx + re->partx - 1) / re->partx;
abs4= fabsf(v[3]);
if (v[2]< -abs4) c=16; /* this used to be " if (v[2]<0) ", see clippz() */
else if (v[2]> abs4) c+= 32;
if ( v[1]>abs4) c+=4;
else if ( v[1]< -abs4) c+=8;
abs4*= xparts;
if ( v[0]>abs4) c+=2;
else if ( v[0]< -abs4) c+=1;
return c;
}
}
/**
* This adds the hcs coordinates to vertices. It iterates over all
* vertices, halos and faces. After the conversion, we clip in hcs.
*
* Elsewhere, all primites are converted to vertices.
* Called in
* - envmapping (envmap.c)
* - shadow buffering (shadbuf.c)
*/
void project_renderdata(Render *re,
void (*projectfunc)(const float *, float mat[4][4], float *),
bool do_pano, float xoffs, bool UNUSED(do_buckets))
{
ObjectRen *obr;
HaloRen *har = NULL;
float zn, vec[3], hoco[4];
int a;
if (do_pano) {
float panophi= xoffs;
re->panosi= sin(panophi);
re->panoco= cos(panophi);
}
for (obr=re->objecttable.first; obr; obr=obr->next) {
/* calculate view coordinates (and zbuffer value) */
for (a=0; a<obr->tothalo; a++) {
if ((a & 255)==0) har= obr->bloha[a>>8];
else har++;
if (do_pano) {
vec[0]= re->panoco*har->co[0] + re->panosi*har->co[2];
vec[1]= har->co[1];
vec[2]= -re->panosi*har->co[0] + re->panoco*har->co[2];
}
else {
copy_v3_v3(vec, har->co);
}
projectfunc(vec, re->winmat, hoco);
/* we clip halos less critical, but not for the Z */
hoco[0]*= 0.5f;
hoco[1]*= 0.5f;
if ( panotestclip(re, do_pano, hoco) ) {
har->miny= har->maxy= -10000; /* that way render clips it */
}
else if (hoco[3]<0.0f) {
har->miny= har->maxy= -10000; /* render clips it */
}
else { /* do the projection...*/
/* bring back hocos */
hoco[0]*= 2.0f;
hoco[1]*= 2.0f;
zn= hoco[3];
har->xs= 0.5f*re->winx*(1.0f+hoco[0]/zn); /* the 0.5 negates the previous 2...*/
har->ys= 0.5f*re->winy*(1.0f+hoco[1]/zn);
/* this should be the zbuffer coordinate */
har->zs= 0x7FFFFF*(hoco[2]/zn);
/* taking this from the face clip functions? seems ok... */
har->zBufDist = 0x7FFFFFFF*(hoco[2]/zn);
vec[0]+= har->hasize;
projectfunc(vec, re->winmat, hoco);
vec[0]-= har->hasize;
zn= hoco[3];
har->rad= fabsf(har->xs- 0.5f*re->winx*(1.0f+hoco[0]/zn));
/* this clip is not really OK, to prevent stars to become too large */
if (har->type & HA_ONLYSKY) {
if (har->rad>3.0f) har->rad= 3.0f;
}
har->radsq= har->rad*har->rad;
har->miny= har->ys - har->rad/re->ycor;
har->maxy= har->ys + har->rad/re->ycor;
/* the Zd value is still not really correct for pano */
vec[2] -= har->hasize; /* z negative, otherwise it's clipped */
projectfunc(vec, re->winmat, hoco);
zn = hoco[3];
zn = fabsf((float)har->zs - 0x7FFFFF * (hoco[2] / zn));
har->zd = CLAMPIS(zn, 0, INT_MAX);
}
}
}
}
/* ------------------------------------------------------------------------- */
ObjectInstanceRen *RE_addRenderInstance(Render *re, ObjectRen *obr, Object *ob, Object *par, int index, int psysindex, float mat[4][4], int lay)
{
ObjectInstanceRen *obi;
float mat3[3][3];
obi= MEM_callocN(sizeof(ObjectInstanceRen), "ObjectInstanceRen");
obi->obr= obr;
obi->ob= ob;
obi->par= par;
obi->index= index;
obi->psysindex= psysindex;
obi->lay= lay;
if (mat) {
copy_m4_m4(obi->mat, mat);
copy_m3_m4(mat3, mat);
invert_m3_m3(obi->nmat, mat3);
transpose_m3(obi->nmat);
obi->flag |= R_DUPLI_TRANSFORMED;
}
BLI_addtail(&re->instancetable, obi);
return obi;
}
void RE_makeRenderInstances(Render *re)
{
ObjectInstanceRen *obi, *oldobi;
ListBase newlist;
int tot;
/* convert list of object instances to an array for index based lookup */
tot= BLI_countlist(&re->instancetable);
re->objectinstance= MEM_callocN(sizeof(ObjectInstanceRen)*tot, "ObjectInstance");
re->totinstance= tot;
newlist.first= newlist.last= NULL;
obi= re->objectinstance;
for (oldobi=re->instancetable.first; oldobi; oldobi=oldobi->next) {
*obi= *oldobi;
if (obi->obr) {
obi->prev= obi->next= NULL;
BLI_addtail(&newlist, obi);
obi++;
}
else
re->totinstance--;
}
BLI_freelistN(&re->instancetable);
re->instancetable= newlist;
}
/* four functions to facilitate envmap rotation for raytrace */
void RE_instance_rotate_ray_start(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
copy_v3_v3(is->origstart, is->start);
mul_m4_v3(obi->imat, is->start);
}
}
void RE_instance_rotate_ray_dir(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
float end[3];
copy_v3_v3(is->origdir, is->dir);
add_v3_v3v3(end, is->origstart, is->dir);
mul_m4_v3(obi->imat, end);
sub_v3_v3v3(is->dir, end, is->start);
}
}
void RE_instance_rotate_ray(ObjectInstanceRen *obi, Isect *is)
{
RE_instance_rotate_ray_start(obi, is);
RE_instance_rotate_ray_dir(obi, is);
}
void RE_instance_rotate_ray_restore(ObjectInstanceRen *obi, Isect *is)
{
if (obi && (obi->flag & R_ENV_TRANSFORMED)) {
copy_v3_v3(is->start, is->origstart);
copy_v3_v3(is->dir, is->origdir);
}
}
int clip_render_object(float boundbox[2][3], float bounds[4], float winmat[4][4])
{
float mat[4][4], vec[4];
int a, fl, flag = -1;
copy_m4_m4(mat, winmat);
for (a=0; a < 8; a++) {
vec[0]= (a & 1)? boundbox[0][0]: boundbox[1][0];
vec[1]= (a & 2)? boundbox[0][1]: boundbox[1][1];
vec[2]= (a & 4)? boundbox[0][2]: boundbox[1][2];
vec[3]= 1.0;
mul_m4_v4(mat, vec);
fl = 0;
if (bounds) {
if (vec[0] < bounds[0] * vec[3]) fl |= 1;
else if (vec[0] > bounds[1] * vec[3]) fl |= 2;
if (vec[1] > bounds[3] * vec[3]) fl |= 4;
else if (vec[1] < bounds[2] * vec[3]) fl |= 8;
}
else {
if (vec[0] < -vec[3]) fl |= 1;
else if (vec[0] > vec[3]) fl |= 2;
if (vec[1] > vec[3]) fl |= 4;
else if (vec[1] < -vec[3]) fl |= 8;
}
if (vec[2] < -vec[3]) fl |= 16;
else if (vec[2] > vec[3]) fl |= 32;
flag &= fl;
if (flag == 0) {
return 0;
}
}
return flag;
}