This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/subdiv_mesh.c

1091 lines
38 KiB
C
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2018 by Blender Foundation.
* All rights reserved.
*
* Contributor(s): Sergey Sharybin.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/subdiv_mesh.c
* \ingroup bke
*/
#include "BKE_subdiv.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_alloca.h"
#include "BLI_math_vector.h"
#include "BLI_task.h"
#include "BKE_mesh.h"
#include "MEM_guardedalloc.h"
/* =============================================================================
* General helpers.
*/
/* Number of ptex faces for a given polygon. */
BLI_INLINE int num_ptex_faces_per_poly_get(const MPoly *poly)
{
return (poly->totloop == 4) ? 1 : poly->totloop;
}
BLI_INLINE int num_edges_per_ptex_face_get(const int resolution)
{
return 2 * (resolution - 1) * resolution;
}
/* Number of subdivision polygons per ptex face. */
BLI_INLINE int num_polys_per_ptex_get(const int resolution)
{
return (resolution - 1) * (resolution - 1);
}
/* Subdivision resolution per given polygon's ptex faces. */
BLI_INLINE int ptex_face_resolution_get(const MPoly *poly, int resolution)
{
return (poly->totloop == 4) ? (resolution)
: ((resolution >> 1) + 1);
}
/* =============================================================================
* Mesh subdivision context.
*/
typedef struct SubdivMeshContext {
const Mesh *coarse_mesh;
Subdiv *subdiv;
Mesh *subdiv_mesh;
const SubdivToMeshSettings *settings;
/* Cached custom data arrays for fastter access. */
int *vert_origindex;
int *edge_origindex;
int *loop_origindex;
int *poly_origindex;
/* UV layers interpolation. */
int num_uv_layers;
MLoopUV *uv_layers[MAX_MTFACE];
/* Indexed by coarse polygon index, indicates offset in subdivided mesh
* vertices, edges and polygons arrays, where first element of the poly
* begins.
*/
int *subdiv_vertex_offset;
int *subdiv_edge_offset;
int *subdiv_polygon_offset;
/* Indexed by base face index, element indicates total number of ptex faces
* created for preceding base faces.
*/
int *face_ptex_offset;
/* Counters of geometry in subdivided mesh, initialized as a part of
* offsets calculation.
*/
int num_subdiv_vertices;
int num_subdiv_edges;
int num_subdiv_loops;
int num_subdiv_polygons;
} SubdivMeshContext;
static void subdiv_mesh_ctx_cache_uv_layers(SubdivMeshContext *ctx)
{
Mesh *subdiv_mesh = ctx->subdiv_mesh;
ctx->num_uv_layers =
CustomData_number_of_layers(&subdiv_mesh->ldata, CD_MLOOPUV);
for (int layer_index = 0; layer_index < ctx->num_uv_layers; ++layer_index) {
ctx->uv_layers[layer_index] = CustomData_get_layer_n(
&subdiv_mesh->ldata, CD_MLOOPUV, layer_index);
}
}
static void subdiv_mesh_ctx_cache_custom_data_layers(SubdivMeshContext *ctx)
{
Mesh *subdiv_mesh = ctx->subdiv_mesh;
/* Pointers to original indices layers. */
ctx->vert_origindex = CustomData_get_layer(
&subdiv_mesh->vdata, CD_ORIGINDEX);
ctx->edge_origindex = CustomData_get_layer(
&subdiv_mesh->edata, CD_ORIGINDEX);
ctx->loop_origindex = CustomData_get_layer(
&subdiv_mesh->ldata, CD_ORIGINDEX);
ctx->poly_origindex = CustomData_get_layer(
&subdiv_mesh->pdata, CD_ORIGINDEX);
/* UV layers interpolation. */
subdiv_mesh_ctx_cache_uv_layers(ctx);
}
static void subdiv_mesh_ctx_init_offsets(SubdivMeshContext *ctx)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
/* Allocate memory. */
ctx->subdiv_vertex_offset = MEM_malloc_arrayN(
coarse_mesh->totpoly,
sizeof(*ctx->subdiv_vertex_offset),
"vertex_offset");
ctx->subdiv_edge_offset = MEM_malloc_arrayN(
coarse_mesh->totpoly,
sizeof(*ctx->subdiv_edge_offset),
"subdiv_edge_offset");
ctx->subdiv_polygon_offset = MEM_malloc_arrayN(
coarse_mesh->totpoly,
sizeof(*ctx->subdiv_polygon_offset),
"subdiv_polygon_offset");
ctx->face_ptex_offset = MEM_malloc_arrayN(coarse_mesh->totpoly,
sizeof(*ctx->face_ptex_offset),
"face_ptex_offset");
/* Fill in offsets. */
int vertex_offset = 0;
int edge_offset = 0;
int polygon_offset = 0;
int face_ptex_offset = 0;
for (int poly_index = 0; poly_index < coarse_mesh->totpoly; poly_index++) {
const MPoly *coarse_poly = &coarse_mpoly[poly_index];
const int ptex_face_resolution = ptex_face_resolution_get(
coarse_poly, ctx->settings->resolution);
const int ptex_face_resolution2 =
ptex_face_resolution * ptex_face_resolution;
const int num_ptex_faces_per_poly =
num_ptex_faces_per_poly_get(coarse_poly);
ctx->subdiv_vertex_offset[poly_index] = vertex_offset;
ctx->subdiv_edge_offset[poly_index] = edge_offset;
ctx->subdiv_polygon_offset[poly_index] = polygon_offset;
ctx->face_ptex_offset[poly_index] = face_ptex_offset;
vertex_offset += num_ptex_faces_per_poly * ptex_face_resolution2;
edge_offset += num_ptex_faces_per_poly *
num_edges_per_ptex_face_get(ptex_face_resolution);
polygon_offset +=
num_ptex_faces_per_poly *
num_polys_per_ptex_get(ptex_face_resolution);
face_ptex_offset += num_ptex_faces_per_poly;
}
ctx->num_subdiv_vertices = vertex_offset;
ctx->num_subdiv_edges = edge_offset;
ctx->num_subdiv_polygons = polygon_offset;
ctx->num_subdiv_loops = 4 * ctx->num_subdiv_polygons;
}
static void subdiv_mesh_ctx_init(SubdivMeshContext *ctx)
{
subdiv_mesh_ctx_init_offsets(ctx);
}
static void subdiv_mesh_ctx_init_result(SubdivMeshContext *ctx)
{
subdiv_mesh_ctx_cache_custom_data_layers(ctx);
}
static void subdiv_mesh_ctx_free(SubdivMeshContext *ctx)
{
MEM_freeN(ctx->subdiv_vertex_offset);
MEM_freeN(ctx->subdiv_edge_offset);
MEM_freeN(ctx->face_ptex_offset);
}
/* =============================================================================
* Loop custom data copy helpers.
*/
typedef struct LoopsOfPtex {
/* First loop of the ptex, starts at ptex (0, 0) and goes in u direction. */
const MLoop *first_loop;
/* Last loop of the ptex, starts at ptex (0, 0) and goes in v direction. */
const MLoop *last_loop;
/* For quad coarse faces only. */
const MLoop *second_loop;
const MLoop *third_loop;
} LoopsOfPtex;
static void loops_of_ptex_get(
const SubdivMeshContext *ctx,
LoopsOfPtex *loops_of_ptex,
const MPoly *coarse_poly,
const int ptex_face_index)
{
const MLoop *coarse_mloop = ctx->coarse_mesh->mloop;
const int first_ptex_loop_index = coarse_poly->loopstart + ptex_face_index;
/* Loop which look in the (opposite) V direction of the current
* ptex face.
*
* TOOD(sergey): Get rid of using module on every iteration.
*/
const int last_ptex_loop_index =
coarse_poly->loopstart +
(ptex_face_index + coarse_poly->totloop - 1) % coarse_poly->totloop;
loops_of_ptex->first_loop = &coarse_mloop[first_ptex_loop_index];
loops_of_ptex->last_loop = &coarse_mloop[last_ptex_loop_index];
if (coarse_poly->totloop == 4) {
loops_of_ptex->second_loop = loops_of_ptex->first_loop + 1;
loops_of_ptex->third_loop = loops_of_ptex->first_loop + 2;
}
else {
loops_of_ptex->second_loop = NULL;
loops_of_ptex->third_loop = NULL;
}
}
/* =============================================================================
* Edge custom data copy helpers.
*/
typedef struct EdgesOfPtex {
/* First edge of the ptex, starts at ptex (0, 0) and goes in u direction. */
const MEdge *first_edge;
/* Last edge of the ptex, starts at ptex (0, 0) and goes in v direction. */
const MEdge *last_edge;
/* For quad coarse faces only. */
const MEdge *second_edge;
const MEdge *third_edge;
} EdgesOfPtex;
static void edges_of_ptex_get(
const SubdivMeshContext *ctx,
EdgesOfPtex *edges_of_ptex,
const MPoly *coarse_poly,
const int ptex_face_index)
{
const MEdge *coarse_medge = ctx->coarse_mesh->medge;
LoopsOfPtex loops_of_ptex;
loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
edges_of_ptex->first_edge = &coarse_medge[loops_of_ptex.first_loop->e];
edges_of_ptex->last_edge = &coarse_medge[loops_of_ptex.last_loop->e];
if (coarse_poly->totloop == 4) {
edges_of_ptex->second_edge =
&coarse_medge[loops_of_ptex.second_loop->e];
edges_of_ptex->third_edge =
&coarse_medge[loops_of_ptex.third_loop->e];
}
else {
edges_of_ptex->second_edge = NULL;
edges_of_ptex->third_edge = NULL;
}
}
/* =============================================================================
* Vertex custom data interpolation helpers.
*/
/* TODO(sergey): Somehow de-duplicate with loops storage, without too much
* exception cases all over the code.
*/
typedef struct VerticesForInterpolation {
/* This field points to a vertex data which is to be used for interpolation.
* The idea is to avoid unnecessary allocations for regular faces, where
2018-07-19 16:06:37 +10:00
* we can simply
*/
const CustomData *vertex_data;
/* Vertices data calculated for ptex corners. There are always 4 elements
* in this custom data, aligned the following way:
*
* index 0 -> uv (0, 0)
* index 1 -> uv (0, 1)
* index 2 -> uv (1, 1)
* index 3 -> uv (1, 0)
*
* Is allocated for non-regular faces (triangles and n-gons).
*/
CustomData vertex_data_storage;
bool vertex_data_storage_allocated;
/* Infices within vertex_data to interpolate for. The indices are aligned
* with uv coordinates in a similar way as indices in loop_data_storage.
*/
int vertex_indices[4];
} VerticesForInterpolation;
static void vertex_interpolation_init(
const SubdivMeshContext *ctx,
VerticesForInterpolation *vertex_interpolation,
2018-07-19 16:06:37 +10:00
const MPoly *coarse_poly)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
if (coarse_poly->totloop == 4) {
vertex_interpolation->vertex_data = &coarse_mesh->vdata;
vertex_interpolation->vertex_indices[0] =
coarse_mloop[coarse_poly->loopstart + 0].v;
vertex_interpolation->vertex_indices[1] =
coarse_mloop[coarse_poly->loopstart + 1].v;
vertex_interpolation->vertex_indices[2] =
coarse_mloop[coarse_poly->loopstart + 2].v;
vertex_interpolation->vertex_indices[3] =
coarse_mloop[coarse_poly->loopstart + 3].v;
vertex_interpolation->vertex_data_storage_allocated = false;
}
else {
vertex_interpolation->vertex_data =
&vertex_interpolation->vertex_data_storage;
/* Allocate storage for loops corresponding to ptex corners. */
CustomData_copy(&ctx->coarse_mesh->vdata,
&vertex_interpolation->vertex_data_storage,
CD_MASK_EVERYTHING,
CD_CALLOC,
4);
/* Initialize indices. */
vertex_interpolation->vertex_indices[0] = 0;
vertex_interpolation->vertex_indices[1] = 1;
vertex_interpolation->vertex_indices[2] = 2;
vertex_interpolation->vertex_indices[3] = 3;
vertex_interpolation->vertex_data_storage_allocated = true;
/* Interpolate center of poly right away, it stays unchanged for all
* ptex faces.
*/
const float weight = 1.0f / (float)coarse_poly->totloop;
float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
for (int i = 0; i < coarse_poly->totloop; ++i) {
weights[i] = weight;
indices[i] = coarse_poly->loopstart + i;
}
CustomData_interp(&coarse_mesh->vdata,
&vertex_interpolation->vertex_data_storage,
indices,
weights, NULL,
coarse_poly->totloop,
2);
}
}
static void vertex_interpolation_from_ptex(
const SubdivMeshContext *ctx,
VerticesForInterpolation *vertex_interpolation,
const MPoly *coarse_poly,
const int ptex_face_index)
{
if (coarse_poly->totloop == 4) {
/* Nothing to do, all indices and data is already assigned. */
2018-07-19 16:06:37 +10:00
}
else {
const CustomData *vertex_data = &ctx->coarse_mesh->vdata;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
LoopsOfPtex loops_of_ptex;
loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
/* Ptex face corner corresponds to a poly loop with same index. */
CustomData_copy_data(
vertex_data,
&vertex_interpolation->vertex_data_storage,
coarse_mloop[coarse_poly->loopstart + ptex_face_index].v,
0,
1);
/* Interpolate remaining ptex face corners, which hits loops
* middle points.
*
* TODO(sergey): Re-use one of interpolation results from previous
* iteration.
*/
const float weights[2] = {0.5f, 0.5f};
const int first_indices[2] = {
coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v,
coarse_mloop[(loops_of_ptex.first_loop + 1 - coarse_mloop) %
coarse_poly->totloop].v};
const int last_indices[2] = {
coarse_mloop[loops_of_ptex.last_loop - coarse_mloop].v,
coarse_mloop[loops_of_ptex.first_loop - coarse_mloop].v};
CustomData_interp(vertex_data,
&vertex_interpolation->vertex_data_storage,
first_indices,
weights, NULL,
2,
1);
CustomData_interp(vertex_data,
&vertex_interpolation->vertex_data_storage,
last_indices,
weights, NULL,
2,
3);
}
}
static void vertex_interpolation_end(
VerticesForInterpolation *vertex_interpolation)
{
if (vertex_interpolation->vertex_data_storage_allocated) {
CustomData_free(&vertex_interpolation->vertex_data_storage, 4);
}
}
/* =============================================================================
* Loop custom data interpolation helpers.
*/
typedef struct LoopsForInterpolation {
/* This field points to a loop data which is to be used for interpolation.
* The idea is to avoid unnecessary allocations for regular faces, where
2018-07-19 16:06:37 +10:00
* we can simply
*/
const CustomData *loop_data;
/* Loops data calculated for ptex corners. There are always 4 elements
* in this custom data, aligned the following way:
*
* index 0 -> uv (0, 0)
* index 1 -> uv (0, 1)
* index 2 -> uv (1, 1)
* index 3 -> uv (1, 0)
*
* Is allocated for non-regular faces (triangles and n-gons).
*/
CustomData loop_data_storage;
bool loop_data_storage_allocated;
/* Infices within loop_data to interpolate for. The indices are aligned with
* uv coordinates in a similar way as indices in loop_data_storage.
*/
int loop_indices[4];
} LoopsForInterpolation;
static void loop_interpolation_init(
const SubdivMeshContext *ctx,
LoopsForInterpolation *loop_interpolation,
2018-07-19 16:06:37 +10:00
const MPoly *coarse_poly)
{
const Mesh *coarse_mesh = ctx->coarse_mesh;
if (coarse_poly->totloop == 4) {
loop_interpolation->loop_data = &coarse_mesh->ldata;
loop_interpolation->loop_indices[0] = coarse_poly->loopstart + 0;
loop_interpolation->loop_indices[1] = coarse_poly->loopstart + 1;
loop_interpolation->loop_indices[2] = coarse_poly->loopstart + 2;
loop_interpolation->loop_indices[3] = coarse_poly->loopstart + 3;
loop_interpolation->loop_data_storage_allocated = false;
}
else {
loop_interpolation->loop_data = &loop_interpolation->loop_data_storage;
/* Allocate storage for loops corresponding to ptex corners. */
CustomData_copy(&ctx->coarse_mesh->ldata,
&loop_interpolation->loop_data_storage,
CD_MASK_EVERYTHING,
CD_CALLOC,
4);
/* Initialize indices. */
loop_interpolation->loop_indices[0] = 0;
loop_interpolation->loop_indices[1] = 1;
loop_interpolation->loop_indices[2] = 2;
loop_interpolation->loop_indices[3] = 3;
loop_interpolation->loop_data_storage_allocated = true;
/* Interpolate center of poly right away, it stays unchanged for all
* ptex faces.
*/
const float weight = 1.0f / (float)coarse_poly->totloop;
float *weights = BLI_array_alloca(weights, coarse_poly->totloop);
int *indices = BLI_array_alloca(indices, coarse_poly->totloop);
for (int i = 0; i < coarse_poly->totloop; ++i) {
weights[i] = weight;
indices[i] = coarse_poly->loopstart + i;
}
CustomData_interp(&coarse_mesh->ldata,
&loop_interpolation->loop_data_storage,
indices,
weights, NULL,
coarse_poly->totloop,
2);
}
}
static void loop_interpolation_from_ptex(
const SubdivMeshContext *ctx,
LoopsForInterpolation *loop_interpolation,
const MPoly *coarse_poly,
const int ptex_face_index)
{
if (coarse_poly->totloop == 4) {
/* Nothing to do, all indices and data is already assigned. */
2018-07-19 16:06:37 +10:00
}
else {
const CustomData *loop_data = &ctx->coarse_mesh->ldata;
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MLoop *coarse_mloop = coarse_mesh->mloop;
LoopsOfPtex loops_of_ptex;
loops_of_ptex_get(ctx, &loops_of_ptex, coarse_poly, ptex_face_index);
/* Ptex face corner corresponds to a poly loop with same index. */
CustomData_copy_data(loop_data,
&loop_interpolation->loop_data_storage,
coarse_poly->loopstart + ptex_face_index,
0,
1);
/* Interpolate remaining ptex face corners, which hits loops
* middle points.
*
* TODO(sergey): Re-use one of interpolation results from previous
* iteration.
*/
const float weights[2] = {0.5f, 0.5f};
const int first_indices[2] = {
loops_of_ptex.first_loop - coarse_mloop,
(loops_of_ptex.first_loop + 1 - coarse_mloop) %
coarse_poly->totloop};
const int last_indices[2] = {
loops_of_ptex.last_loop - coarse_mloop,
loops_of_ptex.first_loop - coarse_mloop};
CustomData_interp(loop_data,
&loop_interpolation->loop_data_storage,
first_indices,
weights, NULL,
2,
1);
CustomData_interp(loop_data,
&loop_interpolation->loop_data_storage,
last_indices,
weights, NULL,
2,
3);
}
}
static void loop_interpolation_end(LoopsForInterpolation *loop_interpolation)
{
if (loop_interpolation->loop_data_storage_allocated) {
CustomData_free(&loop_interpolation->loop_data_storage, 4);
}
}
/* =============================================================================
* Vertex subdivision process.
*/
static void subdiv_copy_vertex_data(
const SubdivMeshContext *ctx,
MVert *subdiv_vertex,
const Mesh *coarse_mesh,
const MPoly *coarse_poly,
const VerticesForInterpolation *vertex_interpolation,
const int ptex_of_poly_index,
const float u, const float v)
{
const int subdiv_vertex_index = subdiv_vertex - ctx->subdiv_mesh->mvert;
const float weights[4] = {(1.0f - u) * (1.0f - v),
u * (1.0f - v),
u * v,
(1.0f - u) * v};
CustomData_interp(vertex_interpolation->vertex_data,
&ctx->subdiv_mesh->vdata,
vertex_interpolation->vertex_indices,
weights, NULL,
4,
subdiv_vertex_index);
if (ctx->vert_origindex != NULL) {
ctx->vert_origindex[subdiv_vertex_index] = ORIGINDEX_NONE;
if (coarse_poly->totloop == 4) {
if (u == 0.0f && v == 0.0f) {
ctx->vert_origindex[subdiv_vertex_index] =
vertex_interpolation->vertex_indices[0];
}
else if (u == 1.0f && v == 0.0f) {
ctx->vert_origindex[subdiv_vertex_index] =
vertex_interpolation->vertex_indices[1];
}
else if (u == 1.0f && v == 1.0f) {
ctx->vert_origindex[subdiv_vertex_index] =
vertex_interpolation->vertex_indices[2];
}
else if (u == 0.0f && v == 1.0f) {
ctx->vert_origindex[subdiv_vertex_index] =
vertex_interpolation->vertex_indices[3];
}
} else {
if (u == 0.0f && v == 0.0f) {
const MLoop *coarse_mloop = coarse_mesh->mloop;
ctx->vert_origindex[subdiv_vertex_index] =
coarse_mloop[coarse_poly->loopstart +
ptex_of_poly_index].v;
}
}
}
}
static void subdiv_evaluate_vertices(SubdivMeshContext *ctx,
const int poly_index)
{
Subdiv *subdiv = ctx->subdiv;
const int resolution = ctx->settings->resolution;
const int start_vertex_index = ctx->subdiv_vertex_offset[poly_index];
/* Base/coarse mesh information. */
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[poly_index];
const int num_ptex_faces_per_poly =
num_ptex_faces_per_poly_get(coarse_poly);
const int ptex_resolution =
ptex_face_resolution_get(coarse_poly, resolution);
const float inv_ptex_resolution_1 = 1.0f / (float)(ptex_resolution - 1);
/* Hi-poly subdivided mesh. */
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MVert *subdiv_vertex = subdiv_mesh->mvert;
MVert *subdiv_vert = &subdiv_vertex[start_vertex_index];
/* Actual evaluation. */
VerticesForInterpolation vertex_interpolation;
vertex_interpolation_init(ctx, &vertex_interpolation, coarse_poly);
const int ptex_face_index = ctx->face_ptex_offset[poly_index];
for (int ptex_of_poly_index = 0;
ptex_of_poly_index < num_ptex_faces_per_poly;
ptex_of_poly_index++)
{
vertex_interpolation_from_ptex(ctx,
&vertex_interpolation,
coarse_poly,
ptex_of_poly_index);
const int current_ptex_face_index =
ptex_face_index + ptex_of_poly_index;
BKE_subdiv_eval_limit_patch_resolution_point_and_short_normal(
subdiv,
current_ptex_face_index,
ptex_resolution,
subdiv_vert, offsetof(MVert, co), sizeof(MVert),
subdiv_vert, offsetof(MVert, no), sizeof(MVert));
for (int y = 0; y < ptex_resolution; y++) {
const float v = y * inv_ptex_resolution_1;
for (int x = 0; x < ptex_resolution; x++, subdiv_vert++) {
const float u = x * inv_ptex_resolution_1;
subdiv_copy_vertex_data(ctx,
subdiv_vert,
coarse_mesh,
coarse_poly,
&vertex_interpolation,
ptex_of_poly_index,
u, v);
}
}
}
vertex_interpolation_end(&vertex_interpolation);
}
/* =============================================================================
* Edge subdivision process.
*/
2018-07-19 16:06:37 +10:00
static void subdiv_copy_edge_data(
SubdivMeshContext *ctx,
MEdge *subdiv_edge,
const MEdge *coarse_edge)
{
2018-07-18 17:49:12 +02:00
const int subdiv_edge_index = subdiv_edge - ctx->subdiv_mesh->medge;
if (coarse_edge == NULL) {
subdiv_edge->crease = 0;
subdiv_edge->bweight = 0;
subdiv_edge->flag = 0;
2018-07-18 17:49:12 +02:00
if (ctx->edge_origindex != NULL) {
ctx->edge_origindex[subdiv_edge_index] = ORIGINDEX_NONE;
}
return;
}
const int coarse_edge_index = coarse_edge - ctx->coarse_mesh->medge;
CustomData_copy_data(&ctx->coarse_mesh->edata,
&ctx->subdiv_mesh->edata,
coarse_edge_index,
subdiv_edge_index,
1);
if (ctx->edge_origindex != NULL) {
ctx->edge_origindex[subdiv_edge_index] = coarse_edge_index;
}
}
static MEdge *subdiv_create_edges_row(SubdivMeshContext *ctx,
MEdge *subdiv_edge,
const MEdge *coarse_edge,
const int start_vertex_index,
const int resolution)
{
int vertex_index = start_vertex_index;
for (int edge_index = 0;
edge_index < resolution - 1;
edge_index++, subdiv_edge++)
{
subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
subdiv_edge->v1 = vertex_index;
subdiv_edge->v2 = vertex_index + 1;
vertex_index += 1;
}
return subdiv_edge;
}
static MEdge *subdiv_create_edges_column(SubdivMeshContext *ctx,
MEdge *subdiv_edge,
const MEdge *coarse_start_edge,
const MEdge *coarse_end_edge,
const int start_vertex_index,
const int resolution)
{
int vertex_index = start_vertex_index;
for (int edge_index = 0;
edge_index < resolution;
edge_index++, subdiv_edge++)
{
const MEdge *coarse_edge = NULL;
if (edge_index == 0) {
coarse_edge = coarse_start_edge;
}
else if (edge_index == resolution - 1) {
coarse_edge = coarse_end_edge;
}
subdiv_copy_edge_data(ctx, subdiv_edge, coarse_edge);
subdiv_edge->v1 = vertex_index;
subdiv_edge->v2 = vertex_index + resolution;
vertex_index += 1;
}
return subdiv_edge;
}
static void subdiv_create_edges(SubdivMeshContext *ctx, int poly_index)
{
const int start_vertex_index = ctx->subdiv_vertex_offset[poly_index];
const int start_edge_index = ctx->subdiv_edge_offset[poly_index];
/* Base/coarse mesh information. */
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[poly_index];
const int num_ptex_faces_per_poly =
num_ptex_faces_per_poly_get(coarse_poly);
const int ptex_face_resolution = ptex_face_resolution_get(
coarse_poly, ctx->settings->resolution);
const int ptex_face_resolution2 =
ptex_face_resolution * ptex_face_resolution;
/* Hi-poly subdivided mesh. */
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MEdge *subdiv_medge = subdiv_mesh->medge;
MEdge *subdiv_edge = &subdiv_medge[start_edge_index];
/* Consider a subdivision of base face at level 1:
*
* y
* ^
* | (6) ---- (7) ---- (8)
* | | | |
* | (3) ---- (4) ---- (5)
* | | | |
* | (0) ---- (1) ---- (2)
* o---------------------------> x
*
* This is illustrate which parts of geometry is created by code below.
*/
for (int ptex_of_poly_index = 0;
ptex_of_poly_index < num_ptex_faces_per_poly;
ptex_of_poly_index++)
{
const int start_ptex_face_vertex_index =
start_vertex_index + ptex_of_poly_index * ptex_face_resolution2;
EdgesOfPtex edges_of_ptex;
edges_of_ptex_get(ctx, &edges_of_ptex, coarse_poly, ptex_of_poly_index);
/* Create bottom row of edges (0-1, 1-2). */
2018-07-19 16:06:37 +10:00
subdiv_edge = subdiv_create_edges_row(
ctx,
subdiv_edge,
edges_of_ptex.first_edge,
start_ptex_face_vertex_index,
ptex_face_resolution);
/* Create remaining edges. */
for (int row = 0; row < ptex_face_resolution - 1; row++) {
const int start_row_vertex_index =
start_ptex_face_vertex_index + row * ptex_face_resolution;
/* Create vertical columns.
*
* At first iteration it will be edges (0-3. 1-4, 2-5), then it
* will be (3-6, 4-7, 5-8) and so on.
*/
subdiv_edge = subdiv_create_edges_column(
ctx,
subdiv_edge,
edges_of_ptex.last_edge,
edges_of_ptex.second_edge,
start_row_vertex_index,
ptex_face_resolution);
/* Create horizontal edge row.
*
* At first iteration it will be edges (3-4, 4-5), then it will be
* (6-7, 7-8) and so on.
*/
subdiv_edge = subdiv_create_edges_row(
ctx,
subdiv_edge,
(row == ptex_face_resolution - 2) ? edges_of_ptex.third_edge
: NULL,
start_row_vertex_index + ptex_face_resolution,
ptex_face_resolution);
}
}
}
/* =============================================================================
* Loops creation/interpolation.
*/
static void subdiv_copy_loop_data(
const SubdivMeshContext *ctx,
MLoop *subdiv_loop,
const LoopsForInterpolation *loop_interpolation,
const float u, const float v)
{
const int subdiv_loop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
const float weights[4] = {(1.0f - u) * (1.0f - v),
u * (1.0f - v),
u * v,
(1.0f - u) * v};
CustomData_interp(loop_interpolation->loop_data,
&ctx->subdiv_mesh->ldata,
loop_interpolation->loop_indices,
weights, NULL,
4,
subdiv_loop_index);
/* TODO(sergey): Set ORIGINDEX. */
}
static void subdiv_eval_uv_layer(SubdivMeshContext *ctx,
MLoop *subdiv_loop,
const int ptex_face_index,
const float u, const float v,
const float inv_resolution_1)
{
if (ctx->num_uv_layers == 0) {
return;
}
Subdiv *subdiv = ctx->subdiv;
const int mloop_index = subdiv_loop - ctx->subdiv_mesh->mloop;
const float du = inv_resolution_1;
const float dv = inv_resolution_1;
for (int layer_index = 0; layer_index < ctx->num_uv_layers; layer_index++) {
MLoopUV *subdiv_loopuv = &ctx->uv_layers[layer_index][mloop_index];
BKE_subdiv_eval_face_varying(subdiv,
ptex_face_index,
u, v,
subdiv_loopuv[0].uv);
BKE_subdiv_eval_face_varying(subdiv,
ptex_face_index,
u + du, v,
subdiv_loopuv[1].uv);
BKE_subdiv_eval_face_varying(subdiv,
ptex_face_index,
u + du, v + dv,
subdiv_loopuv[2].uv);
BKE_subdiv_eval_face_varying(subdiv,
ptex_face_index,
u, v + dv,
subdiv_loopuv[3].uv);
/* TODO(sergey): Currently evaluator only has single UV layer, so can
* not evaluate more than that. Need to be solved.
*/
break;
}
}
static void subdiv_create_loops(SubdivMeshContext *ctx, int poly_index)
{
const int resolution = ctx->settings->resolution;
const int ptex_face_index = ctx->face_ptex_offset[poly_index];
const int start_vertex_index = ctx->subdiv_vertex_offset[poly_index];
const int start_edge_index = ctx->subdiv_edge_offset[poly_index];
const int start_poly_index = ctx->subdiv_polygon_offset[poly_index];
/* Base/coarse mesh information. */
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[poly_index];
const int num_ptex_faces_per_poly =
num_ptex_faces_per_poly_get(coarse_poly);
const int ptex_resolution =
ptex_face_resolution_get(coarse_poly, resolution);
const int ptex_resolution2 = ptex_resolution * ptex_resolution;
const float inv_ptex_resolution_1 = 1.0f / (float)(ptex_resolution - 1);
const int num_edges_per_ptex = num_edges_per_ptex_face_get(ptex_resolution);
const int start_loop_index = 4 * start_poly_index;
const float du = inv_ptex_resolution_1;
const float dv = inv_ptex_resolution_1;
/* Hi-poly subdivided mesh. */
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MLoop *subdiv_loopoop = subdiv_mesh->mloop;
MLoop *subdiv_loop = &subdiv_loopoop[start_loop_index];
LoopsForInterpolation loop_interpolation;
loop_interpolation_init(ctx, &loop_interpolation, coarse_poly);
for (int ptex_of_poly_index = 0;
ptex_of_poly_index < num_ptex_faces_per_poly;
ptex_of_poly_index++)
{
loop_interpolation_from_ptex(ctx,
&loop_interpolation,
coarse_poly,
ptex_of_poly_index);
const int current_ptex_face_index =
ptex_face_index + ptex_of_poly_index;
for (int y = 0; y < ptex_resolution - 1; y++) {
const float v = y * inv_ptex_resolution_1;
for (int x = 0; x < ptex_resolution - 1; x++, subdiv_loop += 4) {
const float u = x * inv_ptex_resolution_1;
/* Vertex indicies ordered counter-clockwise. */
const int v0 = start_vertex_index +
(ptex_of_poly_index * ptex_resolution2) +
(y * ptex_resolution + x);
const int v1 = v0 + 1;
const int v2 = v0 + ptex_resolution + 1;
const int v3 = v0 + ptex_resolution;
/* Edge indicies ordered counter-clockwise. */
const int e0 = start_edge_index +
(ptex_of_poly_index * num_edges_per_ptex) +
(y * (2 * ptex_resolution - 1) + x);
const int e1 = e0 + ptex_resolution;
const int e2 = e0 + (2 * ptex_resolution - 1);
const int e3 = e0 + ptex_resolution - 1;
/* Initialize 4 loops of corresponding hi-poly poly. */
/* TODO(sergey): For ptex boundaries we should use loops from
* coarse mesh.
*/
subdiv_copy_loop_data(ctx,
&subdiv_loop[0],
&loop_interpolation,
u, v);
subdiv_loop[0].v = v0;
subdiv_loop[0].e = e0;
subdiv_copy_loop_data(ctx,
&subdiv_loop[1],
&loop_interpolation,
u + du, v);
subdiv_loop[1].v = v1;
subdiv_loop[1].e = e1;
subdiv_copy_loop_data(ctx,
&subdiv_loop[2],
&loop_interpolation,
u + du, v + dv);
subdiv_loop[2].v = v2;
subdiv_loop[2].e = e2;
subdiv_copy_loop_data(ctx,
&subdiv_loop[3],
&loop_interpolation,
u, v + dv);
subdiv_loop[3].v = v3;
subdiv_loop[3].e = e3;
/* Interpolate UV layers using OpenSubdiv. */
subdiv_eval_uv_layer(ctx,
subdiv_loop,
current_ptex_face_index,
u, v,
inv_ptex_resolution_1);
}
}
}
loop_interpolation_end(&loop_interpolation);
}
/* =============================================================================
* Polygons subdivision process.
*/
static void subdiv_copy_poly_data(const SubdivMeshContext *ctx,
MPoly *subdiv_poly,
const MPoly *coarse_poly)
{
const int coarse_poly_index = coarse_poly - ctx->coarse_mesh->mpoly;
const int subdiv_poly_index = subdiv_poly - ctx->subdiv_mesh->mpoly;
CustomData_copy_data(&ctx->coarse_mesh->pdata,
&ctx->subdiv_mesh->pdata,
coarse_poly_index,
subdiv_poly_index,
1);
if (ctx->poly_origindex != NULL) {
ctx->poly_origindex[subdiv_poly_index] = coarse_poly_index;
}
}
static void subdiv_create_polys(SubdivMeshContext *ctx, int poly_index)
{
const int resolution = ctx->settings->resolution;
const int start_poly_index = ctx->subdiv_polygon_offset[poly_index];
/* Base/coarse mesh information. */
const Mesh *coarse_mesh = ctx->coarse_mesh;
const MPoly *coarse_mpoly = coarse_mesh->mpoly;
const MPoly *coarse_poly = &coarse_mpoly[poly_index];
const int num_ptex_faces_per_poly =
num_ptex_faces_per_poly_get(coarse_poly);
const int ptex_resolution =
ptex_face_resolution_get(coarse_poly, resolution);
const int num_polys_per_ptex = num_polys_per_ptex_get(ptex_resolution);
const int num_loops_per_ptex = 4 * num_polys_per_ptex;
const int start_loop_index = 4 * start_poly_index;
/* Hi-poly subdivided mesh. */
Mesh *subdiv_mesh = ctx->subdiv_mesh;
MPoly *subdiv_mpoly = subdiv_mesh->mpoly;
MPoly *subdiv_mp = &subdiv_mpoly[start_poly_index];
for (int ptex_of_poly_index = 0;
ptex_of_poly_index < num_ptex_faces_per_poly;
ptex_of_poly_index++)
{
for (int subdiv_poly_index = 0;
subdiv_poly_index < num_polys_per_ptex;
subdiv_poly_index++, subdiv_mp++)
{
subdiv_copy_poly_data(ctx, subdiv_mp, coarse_poly);
subdiv_mp->loopstart = start_loop_index +
(ptex_of_poly_index * num_loops_per_ptex) +
(subdiv_poly_index * 4);
subdiv_mp->totloop = 4;
}
}
}
/* =============================================================================
* Subdivision process entry points.
*/
static void subdiv_eval_task(
void *__restrict userdata,
const int poly_index,
const ParallelRangeTLS *__restrict UNUSED(tls))
{
SubdivMeshContext *data = userdata;
/* Evaluate hi-poly vertex coordinates and normals. */
subdiv_evaluate_vertices(data, poly_index);
/* Create mesh geometry for the given base poly index. */
subdiv_create_edges(data, poly_index);
subdiv_create_loops(data, poly_index);
subdiv_create_polys(data, poly_index);
}
Mesh *BKE_subdiv_to_mesh(
Subdiv *subdiv,
const SubdivToMeshSettings *settings,
const Mesh *coarse_mesh)
{
BKE_subdiv_stats_begin(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
/* Make sure evaluator is up to date with possible new topology, and that
* is is refined for the new positions of coarse vertices.
*/
BKE_subdiv_eval_update_from_mesh(subdiv, coarse_mesh);
SubdivMeshContext ctx = {0};
ctx.coarse_mesh = coarse_mesh;
ctx.subdiv = subdiv;
ctx.settings = settings;
subdiv_mesh_ctx_init(&ctx);
Mesh *result = BKE_mesh_new_nomain_from_template(
coarse_mesh,
ctx.num_subdiv_vertices,
ctx.num_subdiv_edges,
0,
ctx.num_subdiv_loops,
ctx.num_subdiv_polygons);
ctx.subdiv_mesh = result;
subdiv_mesh_ctx_init_result(&ctx);
/* Multi-threaded evaluation. */
ParallelRangeSettings parallel_range_settings;
BLI_parallel_range_settings_defaults(&parallel_range_settings);
BLI_task_parallel_range(0, coarse_mesh->totpoly,
&ctx,
subdiv_eval_task,
&parallel_range_settings);
subdiv_mesh_ctx_free(&ctx);
// BKE_mesh_validate(result, true, true);
BKE_subdiv_stats_end(&subdiv->stats, SUBDIV_STATS_SUBDIV_TO_MESH);
return result;
}