disney diffuse und specular implemented

This commit is contained in:
2016-04-29 22:56:49 +02:00
parent 6baa7a7eb7
commit 00a1378b98
10 changed files with 846 additions and 116 deletions

View File

@@ -89,6 +89,7 @@ set(SRC_CLOSURE_HEADERS
closure/emissive.h
closure/volume.h
closure/bsdf_disney_diffuse.h
closure/bsdf_disney_specular.h
)
set(SRC_SVM_HEADERS

View File

@@ -27,6 +27,7 @@
#include "../closure/bsdf_toon.h"
#include "../closure/bsdf_hair.h"
#include "../closure/bsdf_disney_diffuse.h"
#include "../closure/bsdf_disney_specular.h"
#ifdef __SUBSURFACE__
# include "../closure/bssrdf.h"
#endif

View File

@@ -127,8 +127,8 @@ struct DisneyDiffuseBRDFParams {
m_ctint = m_cdlum > 0.0f ? m_cdlin / m_cdlum : make_float3(1.0f, 1.0f, 1.0f); // normalize lum. to isolate hue+sat
m_csheen = diff_mix(make_float3(1.0f, 1.0f, 1.0f), m_ctint, m_sheen_tint);
m_gamma = clamp(m_gamma, 0.0f, 5.0f);
m_exposure = clamp(m_exposure, -6.0f, 6.0f);
//m_gamma = clamp(m_gamma, 0.0f, 5.0f);
//m_exposure = clamp(m_exposure, -6.0f, 6.0f);
m_withNdotL_b = (m_withNdotL > 0.5f);
}
};
@@ -138,7 +138,7 @@ typedef struct DisneyDiffuseBRDFParams DisneyDiffuseBRDFParams;
/* brdf */
ccl_device float3 calculate_disney_diffuse_brdf(const ShaderClosure *sc,
const DisneyDiffuseBRDFParams *params, float3 N, float3 V, float3 L,
float3 H, float *pdf)
float3 H, float *pdf, bool withNdotL = true)
{
float NdotL = dot(N, L);
float NdotV = dot(N, V);
@@ -166,16 +166,47 @@ ccl_device float3 calculate_disney_diffuse_brdf(const ShaderClosure *sc,
}
float3 value = M_1_PI_F * Fd * params->m_cdlin;
*pdf = NdotL * M_1_PI_F * params->m_cdlum;
//if (params->m_gamma > 0.5f)
*pdf = M_1_PI_F;
/*if (params->m_exposure > 0.95f)
*pdf *= params->m_cdlum;
else if (params->m_exposure > 0.85f)
*pdf *= params->m_cdlum * NdotL;
else if (params->m_exposure > 0.75f)
*pdf *= params->m_cdlum * 0.5f;
else if (params->m_exposure > 0.65f)
*pdf *= params->m_cdlum * NdotL * 0.5f;
else if (params->m_exposure > 0.55f)
*pdf *= NdotL;
else if (params->m_exposure > 0.45f)
*pdf *= NdotL * 0.5f;
else if (params->m_exposure > 0.35f)*/
*pdf *= 0.5f;
// sheen component
if (params->m_sheen != 0.0f) {
float FH = diff_SchlickFresnel(LdotH);
value += FH * params->m_sheen * params->m_csheen;
*pdf += (1.0f / M_2PI_F) * params->m_sheen;
//*pdf += 0.5f * M_1_PI_F * params->m_sheen;
}
if (withNdotL)
value *= NdotL;
// brightness
//value *= params->m_brightness;
// exposure
//value *= pow(2.0f, params->m_exposure);
// gamma
/*value[0] = pow(value[0], 1.0f / params->m_gamma);
value[1] = pow(value[1], 1.0f / params->m_gamma);
value[2] = pow(value[2], 1.0f / params->m_gamma);*/
return value;
}
@@ -197,19 +228,6 @@ ccl_device float3 bsdf_disney_diffuse_eval_reflect(const ShaderClosure *sc,
if (dot(sc->N, omega_in) > 0.0f) {
float3 value = calculate_disney_diffuse_brdf(sc, params, N, V, L, H, pdf);
value *= dot(N, L);
// brightness
value *= params->m_brightness;
// exposure
value *= pow(2.0f, params->m_exposure);
// gamma
value[0] = pow(value[0], 1.0f / params->m_gamma);
value[1] = pow(value[1], 1.0f / params->m_gamma);
value[2] = pow(value[2], 1.0f / params->m_gamma);
return value;
}
else {
@@ -230,30 +248,18 @@ ccl_device int bsdf_disney_diffuse_sample(const ShaderClosure *sc, const DisneyD
{
float3 N = normalize(sc->N);
sample_uniform_hemisphere(N, randu, randv, omega_in, pdf);
/*if (params->m_brightness > 0.5f)
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
else*/
sample_uniform_hemisphere(N, randu, randv, omega_in, pdf);
if (dot(Ng, *omega_in) > 0) {
float3 V = I; // outgoing
float3 L = *omega_in; // incoming
float3 H = normalize(L + V);
float3 value = calculate_disney_diffuse_brdf(sc, params, N, V, L, H, pdf);
if (params->m_withNdotL_b)
value *= dot(N, L);
// brightness
value *= params->m_brightness;
// exposure
value *= pow(2.0f, params->m_exposure);
// gamma
value[0] = pow(value[0], 1.0f / params->m_gamma);
value[1] = pow(value[1], 1.0f / params->m_gamma);
value[2] = pow(value[2], 1.0f / params->m_gamma);
*eval = make_float3(value[0], value[1], value[2]);
float pon;
*eval = calculate_disney_diffuse_brdf(sc, params, N, V, L, H, pdf, true);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the diffuse bounce
@@ -264,86 +270,7 @@ ccl_device int bsdf_disney_diffuse_sample(const ShaderClosure *sc, const DisneyD
else {
*pdf = 0;
}
/*// we are viewing the surface from the right side - send a ray out with cosine
// distribution over the hemisphere
sample_cos_hemisphere(-N, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) < 0) {
float3 H = normalize(*omega_in - I);
*eval = calculate_disney_diffuse_brdf(sc, params, -N, -I, *omega_in, H, pdf);
// multiply with NdotL
//if (params->m_withNdotL_b)
// *eval *= dot(N, L);
// brightness
*eval *= params->m_brightness;
// exposure
*eval *= pow(2.0f, params->m_exposure);
// gamma
(*eval)[0] = pow((*eval)[0], 1.0f / params->m_gamma);
(*eval)[1] = pow((*eval)[1], 1.0f / params->m_gamma);
(*eval)[2] = pow((*eval)[2], 1.0f / params->m_gamma);
//*eval = make_float3(*pdf, *pdf, *pdf);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the diffuse bounce
*domega_in_dx = -((2 * dot(N, dIdx)) * N - dIdx);
*domega_in_dy = -((2 * dot(N, dIdy)) * N - dIdy);
#endif
}
else {
*pdf = 0;
}*/
return LABEL_DIFFUSE;
/*float3 N = normalize(sc->N);
float3 T = normalize(sc->T);
float3 X, Y;
float cos_theta, phi, theta, sin_phi, cos_phi;
make_orthonormals_tangent(N, T, &X, &Y);
phi = 2.0f * M_PI_F * randu;
theta = 2.0f * M_PI_F * randv;
cos_theta = cosf(theta);
sin_phi = sinf(phi);
cos_phi = cosf(phi);
float sin_theta = sqrtf(fmaxf(0.0f, 1.0f - cos_theta * cos_theta));
float3 H = normalize(sin_theta * cos_phi * X + sin_theta * sin_phi * Y + cos_theta * N);
*omega_in = 2.0f * dot(I, H) * H - I;
float3 V = I; // outgoing
float3 L = *omega_in; // incoming
*eval = calculate_disney_diffuse_brdf(sc, params, N, V, L, H, pdf);
// multiply with NdotL
//if (params->m_withNdotL_b)
// *eval *= dot(N, L);
// brightness
*eval *= params->m_brightness;
// exposure
*eval *= pow(2.0f, params->m_exposure);
// gamma
(*eval)[0] = pow((*eval)[0], 1.0f / params->m_gamma);
(*eval)[1] = pow((*eval)[1], 1.0f / params->m_gamma);
(*eval)[2] = pow((*eval)[2], 1.0f / params->m_gamma);
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = 2 * dot(N, dIdx) * N - dIdx;
*domega_in_dy = 2 * dot(N, dIdy) * N - dIdy;
#endif
return LABEL_REFLECT|LABEL_DIFFUSE;*/
return LABEL_REFLECT|LABEL_DIFFUSE;
}
CCL_NAMESPACE_END

View File

@@ -0,0 +1,679 @@
/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __BSDF_DISNEY_SPECULAR_H__
#define __BSDF_DISNEY_SPECULAR_H__
#include <cmath>
CCL_NAMESPACE_BEGIN
/* DISNEY SPECULAR */
ccl_device float spec_sqr(float a) {
return a * a;
}
ccl_device float3 spec_mon2lin(float3 x, float gamma) {
return make_float3(pow(x[0], gamma), pow(x[1], gamma), pow(x[2], gamma));
}
ccl_device float spec_GTR1(float NdotH, float a) {
if (a >= 1.0f) return 1.0f / M_PI_F;
float a2 = a*a;
float t = 1.0f + (a2 - 1.0f) * NdotH * NdotH;
return (a2 - 1.0f) / (M_PI_F * log(a2) * t);
}
ccl_device float spec_GTR2(float NdotH, float a) {
float a2 = a * a;
float t = 1.0f + (a2 - 1.0f) * NdotH * NdotH;
return a2 / (M_PI_F * t * t);
}
ccl_device float spec_GTR2_aniso(
float NdotH,
float HdotX,
float HdotY,
float ax,
float ay)
{
return 1.0f / (M_PI_F * ax * ay * spec_sqr(spec_sqr(HdotX / ax) + spec_sqr(HdotY / ay)
+ NdotH * NdotH));
}
ccl_device float spec_smithG_GGX(float Ndotv, float alphaG) {
float a = alphaG * alphaG;
float b = Ndotv * Ndotv;
return 1.0f / (Ndotv + sqrtf(a + b - a * b));
}
ccl_device float spec_SchlickFresnel(float u) {
float m = clamp(1.0f - u, 0.0f, 1.0f);
float m2 = m * m;
return m2 * m2 * m; // pow(m, 5)
}
ccl_device float3 spec_transform_to_local(const float3& v, const float3& n,
const float3& x, const float3& y)
{
return make_float3(dot(v, x), dot(v, n), dot(v, y));
}
ccl_device float3 spec_mix(float3 x, float3 y, float a) {
return x * (1.0f - a) + y * a;
}
ccl_device float spec_mix(float x, float y, float a) {
return x * (1.0f - a) + y * a;
}
ccl_device float spec_max(float a, float b) {
if (a > b) return a;
else return b;
}
/* structures */
struct DisneySpecularBRDFParams {
// brdf parameters
float3 m_base_color;
float m_metallic;
float m_specular;
float m_specular_tint;
float m_roughness;
float m_anisotropic;
// color correction
float m_withNdotL;
float m_brightness;
float m_gamma;
float m_exposure;
float m_mon2lingamma;
// precomputed values
float3 m_cdlin, m_ctint, m_cspec0;
float m_cdlum;
float m_ax, m_ay;
float m_roughg;
bool m_withNdotL_b;
void precompute_values() {
m_cdlin = spec_mon2lin(m_base_color, m_mon2lingamma); //make_float3(1.0f, 0.795f, 0.0f));
m_cdlum = 0.3f * m_cdlin[0] + 0.6f * m_cdlin[1] + 0.1f * m_cdlin[2]; // luminance approx.
m_ctint = m_cdlum > 0.0f ? m_cdlin / m_cdlum : make_float3(1.0f, 1.0f, 1.0f); // normalize lum. to isolate hue+sat
m_cspec0 = spec_mix(m_specular * 0.08f * spec_mix(make_float3(1.0f, 1.0f, 1.0f),
m_ctint, m_specular_tint), m_cdlin, m_metallic);
float aspect = sqrt(1.0f - m_anisotropic * 0.9f);
m_ax = spec_max(0.001f, spec_sqr(m_roughness) / aspect);
m_ay = spec_max(0.001f, spec_sqr(m_roughness) * aspect);
m_roughg = spec_sqr(m_roughness * 0.5f + 0.5f);
//m_gamma = clamp(m_gamma, 0.0f, 5.0f);
//m_exposure = clamp(m_exposure, -6.0f, 6.0f);
m_withNdotL_b = (m_withNdotL != 0.0f);
}
};
typedef struct DisneySpecularBRDFParams DisneySpecularBRDFParams;
/*brdf*/
ccl_device float3 calculate_disney_specular_brdf(const ShaderClosure *sc,
const DisneySpecularBRDFParams *params, float3 N, float3 X, float3 Y,
float3 V, float3 L, float3 H, float *pdf, bool withNdotL = false)
{
float NdotL = dot(N, L);
float NdotV = dot(N, V);
if (NdotL < 0.0f || NdotV < 0.0f) {
*pdf = 0.0f;
return make_float3(0.0f, 0.0f, 0.0f);
}
float NdotH = dot(N, H);
float LdotH = dot(L, H);
float FH = spec_SchlickFresnel(LdotH);
float Ds;
if (params->m_anisotropic > 0.0f)
Ds = spec_GTR2_aniso(NdotH, dot(H, X), dot(H, Y), params->m_ax, params->m_ay);
else
Ds = spec_GTR2(NdotH, params->m_ax);
float3 Fs = spec_mix(params->m_cspec0, make_float3(1.0f, 1.0f, 1.0f), FH);
float Go = spec_smithG_GGX(NdotV, params->m_roughg);
float Gi = spec_smithG_GGX(NdotL, params->m_roughg);
float Gs = Go * Gi;
float common = Go * Ds;
if (params->m_exposure > 0.5f)
common *= std::fabs(dot(V, H)) / spec_max(1e-6, NdotV);
else
common *= 0.25f / spec_max(1e-6, NdotV);
*pdf = common;
/*if (params->m_withNdotL > 0.75f)
*pdf = spec_mix(*pdf, params->m_exposure, spec_SchlickFresnel(NdotV));
else if (params->m_withNdotL > 0.5f)
*pdf = spec_mix(*pdf, params->m_exposure, spec_sqr(params->m_roughness));
else if (params->m_withNdotL > 0.25f)
*pdf = spec_mix(spec_mix(*pdf, params->m_exposure, spec_sqr(params->m_roughness)), params->m_exposure, spec_SchlickFresnel(NdotV));*/
float3 value = Gs * Ds * Fs;
if (withNdotL)
value *= NdotL;
// brightness
//value *= params->m_brightness;
// exposure
//value *= pow(2.f, params->m_exposure);
// gamma
/*value[0] = pow(value[0], 1.f / params->m_gamma);
value[1] = pow(value[1], 1.f / params->m_gamma);
value[2] = pow(value[2], 1.f / params->m_gamma);*/
return value;
}
ccl_device_inline void spec_microfacet_ggx_sample_slopes(
const float cos_theta_i, const float sin_theta_i,
float randu, float randv, float *slope_x, float *slope_y,
float *G1i)
{
/* special case (normal incidence) */
if(cos_theta_i >= 0.99999f) {
const float r = sqrtf(randu/(1.0f - randu));
const float phi = M_2PI_F * randv;
*slope_x = r * cosf(phi);
*slope_y = r * sinf(phi);
*G1i = 1.0f;
return;
}
/* precomputations */
const float tan_theta_i = sin_theta_i/cos_theta_i;
const float G1_inv = 0.5f * (1.0f + safe_sqrtf(1.0f + tan_theta_i*tan_theta_i));
*G1i = 1.0f/G1_inv;
/* sample slope_x */
const float A = 2.0f*randu*G1_inv - 1.0f;
const float AA = A*A;
const float tmp = 1.0f/(AA - 1.0f);
const float B = tan_theta_i;
const float BB = B*B;
const float D = safe_sqrtf(BB*(tmp*tmp) - (AA - BB)*tmp);
const float slope_x_1 = B*tmp - D;
const float slope_x_2 = B*tmp + D;
*slope_x = (A < 0.0f || slope_x_2*tan_theta_i > 1.0f)? slope_x_1: slope_x_2;
/* sample slope_y */
float S;
if(randv > 0.5f) {
S = 1.0f;
randv = 2.0f*(randv - 0.5f);
}
else {
S = -1.0f;
randv = 2.0f*(0.5f - randv);
}
const float z = (randv*(randv*(randv*0.27385f - 0.73369f) + 0.46341f)) / (randv*(randv*(randv*0.093073f + 0.309420f) - 1.000000f) + 0.597999f);
*slope_y = S * z * safe_sqrtf(1.0f + (*slope_x)*(*slope_x));
}
ccl_device_inline float3 spec_microfacet_sample_stretched(
const float3 omega_i, const float alpha_x, const float alpha_y,
const float randu, const float randv,
bool beckmann, float *G1i)
{
/* 1. stretch omega_i */
float3 omega_i_ = make_float3(alpha_x * omega_i.x, alpha_y * omega_i.y, omega_i.z);
omega_i_ = normalize(omega_i_);
/* get polar coordinates of omega_i_ */
float costheta_ = 1.0f;
float sintheta_ = 0.0f;
float cosphi_ = 1.0f;
float sinphi_ = 0.0f;
if(omega_i_.z < 0.99999f) {
costheta_ = omega_i_.z;
sintheta_ = safe_sqrtf(1.0f - costheta_*costheta_);
float invlen = 1.0f/sintheta_;
cosphi_ = omega_i_.x * invlen;
sinphi_ = omega_i_.y * invlen;
}
/* 2. sample P22_{omega_i}(x_slope, y_slope, 1, 1) */
float slope_x, slope_y;
spec_microfacet_ggx_sample_slopes(costheta_, sintheta_,
randu, randv, &slope_x, &slope_y, G1i);
/* 3. rotate */
float tmp = cosphi_*slope_x - sinphi_*slope_y;
slope_y = sinphi_*slope_x + cosphi_*slope_y;
slope_x = tmp;
/* 4. unstretch */
slope_x = alpha_x * slope_x;
slope_y = alpha_y * slope_y;
/* 5. compute normal */
return normalize(make_float3(-slope_x, -slope_y, 1.0f));
}
ccl_device int bsdf_disney_specular_setup(ShaderClosure *sc)
{
sc->type = CLOSURE_BSDF_DISNEY_SPECULAR_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device float3 bsdf_disney_specular_eval_reflect(const ShaderClosure *sc,
const DisneySpecularBRDFParams *params, const float3 I,
const float3 omega_in, float *pdf)
{
/*float3 N = normalize(sc->N);
float3 V = normalize(I); // outgoing
float3 L = normalize(omega_in); // incoming
float3 H = normalize(L + V);
float3 T = normalize(sc->T);
float3 X, Y;
if (params->m_anisotropic > 0.0f) {
make_orthonormals_tangent(N, T, &X, &Y);
}
else {
make_orthonormals(N, &X, &Y);
}
float3 value = calculate_disney_specular_brdf(sc, params, N, X, Y, V, L, H, pdf, params->m_withNdotL_b);
return value;*/
float alpha_x = params->m_ax;
float alpha_y = params->m_ay;
float3 N = sc->N;
if (fmaxf(alpha_x, alpha_y) <= 1e-4f)
return make_float3(0.0f, 0.0f, 0.0f);
float cosNO = dot(N, I);
float cosNI = dot(N, omega_in);
if (cosNI > 0 && cosNO > 0) {
/* get half vector */
float3 m = normalize(omega_in + I);
float alpha2 = alpha_x * alpha_y;
float D, G1o, G1i;
if (alpha_x == alpha_y) {
/* isotropic
* eq. 20: (F*G*D)/(4*in*on)
* eq. 33: first we calculate D(m) */
//if (params->m_brightness > 0.5f) {
float cosThetaM = dot(N, m);
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = (1 - cosThetaM2) / cosThetaM2;
D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/*}
else {
D = spec_GTR2(dot(N, m), params->m_ax);
}*/
/* eq. 34: now calculate G1(i,m) and G1(o,m) */
//if (params->m_exposure > 0.5f) {
G1o = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNO * cosNO) / (cosNO * cosNO)));
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
/*}
else {
G1o = spec_smithG_GGX(cosNO, params->m_roughg);
G1i = spec_smithG_GGX(cosNI, params->m_roughg);
}*/
}
else {
/* anisotropic */
float3 X, Y, Z = N;
make_orthonormals_tangent(Z, sc->T, &X, &Y);
// distribution
//if (params->m_brightness > 0.5f) {
float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
/*}
else {
D = spec_GTR2_aniso(dot(N, m), dot(X, m), dot(Y, m), params->m_ax, params->m_ay);
}*/
/* G1(i,m) and G1(o,m) */
//if (params->m_exposure > 0.5f) {
float tanThetaO2 = (1 - cosNO * cosNO) / (cosNO * cosNO);
float cosPhiO = dot(I, X);
float sinPhiO = dot(I, Y);
float alphaO2 = (cosPhiO*cosPhiO)*(alpha_x*alpha_x) + (sinPhiO*sinPhiO)*(alpha_y*alpha_y);
alphaO2 /= cosPhiO*cosPhiO + sinPhiO*sinPhiO;
G1o = 2 / (1 + safe_sqrtf(1 + alphaO2 * tanThetaO2));
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(omega_in, X);
float sinPhiI = dot(omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
/*}
else {
G1o = spec_smithG_GGX(cosNO, params->m_roughg);
G1i = spec_smithG_GGX(cosNI, params->m_roughg);
}*/
}
float G = G1o * G1i;
/* eq. 20 */
float common = D * 0.25f / cosNO;
float FH = spec_SchlickFresnel(dot(omega_in, m));
float3 F = spec_mix(params->m_cspec0, make_float3(1.0f, 1.0f, 1.0f), FH);
float3 out = F * G * common;
/* eq. 2 in distribution of visible normals sampling
* pm = Dw = G1o * dot(m, I) * D / dot(N, I); */
/* eq. 38 - but see also:
* eq. 17 in http://www.graphics.cornell.edu/~bjw/wardnotes.pdf
* pdf = pm * 0.25 / dot(m, I); */
*pdf = G1o * common;
return out;
}
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device float3 bsdf_disney_specular_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device void importance_sample_ggx_aniso(float3 N, float u, float v, float3 *omega_in,
float ax, float ay, float3 TangentX, float3 TangentY, float *pdf)
{
float a = sqrt(v) / sqrt(1 - v);
float Phi = 2.0f * M_PI_F * u;
float3 H;
H.x = ax * a * cos(Phi);
H.y = ay * a * sin(Phi);
H.z = 1.0f;
*omega_in = normalize(TangentX * H.x + TangentY * H.y + N * H.z);
float CosTheta = sqrt(1.0f - (ax * a) * (ax * a) - (ay * a) * (ay * a));
*pdf = CosTheta * M_1_PI_F;
}
ccl_device void importance_sample_ggx(float3 N, float u, float v, float3 *omega_in,
float Roughness, float3 TangentX, float3 TangentY, float *pdf)
{
float a = Roughness * Roughness;
float Phi = 2.0f * M_PI_F * u;
float CosTheta = sqrt((1.0f - v) / (1.0f + (a*a - 1.0f) * v));
float SinTheta = sqrt(1.0f - CosTheta * CosTheta);
float3 H;
H.x = SinTheta * cos(Phi);
H.y = SinTheta * sin(Phi);
H.z = CosTheta;
// Tangent to world space
*omega_in = normalize(TangentX * H.x + TangentY * H.y + N * H.z);
*pdf = CosTheta * M_1_PI_F;
}
ccl_device int bsdf_disney_specular_sample(const ShaderClosure *sc, const DisneySpecularBRDFParams *params,
float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv,
float3 *eval, float3 *omega_in, float3 *domega_in_dx,
float3 *domega_in_dy, float *pdf)
{
/*float3 N = normalize(sc->N);
float3 T = normalize(sc->T);
float3 X, Y;
if (params->m_anisotropic > 0.0f)
make_orthonormals_tangent(N, T, &X, &Y);
else
make_orthonormals(N, &X, &Y);
float3 R = -I - 2.0f * dot(-I, N) * N;
float3 H;
if (params->m_brightness <= 0.5f) {
if (params->m_anisotropic > 0.0f)
importance_sample_ggx_aniso(R, randu, randv, omega_in, params->m_ax, params->m_ay, X, Y, pdf);
else
importance_sample_ggx(R, randu, randv, omega_in, params->m_roughness, X, Y, pdf);
H = normalize(I + *omega_in);
}
else {
if (params->m_anisotropic > 0.0f)
importance_sample_ggx_aniso(N, randu, randv, &H, params->m_ax, params->m_ay, X, Y, pdf);
else
importance_sample_ggx(N, randu, randv, &H, params->m_roughness, X, Y, pdf);
*omega_in = -I - 2.0f * dot(-I, H) * H;
}
if (params->m_brightness > 0.2f && params->m_brightness < 0.8f) {
if (dot(Ng, *omega_in) < 0.0f) {
*omega_in = -(*omega_in) - 2.0f * dot(-(*omega_in), R) * R;
H = normalize(*omega_in + I);
}
}
if (dot(Ng, *omega_in) > 0.0f) {
float3 V = I; // outgoing
float3 L = *omega_in; // incoming
*eval = calculate_disney_specular_brdf(sc, params, N, X, Y, V, L, H, pdf, params->m_withNdotL > 0.75f);
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = 2 * dot(H, dIdx) * H - dIdx;
*domega_in_dy = 2 * dot(H, dIdy) * H - dIdy;
#endif
}
else {
*pdf = 0.0f;
*eval = make_float3(0.0f, 0.0f, 0.0f);
}
return LABEL_REFLECT|LABEL_GLOSSY;*/
float alpha_x = params->m_ax;
float alpha_y = params->m_ay;
float3 N = sc->N;
float cosNO = dot(N, I);
if(cosNO > 0) {
float3 X, Y, Z = N;
if(alpha_x == alpha_y)
make_orthonormals(Z, &X, &Y);
else
make_orthonormals_tangent(Z, sc->T, &X, &Y);
/* importance sampling with distribution of visible normals. vectors are
* transformed to local space before and after */
float3 local_I = make_float3(dot(X, I), dot(Y, I), cosNO);
float3 local_m;
float3 m;
float G1o;
//if (params->m_exposure > 0.5f) {
local_m = spec_microfacet_sample_stretched(local_I, alpha_x, alpha_y,
randu, randv, false, &G1o);
m = X*local_m.x + Y*local_m.y + Z*local_m.z;
/*}
else {
importance_sample_ggx_aniso(N, randu, randv, &m, alpha_x, alpha_y, X, Y, pdf);
local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
}*/
float cosThetaM = local_m.z;
/* reflection or refraction? */
float cosMO = dot(m, I);
if(cosMO > 0) {
/* eq. 39 - compute actual reflected direction */
*omega_in = 2 * cosMO * m - I;
if(dot(Ng, *omega_in) > 0) {
if(fmaxf(alpha_x, alpha_y) <= 1e-4f) {
/* some high number for MIS */
*pdf = 1e6f;
*eval = make_float3(1e6f, 1e6f, 1e6f);
}
else {
/* microfacet normal is visible to this ray */
/* eq. 33 */
float alpha2 = alpha_x * alpha_y;
float D, G1i;
if(alpha_x == alpha_y) {
/* isotropic */
//if (params->m_brightness > 0.5f) {
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
float tanThetaM2 = 1/(cosThetaM2) - 1;
D = alpha2 / (M_PI_F * cosThetaM4 * (alpha2 + tanThetaM2) * (alpha2 + tanThetaM2));
/*}
else {
D = spec_GTR2(dot(N, m), params->m_ax);
}*/
/* eval BRDF*cosNI */
float cosNI = dot(N, *omega_in);
/* eq. 34: now calculate G1(i,m) */
//if (params->m_exposure > 0.5f) {
G1i = 2 / (1 + safe_sqrtf(1 + alpha2 * (1 - cosNI * cosNI) / (cosNI * cosNI)));
/*}
else {
G1i = spec_smithG_GGX(cosNI, params->m_roughg);
G1o = spec_smithG_GGX(cosNO, params->m_roughg);
}*/
}
else {
/* anisotropic distribution */
//if (params->m_brightness > 0.5f) {
//float3 local_m = make_float3(dot(X, m), dot(Y, m), dot(Z, m));
float slope_x = -local_m.x/(local_m.z*alpha_x);
float slope_y = -local_m.y/(local_m.z*alpha_y);
float slope_len = 1 + slope_x*slope_x + slope_y*slope_y;
float cosThetaM = local_m.z;
float cosThetaM2 = cosThetaM * cosThetaM;
float cosThetaM4 = cosThetaM2 * cosThetaM2;
D = 1 / ((slope_len * slope_len) * M_PI_F * alpha2 * cosThetaM4);
/*}
else {
D = spec_GTR2_aniso(dot(N, m), dot(X, m), dot(Y, m), params->m_ax, params->m_ay);
}*/
/* calculate G1(i,m) */
float cosNI = dot(N, *omega_in);
//if (params->m_exposure > 0.5f) {
float tanThetaI2 = (1 - cosNI * cosNI) / (cosNI * cosNI);
float cosPhiI = dot(*omega_in, X);
float sinPhiI = dot(*omega_in, Y);
float alphaI2 = (cosPhiI*cosPhiI)*(alpha_x*alpha_x) + (sinPhiI*sinPhiI)*(alpha_y*alpha_y);
alphaI2 /= cosPhiI*cosPhiI + sinPhiI*sinPhiI;
G1i = 2 / (1 + safe_sqrtf(1 + alphaI2 * tanThetaI2));
/*}
else {
G1i = spec_smithG_GGX(cosNI, params->m_roughg);
G1o = spec_smithG_GGX(cosNO, params->m_roughg);
}*/
}
/* see eval function for derivation */
float common = (G1o * D) * 0.25f / cosNO;
*pdf = common;
float FH = spec_SchlickFresnel(dot(*omega_in, m));
float3 F = spec_mix(params->m_cspec0, make_float3(1.0f, 1.0f, 1.0f), FH);
*eval = G1i * common * F;
}
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(m, dIdx)) * m - dIdx;
*domega_in_dy = (2 * dot(m, dIdy)) * m - dIdy;
#endif
}
}
}
return LABEL_REFLECT|LABEL_GLOSSY;
}
CCL_NAMESPACE_END
#endif /* __BSDF_DISNEY_SPECULAR_H__ */

View File

@@ -23,6 +23,7 @@ set(SRC
osl_services.cpp
osl_shader.cpp
bsdf_disney_diffuse.cpp
bsdf_disney_specular.cpp
)
set(HEADER_SRC

View File

@@ -0,0 +1,113 @@
/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <OpenImageIO/fmath.h>
#include <OSL/genclosure.h>
#include "kernel_compat_cpu.h"
#include "osl_closures.h"
#include "kernel_types.h"
#include "kernel_montecarlo.h"
#include "closure/bsdf_disney_specular.h"
CCL_NAMESPACE_BEGIN
using namespace OSL;
class DisneySpecularClosure : public CBSDFClosure {
public:
DisneySpecularBRDFParams dp;
DisneySpecularClosure() : CBSDFClosure(LABEL_REFLECT|LABEL_GLOSSY)
{}
void setup()
{
sc.prim = this;
m_shaderdata_flag = bsdf_disney_specular_setup(&sc);
dp.precompute_values();
}
void blur(float roughness)
{
}
float3 eval_reflect(const float3 &omega_out, const float3 &omega_in, float& pdf) const
{
return bsdf_disney_specular_eval_reflect(&sc, &dp, omega_out, omega_in, &pdf);
}
float3 eval_transmit(const float3 &omega_out, const float3 &omega_in, float& pdf) const
{
return bsdf_disney_specular_eval_transmit(&sc, omega_out, omega_in, &pdf);
}
int sample(const float3 &Ng,
const float3 &omega_out, const float3 &domega_out_dx, const float3 &domega_out_dy,
float randu, float randv,
float3 &omega_in, float3 &domega_in_dx, float3 &domega_in_dy,
float &pdf, float3 &eval) const
{
return bsdf_disney_specular_sample(&sc, &dp, Ng, omega_out, domega_out_dx, domega_out_dy,
randu, randv, &eval, &omega_in, &domega_in_dx, &domega_in_dy, &pdf);
}
};
ClosureParam *closure_bsdf_disney_specular_params()
{
static ClosureParam params[] = {
CLOSURE_FLOAT3_PARAM(DisneySpecularClosure, sc.N),
CLOSURE_FLOAT3_PARAM(DisneySpecularClosure, sc.T),
CLOSURE_FLOAT3_PARAM(DisneySpecularClosure, dp.m_base_color),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_metallic),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_specular),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_specular_tint),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_roughness),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_anisotropic),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_withNdotL),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_brightness),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_gamma),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_exposure),
CLOSURE_FLOAT_PARAM(DisneySpecularClosure, dp.m_mon2lingamma),
CLOSURE_STRING_KEYPARAM(DisneySpecularClosure, label, "label"),
CLOSURE_FINISH_PARAM(DisneySpecularClosure)
};
return params;
}
CCLOSURE_PREPARE(closure_bsdf_disney_specular_prepare, DisneySpecularClosure)
CCL_NAMESPACE_END

View File

@@ -240,6 +240,8 @@ void OSLShader::register_closures(OSLShadingSystem *ss_)
closure_bssrdf_burley_params(), closure_bssrdf_burley_prepare);
register_closure(ss, "disney_diffuse", id++,
closure_bsdf_disney_diffuse_params(), closure_bsdf_disney_diffuse_prepare);
register_closure(ss, "disney_specular", id++,
closure_bsdf_disney_specular_params(), closure_bsdf_disney_specular_prepare);
register_closure(ss, "hair_reflection", id++,
bsdf_hair_reflection_params(), bsdf_hair_reflection_prepare);

View File

@@ -53,6 +53,7 @@ OSL::ClosureParam *closure_bssrdf_gaussian_params();
OSL::ClosureParam *closure_bssrdf_burley_params();
OSL::ClosureParam *closure_henyey_greenstein_volume_params();
OSL::ClosureParam *closure_bsdf_disney_diffuse_params();
OSL::ClosureParam *closure_bsdf_disney_specular_params();
void closure_emission_prepare(OSL::RendererServices *, int id, void *data);
void closure_background_prepare(OSL::RendererServices *, int id, void *data);
@@ -65,6 +66,7 @@ void closure_bssrdf_gaussian_prepare(OSL::RendererServices *, int id, void *data
void closure_bssrdf_burley_prepare(OSL::RendererServices *, int id, void *data);
void closure_henyey_greenstein_volume_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_disney_diffuse_prepare(OSL::RendererServices *, int id, void *data);
void closure_bsdf_disney_specular_prepare(OSL::RendererServices *, int id, void *data);
#define CCLOSURE_PREPARE(name, classname) \
void name(RendererServices *, int id, void *data) \

View File

@@ -538,6 +538,9 @@ closure color holdout() BUILTIN;
closure color ambient_occlusion() BUILTIN;
closure color disney_diffuse(normal N, color baseColor, float subsurface, float roughness, float sheen,
float sheenTint, float withNdotL, float brightness, float gamma, float exposure, float mon2lingamma) BUILTIN;
closure color disney_specular(normal N, normal T, color baseColor, float metallic, float specular, float specularTint,
float roughness, float anisotropic, float withNdotL, float brightness, float gamma, float exposure,
float mon2lingamma) BUILTIN;
// BSSRDF
closure color bssrdf_cubic(normal N, vector radius, float texture_blur, float sharpness) BUILTIN;

View File

@@ -395,6 +395,7 @@ typedef enum ClosureType {
CLOSURE_BSDF_PHONG_RAMP_ID,
CLOSURE_BSDF_GLOSSY_TOON_ID,
CLOSURE_BSDF_HAIR_REFLECTION_ID,
CLOSURE_BSDF_DISNEY_SPECULAR_ID,
/* Transmission */
CLOSURE_BSDF_TRANSMISSION_ID,