Eevee: SSR: Encode Normal in buffer and add cubemap fallback.

Normals can point away from the camera so we cannot just put XY in the buffer and reconstruct Z later as we would not know the sign of Z.
This commit is contained in:
2017-07-17 13:39:03 +02:00
parent 2a84331f02
commit 1d00a66f5d
8 changed files with 258 additions and 145 deletions

View File

@@ -46,6 +46,12 @@
#include "eevee_private.h"
#include "GPU_texture.h"
#define SHADER_DEFINES \
"#define EEVEE_ENGINE\n" \
"#define MAX_PROBE " STRINGIFY(MAX_PROBE) "\n" \
"#define MAX_GRID " STRINGIFY(MAX_GRID) "\n" \
"#define MAX_PLANAR " STRINGIFY(MAX_PLANAR) "\n"
typedef struct EEVEE_LightProbeData {
short probe_id, shadow_id;
} EEVEE_LightProbeData;
@@ -80,6 +86,8 @@ static struct {
struct GPUTexture *depth_src;
} e_data = {NULL}; /* Engine data */
extern char datatoc_bsdf_common_lib_glsl[];
extern char datatoc_octahedron_lib_glsl[];
extern char datatoc_effect_ssr_frag_glsl[];
extern char datatoc_effect_minmaxz_frag_glsl[];
extern char datatoc_effect_motion_blur_frag_glsl[];
@@ -87,6 +95,7 @@ extern char datatoc_effect_bloom_frag_glsl[];
extern char datatoc_effect_dof_vert_glsl[];
extern char datatoc_effect_dof_geom_glsl[];
extern char datatoc_effect_dof_frag_glsl[];
extern char datatoc_lightprobe_lib_glsl[];
extern char datatoc_tonemap_frag_glsl[];
extern char datatoc_volumetric_frag_glsl[];
@@ -163,8 +172,18 @@ void EEVEE_effects_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *vedata)
/* Shaders */
if (!e_data.motion_blur_sh) {
e_data.ssr_raytrace_sh = DRW_shader_create_fullscreen(datatoc_effect_ssr_frag_glsl, "#define STEP_RAYTRACE\n");
e_data.ssr_resolve_sh = DRW_shader_create_fullscreen(datatoc_effect_ssr_frag_glsl, "#define STEP_RESOLVE\n");
DynStr *ds_frag = BLI_dynstr_new();
BLI_dynstr_append(ds_frag, datatoc_bsdf_common_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_octahedron_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_lightprobe_lib_glsl);
BLI_dynstr_append(ds_frag, datatoc_effect_ssr_frag_glsl);
char *ssr_shader_str = BLI_dynstr_get_cstring(ds_frag);
BLI_dynstr_free(ds_frag);
e_data.ssr_raytrace_sh = DRW_shader_create_fullscreen(ssr_shader_str, SHADER_DEFINES "#define STEP_RAYTRACE\n");
e_data.ssr_resolve_sh = DRW_shader_create_fullscreen(ssr_shader_str, SHADER_DEFINES "#define STEP_RESOLVE\n");
MEM_freeN(ssr_shader_str);
e_data.volumetric_upsample_sh = DRW_shader_create_fullscreen(datatoc_volumetric_frag_glsl, "#define STEP_UPSAMPLE\n");
@@ -612,20 +631,26 @@ void EEVEE_effects_cache_init(EEVEE_SceneLayerData *sldata, EEVEE_Data *vedata)
}
if ((effects->enabled_effects & EFFECT_SSR) != 0) {
psl->ssr_raytrace = DRW_pass_create("Raytrace", DRW_STATE_WRITE_COLOR);
psl->ssr_raytrace = DRW_pass_create("SSR Raytrace", DRW_STATE_WRITE_COLOR);
DRWShadingGroup *grp = DRW_shgroup_create(e_data.ssr_raytrace_sh, psl->ssr_raytrace);
DRW_shgroup_uniform_buffer(grp, "depthBuffer", &e_data.depth_src);
DRW_shgroup_uniform_buffer(grp, "normalBuffer", &stl->g_data->minmaxz);
DRW_shgroup_uniform_buffer(grp, "specRoughBuffer", &stl->g_data->minmaxz);
DRW_shgroup_uniform_buffer(grp, "normalBuffer", &txl->ssr_normal_input);
DRW_shgroup_uniform_buffer(grp, "specRoughBuffer", &txl->ssr_specrough_input);
DRW_shgroup_call_add(grp, quad, NULL);
psl->ssr_resolve = DRW_pass_create("Raytrace", DRW_STATE_WRITE_COLOR);
psl->ssr_resolve = DRW_pass_create("SSR Resolve", DRW_STATE_WRITE_COLOR | DRW_STATE_ADDITIVE);
grp = DRW_shgroup_create(e_data.ssr_resolve_sh, psl->ssr_resolve);
DRW_shgroup_uniform_buffer(grp, "depthBuffer", &e_data.depth_src);
DRW_shgroup_uniform_buffer(grp, "normalBuffer", &txl->ssr_normal_input);
DRW_shgroup_uniform_buffer(grp, "specroughBuffer", &txl->ssr_specrough_input);
DRW_shgroup_uniform_buffer(grp, "hitBuffer", &txl->ssr_hit_output);
DRW_shgroup_uniform_buffer(grp, "pdfBuffer", &txl->ssr_pdf_output);
DRW_shgroup_uniform_vec4(grp, "viewvecs[0]", (float *)stl->g_data->viewvecs, 2);
DRW_shgroup_uniform_int(grp, "probe_count", &sldata->probes->num_render_cube, 1);
DRW_shgroup_uniform_float(grp, "lodCubeMax", &sldata->probes->lod_cube_max, 1);
DRW_shgroup_uniform_float(grp, "lodPlanarMax", &sldata->probes->lod_planar_max, 1);
DRW_shgroup_uniform_buffer(grp, "probeCubes", &sldata->probe_pool);
DRW_shgroup_uniform_buffer(grp, "probePlanars", &vedata->txl->planar_pool);
DRW_shgroup_call_add(grp, quad, NULL);
}
@@ -789,7 +814,6 @@ void EEVEE_effects_do_volumetrics(EEVEE_SceneLayerData *sldata, EEVEE_Data *veda
EEVEE_EffectsInfo *effects = stl->effects;
if ((effects->enabled_effects & EFFECT_VOLUMETRIC) != 0) {
return;
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
e_data.depth_src = dtxl->depth;
@@ -822,7 +846,7 @@ void EEVEE_effects_do_volumetrics(EEVEE_SceneLayerData *sldata, EEVEE_Data *veda
}
}
void EEVEE_effects_do_ssr(EEVEE_SceneLayerData *sldata, EEVEE_Data *vedata)
void EEVEE_effects_do_ssr(EEVEE_SceneLayerData *UNUSED(sldata), EEVEE_Data *vedata)
{
EEVEE_PassList *psl = vedata->psl;
EEVEE_FramebufferList *fbl = vedata->fbl;
@@ -833,6 +857,8 @@ void EEVEE_effects_do_ssr(EEVEE_SceneLayerData *sldata, EEVEE_Data *vedata)
if ((effects->enabled_effects & EFFECT_SSR) != 0) {
DefaultTextureList *dtxl = DRW_viewport_texture_list_get();
e_data.depth_src = dtxl->depth;
/* Raytrace at halfres. */
DRW_framebuffer_bind(fbl->screen_tracing_fb);
DRW_draw_pass(psl->ssr_raytrace);

View File

@@ -28,114 +28,10 @@ flat in int shFace; /* Shadow layer we are rendering to. */
#define cameraForward normalize(ViewMatrixInverse[2].xyz)
#define cameraPos ViewMatrixInverse[3].xyz
#define cameraVec ((ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - worldPosition) : cameraForward)
#define viewCameraVec ((ProjectionMatrix[3][3] == 0.0) ? normalize(viewPosition) : vec3(0.0, 0.0, -1.0))
/* ------- Structures -------- */
#ifdef VOLUMETRICS
struct Closure {
vec3 absorption;
vec3 scatter;
vec3 emission;
float anisotropy;
};
#define CLOSURE_DEFAULT Closure(vec3(0.0), vec3(0.0), vec3(0.0), 0.0)
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
cl.absorption = mix(cl1.absorption, cl2.absorption, fac);
cl.scatter = mix(cl1.scatter, cl2.scatter, fac);
cl.emission = mix(cl1.emission, cl2.emission, fac);
cl.anisotropy = mix(cl1.anisotropy, cl2.anisotropy, fac);
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl;
cl.absorption = cl1.absorption + cl2.absorption;
cl.scatter = cl1.scatter + cl2.scatter;
cl.emission = cl1.emission + cl2.emission;
cl.anisotropy = (cl1.anisotropy + cl2.anisotropy) / 2.0; /* Average phase (no multi lobe) */
return cl;
}
#else
struct Closure {
vec3 radiance;
float opacity;
vec4 ssr_data;
vec2 ssr_normal;
int ssr_id;
};
#define CLOSURE_DEFAULT Closure(vec3(0.0), 1.0, vec4(0.0), vec2(0.0), -1)
uniform int outputSsrId;
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
if (cl1.ssr_id == outputSsrId) {
cl.ssr_data = mix(cl1.ssr_data.xyzw, vec4(vec3(0.0), cl1.ssr_data.w), fac); /* do not blend roughness */
cl.ssr_normal = cl1.ssr_normal;
cl.ssr_id = cl1.ssr_id;
}
else {
cl.ssr_data = mix(vec4(vec3(0.0), cl2.ssr_data.w), cl2.ssr_data.xyzw, fac); /* do not blend roughness */
cl.ssr_normal = cl2.ssr_normal;
cl.ssr_id = cl2.ssr_id;
}
cl.radiance = mix(cl1.radiance, cl2.radiance, fac);
cl.opacity = mix(cl1.opacity, cl2.opacity, fac);
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl = (cl1.ssr_id == outputSsrId) ? cl1 : cl2;
cl.radiance = cl1.radiance + cl2.radiance;
cl.opacity = cl1.opacity + cl2.opacity;
return cl;
}
#if defined(MESH_SHADER) && !defined(SHADOW_SHADER)
layout(location = 0) out vec4 fragColor;
layout(location = 1) out vec4 ssrNormals;
layout(location = 2) out vec4 ssrData;
Closure nodetree_exec(void); /* Prototype */
#define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
fragColor = vec4(cl.radiance, cl.opacity);
ssrNormals = cl.ssr_normal.xyyy;
ssrData = cl.ssr_data;
}
#endif /* MESH_SHADER && !SHADOW_SHADER */
#endif /* VOLUMETRICS */
Closure nodetree_exec(void); /* Prototype */
/* TODO find a better place */
#ifdef USE_MULTIPLY
out vec4 fragColor;
#define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
fragColor = vec4(mix(vec3(1.0), cl.radiance, cl.opacity), 1.0);
}
#endif
struct LightData {
vec4 position_influence; /* w : InfluenceRadius */
vec4 color_spec; /* w : Spec Intensity */
@@ -194,8 +90,6 @@ struct ShadowCascadeData {
vec4 bias;
};
#define cameraVec ((ProjectionMatrix[3][3] == 0.0) ? normalize(cameraPos - worldPosition) : cameraForward)
/* ------- Convenience functions --------- */
vec3 mul(mat3 m, vec3 v) { return m * v; }
@@ -364,6 +258,11 @@ vec3 get_view_space_from_depth(vec2 uvcoords, float depth)
}
}
vec3 get_world_space_from_depth(vec2 uvcoords, float depth)
{
return (ViewMatrixInverse * vec4(get_view_space_from_depth(uvcoords, depth), 1.0)).xyz;
}
vec3 get_specular_dominant_dir(vec3 N, vec3 V, float roughness)
{
vec3 R = -reflect(V, N);
@@ -377,6 +276,26 @@ float specular_occlusion(float NV, float AO, float roughness)
return saturate(pow(NV + AO, roughness) - 1.0 + AO);
}
/* ---- Encode / Decode Normal buffer data ---- */
/* From http://aras-p.info/texts/CompactNormalStorage.html
* Using Method #4: Spheremap Transform */
vec2 normal_encode(vec3 n, vec3 view)
{
float p = sqrt(n.z * 8.0 + 8.0);
return n.xy / p + 0.5;
}
vec3 normal_decode(vec2 enc, vec3 view)
{
vec2 fenc = enc * 4.0 - 2.0;
float f = dot(fenc, fenc);
float g = sqrt(1.0 - f / 4.0);
vec3 n;
n.xy = fenc*g;
n.z = 1 - f / 2;
return n;
}
/* Fresnel */
vec3 F_schlick(vec3 f0, float cos_theta)
{
@@ -443,4 +362,110 @@ float bsdf_ggx(vec3 N, vec3 L, vec3 V, float roughness)
void accumulate_light(vec3 light, float fac, inout vec4 accum)
{
accum += vec4(light, 1.0) * min(fac, (1.0 - accum.a));
}
}
/* --------- Closure ---------- */
#ifdef VOLUMETRICS
struct Closure {
vec3 absorption;
vec3 scatter;
vec3 emission;
float anisotropy;
};
#define CLOSURE_DEFAULT Closure(vec3(0.0), vec3(0.0), vec3(0.0), 0.0)
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
cl.absorption = mix(cl1.absorption, cl2.absorption, fac);
cl.scatter = mix(cl1.scatter, cl2.scatter, fac);
cl.emission = mix(cl1.emission, cl2.emission, fac);
cl.anisotropy = mix(cl1.anisotropy, cl2.anisotropy, fac);
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl;
cl.absorption = cl1.absorption + cl2.absorption;
cl.scatter = cl1.scatter + cl2.scatter;
cl.emission = cl1.emission + cl2.emission;
cl.anisotropy = (cl1.anisotropy + cl2.anisotropy) / 2.0; /* Average phase (no multi lobe) */
return cl;
}
#else
struct Closure {
vec3 radiance;
float opacity;
vec4 ssr_data;
vec2 ssr_normal;
int ssr_id;
};
#define CLOSURE_DEFAULT Closure(vec3(0.0), 1.0, vec4(0.0), vec2(0.0), -1)
uniform int outputSsrId;
Closure closure_mix(Closure cl1, Closure cl2, float fac)
{
Closure cl;
if (cl1.ssr_id == outputSsrId) {
cl.ssr_data = mix(cl1.ssr_data.xyzw, vec4(vec3(0.0), cl1.ssr_data.w), fac); /* do not blend roughness */
cl.ssr_normal = cl1.ssr_normal;
cl.ssr_id = cl1.ssr_id;
}
else {
cl.ssr_data = mix(vec4(vec3(0.0), cl2.ssr_data.w), cl2.ssr_data.xyzw, fac); /* do not blend roughness */
cl.ssr_normal = cl2.ssr_normal;
cl.ssr_id = cl2.ssr_id;
}
cl.radiance = mix(cl1.radiance, cl2.radiance, fac);
cl.opacity = mix(cl1.opacity, cl2.opacity, fac);
return cl;
}
Closure closure_add(Closure cl1, Closure cl2)
{
Closure cl = (cl1.ssr_id == outputSsrId) ? cl1 : cl2;
cl.radiance = cl1.radiance + cl2.radiance;
cl.opacity = cl1.opacity + cl2.opacity;
return cl;
}
#if defined(MESH_SHADER) && !defined(SHADOW_SHADER)
layout(location = 0) out vec4 fragColor;
layout(location = 1) out vec4 ssrNormals;
layout(location = 2) out vec4 ssrData;
Closure nodetree_exec(void); /* Prototype */
#define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
fragColor = vec4(cl.radiance, cl.opacity);
ssrNormals = cl.ssr_normal.xyyy;
ssrData = cl.ssr_data;
}
#endif /* MESH_SHADER && !SHADOW_SHADER */
#endif /* VOLUMETRICS */
Closure nodetree_exec(void); /* Prototype */
/* TODO find a better place */
#ifdef USE_MULTIPLY
out vec4 fragColor;
#define NODETREE_EXEC
void main()
{
Closure cl = nodetree_exec();
fragColor = vec4(mix(vec3(1.0), cl.radiance, cl.opacity), 1.0);
}
#endif

View File

@@ -12,7 +12,7 @@ Closure nodetree_exec(void)
vec3 ssr_spec;
vec3 radiance = eevee_surface_lit((gl_FrontFacing) ? worldNormal : -worldNormal, diffuse, f0, roughness, 1.0, 0, ssr_spec);
Closure result = Closure(radiance, 1.0, vec4(ssr_spec, roughness), viewNormal.xy, 0);
Closure result = Closure(radiance, 1.0, vec4(ssr_spec, roughness), normal_encode(normalize(viewNormal), viewCameraVec), 0);
#if !defined(USE_ALPHA_BLEND)
result.opacity = length(viewPosition);

View File

@@ -10,6 +10,13 @@ layout(location = 1) out vec4 pdfData;
void main()
{
ivec2 fullres_texel = ivec2(gl_FragCoord.xy) * 2;
float depth = texelFetch(depthBuffer, fullres_texel, 0).r;
/* Early discard */
if (depth == 1.0)
discard;
hitData = vec4(0.2);
pdfData = vec4(0.5);
}
@@ -23,14 +30,63 @@ uniform sampler2D specroughBuffer;
uniform sampler2D hitBuffer;
uniform sampler2D pdfBuffer;
uniform int probe_count;
out vec4 fragColor;
void fallback_cubemap(vec3 N, vec3 V, vec3 W, float roughness, float roughnessSquared, inout vec4 spec_accum)
{
/* Specular probes */
vec3 spec_dir = get_specular_dominant_dir(N, V, roughnessSquared);
/* Starts at 1 because 0 is world probe */
for (int i = 1; i < MAX_PROBE && i < probe_count && spec_accum.a < 0.999; ++i) {
CubeData cd = probes_data[i];
float fade = probe_attenuation_cube(cd, W);
if (fade > 0.0) {
vec3 spec = probe_evaluate_cube(float(i), cd, W, spec_dir, roughness);
accumulate_light(spec, fade, spec_accum);
}
}
/* World Specular */
if (spec_accum.a < 0.999) {
vec3 spec = probe_evaluate_world_spec(spec_dir, roughness);
accumulate_light(spec, 1.0, spec_accum);
}
}
void main()
{
ivec2 halfres_texel = ivec2(gl_FragCoord.xy / 2.0);
ivec2 fullres_texel = ivec2(gl_FragCoord.xy);
vec2 uvs = gl_FragCoord.xy / vec2(textureSize(depthBuffer, 0));
fragColor = vec4(texelFetch(specroughBuffer, fullres_texel, 0).aaa, 1.0);
float depth = textureLod(depthBuffer, uvs, 0.0).r;
/* Early discard */
if (depth == 1.0)
discard;
vec3 worldPosition = get_world_space_from_depth(uvs, depth);
vec3 V = cameraVec;
vec3 N = mat3(ViewMatrixInverse) * normal_decode(texelFetch(normalBuffer, fullres_texel, 0).rg, V);
vec4 speccol_roughness = texelFetch(specroughBuffer, fullres_texel, 0).rgba;
float roughness = speccol_roughness.a;
float roughnessSquared = roughness * roughness;
vec4 spec_accum = vec4(0.0);
/* Resolve SSR and compute contribution */
/* If SSR contribution is not 1.0, blend with cubemaps */
if (spec_accum.a < 1.0) {
fallback_cubemap(N, V, worldPosition, roughness, roughnessSquared, spec_accum);
}
fragColor = vec4(spec_accum.rgb * speccol_roughness.rgb, 1.0);
}
#endif

View File

@@ -8,18 +8,6 @@ layout(std140) uniform shadow_block {
ShadowCascadeData shadows_cascade_data[MAX_SHADOW_CASCADE];
};
layout(std140) uniform probe_block {
CubeData probes_data[MAX_PROBE];
};
layout(std140) uniform grid_block {
GridData grids_data[MAX_GRID];
};
layout(std140) uniform planar_block {
PlanarData planars_data[MAX_PLANAR];
};
layout(std140) uniform light_block {
LightData lights_data[MAX_LIGHT];
};

View File

@@ -60,6 +60,28 @@ struct GridData {
#define g_resolution resolution_offset.xyz
#define g_offset resolution_offset.w
#ifndef MAX_PROBE
#define MAX_PROBE 1
#endif
#ifndef MAX_GRID
#define MAX_GRID 1
#endif
#ifndef MAX_PLANAR
#define MAX_PLANAR 1
#endif
layout(std140) uniform probe_block {
CubeData probes_data[MAX_PROBE];
};
layout(std140) uniform grid_block {
GridData grids_data[MAX_GRID];
};
layout(std140) uniform planar_block {
PlanarData planars_data[MAX_PLANAR];
};
/* ----------- Functions --------- */
float probe_attenuation_cube(CubeData pd, vec3 W)

View File

@@ -1,10 +1,6 @@
uniform int probeIdx;
layout(std140) uniform planar_block {
PlanarData planars_data[MAX_PLANAR];
};
in vec3 worldPosition;
out vec4 FragColor;

View File

@@ -2687,8 +2687,8 @@ void node_bsdf_glossy(vec4 color, float roughness, vec3 N, float ssr_id, out Clo
#ifdef EEVEE_ENGINE
vec3 ssr_spec;
vec3 L = eevee_surface_glossy_lit(N, vec3(1.0), roughness, 1.0, int(ssr_id), ssr_spec);
vec3 vN = mat3(ViewMatrix) * N;
result = Closure(L * color.rgb, 1.0, vec4(ssr_spec * color.rgb, roughness), vN.xy, int(ssr_id));
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = Closure(L * color.rgb, 1.0, vec4(ssr_spec * color.rgb, roughness), normal_encode(vN, viewCameraVec), int(ssr_id));
#else
/* ambient light */
vec3 L = vec3(0.2);
@@ -2838,8 +2838,8 @@ void node_bsdf_principled_simple(vec4 base_color, float subsurface, vec3 subsurf
convert_metallic_to_specular_tinted(base_color.rgb, metallic, specular, specular_tint, diffuse, f0);
vec3 L = eevee_surface_lit(N, diffuse, f0, roughness, 1.0, int(ssr_id), ssr_spec);
vec3 vN = mat3(ViewMatrix) * N;
result = Closure(L, 1.0, vec4(ssr_spec, roughness), vN.xy, int(ssr_id));
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = Closure(L, 1.0, vec4(ssr_spec, roughness), normal_encode(vN, viewCameraVec), int(ssr_id));
#else
node_bsdf_principled(base_color, subsurface, subsurface_radius, subsurface_color, metallic, specular,
specular_tint, roughness, anisotropic, anisotropic_rotation, sheen, sheen_tint, clearcoat,
@@ -2882,8 +2882,8 @@ void node_bsdf_principled_clearcoat(vec4 base_color, float subsurface, vec3 subs
#else
vec3 L = eevee_surface_clearcoat_lit(N, diffuse, f0, roughness, CN, clearcoat, clearcoat_roughness, 1.0, int(ssr_id), ssr_spec);
vec3 vN = mat3(ViewMatrix) * N;
result = Closure(L, 1.0, vec4(ssr_spec, roughness), vN.xy, int(ssr_id));
vec3 vN = normalize(mat3(ViewMatrix) * N);
result = Closure(L, 1.0, vec4(ssr_spec, roughness), normal_encode(vN, viewCameraVec), int(ssr_id));
#endif
#else
@@ -4047,8 +4047,8 @@ void node_eevee_metallic(
convert_metallic_to_specular(basecol.rgb, metallic, specular, diffuse, f0);
vec3 L = eevee_surface_lit(normal, diffuse, f0, roughness, occlusion, int(ssr_id), ssr_spec);
vec3 vN = mat3(ViewMatrix) * normal;
result = Closure(L + emissive.rgb, 1.0 - transp, vec4(ssr_spec, roughness), vN.xy, int(ssr_id));
vec3 vN = normalize(mat3(ViewMatrix) * normal);
result = Closure(L + emissive.rgb, 1.0 - transp, vec4(ssr_spec, roughness), normal_encode(vN, viewCameraVec), int(ssr_id));
}
void node_eevee_specular(
@@ -4059,8 +4059,8 @@ void node_eevee_specular(
vec3 ssr_spec;
vec3 L = eevee_surface_lit(normal, diffuse.rgb, specular.rgb, roughness, occlusion, int(ssr_id), ssr_spec);
vec3 vN = mat3(ViewMatrix) * normal;
result = Closure(L + emissive.rgb, 1.0 - transp, vec4(ssr_spec, roughness), vN.xy, int(ssr_id));
vec3 vN = normalize(mat3(ViewMatrix) * normal);
result = Closure(L + emissive.rgb, 1.0 - transp, vec4(ssr_spec, roughness), normal_encode(vN, viewCameraVec), int(ssr_id));
}
void node_output_eevee_material(Closure surface, out Closure result)