Freestyle Python API improvements - part 3.
Major API updates were made to address code review comments.
This revision mostly focuses on Python wrappers of C++ 0D and 1D elements (i.e.,
Interface0D and Interface1D, as well as their subclasses).
* Most getter/setter methods were reimplemented as attributes using PyGetSetDef.
Vector attributes are now implemented based on mathutils callbacks. Boolean
attributes now only accept boolean values.
* The __getitem__ method was removed and the Sequence protocol was used instead.
* The naming of methods and attributes was fixed to follow the naming conventions
of the Blender Python API (i.e., lower case + underscores for methods and attributes,
and CamelCase for classes). Some naming inconsistency within the Freestyle Python
API was also addressed.
* The Freestyle API had a number of method names including prefix/suffix "A" and
"B", and their meanings were inconsistent (i.e., referring to different things
depending on the classes). The names with these two letters were replaced with
more straightforward names. Also some attribute names were changed so as to indicate
the type of the value (e.g., FEdge.next_fedge instead of FEdge.next_edge) in line
with other names explicitly indicating what the value is (e.g., SVertex.viewvertex).
* In addition, some code clean-up was done in both C++ and Python.
Notes:
In summary, the following irregular naming changes were made through this revision
(those resulting from regular changes of naming conventions are not listed):
- CurvePoint: {A,B} --> {first,second}_svertex
- FEdge: vertex{A,B} --> {first,second}_svertex
- FEdge: {next,previous}Edge --> {next,previous}_fedge
- FEdgeSharp: normal{A,B} --> normal_{right,left}
- FEdgeSharp: {a,b}FaceMark --> face_mark_{right,left}
- FEdgeSharp: {a,b}Material --> material_{right,left}
- FEdgeSharp: {a,b}MaterialIndex --> material_index_{right,left}
- FrsCurve: empty --> is_empty
- FrsCurve: nSegments --> segments_size
- TVertex: mate() --> get_mate()
- ViewEdge: fedge{A,B} --> {first,last}_fedge
- ViewEdge: setaShape, aShape --> occlude
- ViewEdge: {A,B} --> {first,last}_viewvertex
- ViewMap: getScene3dBBox --> scene_bbox
This commit is contained in:
@@ -44,10 +44,10 @@ class pyChainSilhouetteIterator(ChainingIterator):
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
break
|
||||
it.increment()
|
||||
@@ -55,24 +55,24 @@ class pyChainSilhouetteIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for i in range(len(natures)):
|
||||
currentNature = self.getCurrentEdge().getNature()
|
||||
if(natures[i] & currentNature):
|
||||
currentNature = self.getCurrentEdge().nature
|
||||
if (natures[i] & currentNature) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
visitNext = 0
|
||||
oNature = it.getObject().getNature()
|
||||
if(oNature & natures[i] != 0):
|
||||
if(natures[i] != oNature):
|
||||
oNature = it.getObject().nature
|
||||
if (oNature & natures[i]) != 0:
|
||||
if natures[i] != oNature:
|
||||
for j in range(i):
|
||||
if(natures[j] & oNature != 0):
|
||||
if (natures[j] & oNature) != 0:
|
||||
visitNext = 1
|
||||
break
|
||||
if(visitNext != 0):
|
||||
if visitNext != 0:
|
||||
break
|
||||
count = count+1
|
||||
winner = it.getObject()
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
return winner
|
||||
@@ -96,10 +96,10 @@ class pyChainSilhouetteGenericIterator(ChainingIterator):
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
break
|
||||
it.increment()
|
||||
@@ -107,28 +107,28 @@ class pyChainSilhouetteGenericIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for i in range(len(natures)):
|
||||
currentNature = self.getCurrentEdge().getNature()
|
||||
if(natures[i] & currentNature):
|
||||
currentNature = self.getCurrentEdge().nature
|
||||
if (natures[i] & currentNature) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
visitNext = 0
|
||||
oNature = it.getObject().getNature()
|
||||
oNature = it.getObject().nature
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == self.getCurrentEdge().getId()):
|
||||
if ve.id == self.getCurrentEdge().id:
|
||||
it.increment()
|
||||
continue
|
||||
if(oNature & natures[i] != 0):
|
||||
if(natures[i] != oNature):
|
||||
if (oNature & natures[i]) != 0:
|
||||
if natures[i] != oNature:
|
||||
for j in range(i):
|
||||
if(natures[j] & oNature != 0):
|
||||
if (natures[j] & oNature) != 0:
|
||||
visitNext = 1
|
||||
break
|
||||
if(visitNext != 0):
|
||||
if visitNext != 0:
|
||||
break
|
||||
count = count+1
|
||||
winner = ve
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
return winner
|
||||
@@ -146,14 +146,14 @@ class pyExternalContourChainingIterator(ChainingIterator):
|
||||
self._isInSelection = 1
|
||||
|
||||
def checkViewEdge(self, ve, orientation):
|
||||
if(orientation != 0):
|
||||
vertex = ve.B()
|
||||
if orientation != 0:
|
||||
vertex = ve.second_svertex()
|
||||
else:
|
||||
vertex = ve.A()
|
||||
vertex = ve.first_svertex()
|
||||
it = AdjacencyIterator(vertex,1,1)
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ave = it.getObject()
|
||||
if(self._isExternalContour(ave)):
|
||||
if self._isExternalContour(ave):
|
||||
return 1
|
||||
it.increment()
|
||||
print("pyExternlContourChainingIterator : didn't find next edge")
|
||||
@@ -161,23 +161,23 @@ class pyExternalContourChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
it = AdjacencyIterator(iter)
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(self._isExternalContour(ve)):
|
||||
if (ve.getTimeStamp() == GetTimeStampCF()):
|
||||
if self._isExternalContour(ve):
|
||||
if ve.time_stamp == GetTimeStampCF():
|
||||
winner = ve
|
||||
it.increment()
|
||||
|
||||
self._nEdges = self._nEdges+1
|
||||
if(winner == None):
|
||||
if winner is None:
|
||||
orient = 1
|
||||
it = AdjacencyIterator(iter)
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(it.isIncoming() != 0):
|
||||
if it.isIncoming() != 0: # FIXME
|
||||
orient = 0
|
||||
good = self.checkViewEdge(ve,orient)
|
||||
if(good != 0):
|
||||
if good != 0:
|
||||
winner = ve
|
||||
it.increment()
|
||||
return winner
|
||||
@@ -198,10 +198,10 @@ class pySketchyChainSilhouetteIterator(ChainingIterator):
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
break
|
||||
it.increment()
|
||||
@@ -209,33 +209,33 @@ class pySketchyChainSilhouetteIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for i in range(len(natures)):
|
||||
currentNature = self.getCurrentEdge().getNature()
|
||||
if(natures[i] & currentNature):
|
||||
currentNature = self.getCurrentEdge().nature
|
||||
if (natures[i] & currentNature) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
visitNext = 0
|
||||
oNature = it.getObject().getNature()
|
||||
oNature = it.getObject().nature
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == self.getCurrentEdge().getId()):
|
||||
if ve.id == self.getCurrentEdge().id:
|
||||
it.increment()
|
||||
continue
|
||||
if(oNature & natures[i] != 0):
|
||||
if(natures[i] != oNature):
|
||||
if (oNature & natures[i]) != 0:
|
||||
if (natures[i] != oNature) != 0:
|
||||
for j in range(i):
|
||||
if(natures[j] & oNature != 0):
|
||||
if (natures[j] & oNature) != 0:
|
||||
visitNext = 1
|
||||
break
|
||||
if(visitNext != 0):
|
||||
if visitNext != 0:
|
||||
break
|
||||
count = count+1
|
||||
winner = ve
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
if(winner == None):
|
||||
if winner is None:
|
||||
winner = self.getCurrentEdge()
|
||||
if(winner.getChainingTimeStamp() == self._timeStamp):
|
||||
if winner.chaining_time_stamp == self._timeStamp:
|
||||
winner = None
|
||||
return winner
|
||||
|
||||
@@ -257,16 +257,16 @@ class pySketchyChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
it = AdjacencyIterator(iter)
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == self.getCurrentEdge().getId()):
|
||||
if ve.id == self.getCurrentEdge().id:
|
||||
it.increment()
|
||||
continue
|
||||
winner = ve
|
||||
it.increment()
|
||||
if(winner == None):
|
||||
if winner is None:
|
||||
winner = self.getCurrentEdge()
|
||||
if(winner.getChainingTimeStamp() == self._timeStamp):
|
||||
if winner.chaining_time_stamp == self._timeStamp:
|
||||
return None
|
||||
return winner
|
||||
|
||||
@@ -290,16 +290,16 @@ class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
winnerOrientation = 0
|
||||
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
|
||||
print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
@@ -309,52 +309,52 @@ class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for nat in natures:
|
||||
if(self.getCurrentEdge().getNature() & nat != 0):
|
||||
if (self.getCurrentEdge().nature & nat) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getNature() & nat != 0):
|
||||
if (ve.nature & nat) != 0:
|
||||
count = count+1
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
if(winner != None):
|
||||
if winner is not None:
|
||||
# check whether this edge was part of the selection
|
||||
if(winner.getTimeStamp() != GetTimeStampCF()):
|
||||
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
|
||||
if winner.time_stamp != GetTimeStampCF():
|
||||
#print("---", winner.id.first, winner.id.second)
|
||||
# if not, let's check whether it's short enough with
|
||||
# respect to the chain made without staying in the selection
|
||||
#------------------------------------------------------------
|
||||
# Did we compute the prospective chain length already ?
|
||||
if(self._length == 0):
|
||||
if self._length == 0:
|
||||
#if not, let's do it
|
||||
_it = pyChainSilhouetteGenericIterator(0,0)
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
_it.init()
|
||||
while(_it.isEnd() == 0):
|
||||
while not _it.isEnd():
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.increment()
|
||||
if(_it.isBegin() != 0):
|
||||
if _it.isBegin():
|
||||
break;
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
if(_it.isBegin() == 0):
|
||||
if not _it.isBegin():
|
||||
_it.decrement()
|
||||
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
|
||||
while (not _it.isEnd()) and (not _it.isBegin()):
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.decrement()
|
||||
|
||||
# let's do the comparison:
|
||||
@@ -365,12 +365,12 @@ class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
|
||||
_cit.setCurrentEdge(winner)
|
||||
_cit.setOrientation(winnerOrientation)
|
||||
_cit.init()
|
||||
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
|
||||
while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
|
||||
ve = _cit.getObject()
|
||||
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
connexl = connexl + ve.getLength2D()
|
||||
#print("-------- --------", ve.id.first, ve.id.second)
|
||||
connexl = connexl + ve.length_2d
|
||||
_cit.increment()
|
||||
if(connexl > self._percent * self._length):
|
||||
if connexl > self._percent * self._length:
|
||||
winner = None
|
||||
return winner
|
||||
|
||||
@@ -389,16 +389,16 @@ class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
winnerOrientation = 0
|
||||
#print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
|
||||
#print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
@@ -408,25 +408,25 @@ class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for nat in natures:
|
||||
if(self.getCurrentEdge().getNature() & nat != 0):
|
||||
if (self.getCurrentEdge().nature & nat) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getNature() & nat != 0):
|
||||
if (ve.nature & nat) != 0:
|
||||
count = count+1
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
if(winner != None):
|
||||
if winner is not None:
|
||||
# check whether this edge was part of the selection
|
||||
if(winner.getTimeStamp() != GetTimeStampCF()):
|
||||
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
|
||||
if winner.time_stamp != GetTimeStampCF():
|
||||
#print("---", winner.id.first, winner.id.second)
|
||||
# nw let's compute the length of this connex non selected part:
|
||||
connexl = 0
|
||||
_cit = pyChainSilhouetteGenericIterator(0,0)
|
||||
@@ -434,12 +434,12 @@ class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
|
||||
_cit.setCurrentEdge(winner)
|
||||
_cit.setOrientation(winnerOrientation)
|
||||
_cit.init()
|
||||
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
|
||||
while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
|
||||
ve = _cit.getObject()
|
||||
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
connexl = connexl + ve.getLength2D()
|
||||
#print("-------- --------", ve.id.first, ve.id.second)
|
||||
connexl = connexl + ve.length_2d
|
||||
_cit.increment()
|
||||
if(connexl > self._length):
|
||||
if connexl > self._length:
|
||||
winner = None
|
||||
return winner
|
||||
|
||||
@@ -464,16 +464,16 @@ class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
winnerOrientation = 0
|
||||
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
|
||||
print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
@@ -483,52 +483,52 @@ class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for nat in natures:
|
||||
if(self.getCurrentEdge().getNature() & nat != 0):
|
||||
if (self.getCurrentEdge().nature & nat) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getNature() & nat != 0):
|
||||
if (ve.nature & nat) != 0:
|
||||
count = count+1
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
if(winner != None):
|
||||
if winner is not None:
|
||||
# check whether this edge was part of the selection
|
||||
if(winner.getTimeStamp() != GetTimeStampCF()):
|
||||
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
|
||||
if winner.time_stamp != GetTimeStampCF():
|
||||
#print("---", winner.id.first, winner.id.second)
|
||||
# if not, let's check whether it's short enough with
|
||||
# respect to the chain made without staying in the selection
|
||||
#------------------------------------------------------------
|
||||
# Did we compute the prospective chain length already ?
|
||||
if(self._length == 0):
|
||||
if self._length == 0:
|
||||
#if not, let's do it
|
||||
_it = pyChainSilhouetteGenericIterator(0,0)
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
_it.init()
|
||||
while(_it.isEnd() == 0):
|
||||
while not _it.isEnd():
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.increment()
|
||||
if(_it.isBegin() != 0):
|
||||
if _it.isBegin():
|
||||
break;
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
if(_it.isBegin() == 0):
|
||||
if not _it.isBegin():
|
||||
_it.decrement()
|
||||
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
|
||||
while (not _it.isEnd()) and (not _it.isBegin()):
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.decrement()
|
||||
|
||||
# let's do the comparison:
|
||||
@@ -539,12 +539,12 @@ class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
_cit.setCurrentEdge(winner)
|
||||
_cit.setOrientation(winnerOrientation)
|
||||
_cit.init()
|
||||
while((_cit.isEnd() == 0) and (_cit.getObject().getTimeStamp() != GetTimeStampCF())):
|
||||
while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
|
||||
ve = _cit.getObject()
|
||||
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
connexl = connexl + ve.getLength2D()
|
||||
#print("-------- --------", ve.id.first, ve.id.second)
|
||||
connexl = connexl + ve.length_2d
|
||||
_cit.increment()
|
||||
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
|
||||
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
||||
winner = None
|
||||
return winner
|
||||
|
||||
@@ -569,16 +569,16 @@ class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
def traverse(self, iter):
|
||||
winner = None
|
||||
winnerOrientation = 0
|
||||
print(self.getCurrentEdge().getId().getFirst(), self.getCurrentEdge().getId().getSecond())
|
||||
print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getId() == mateVE.getId() ):
|
||||
if ve.id == mateVE.id:
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
@@ -588,52 +588,52 @@ class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for nat in natures:
|
||||
if(self.getCurrentEdge().getNature() & nat != 0):
|
||||
if (self.getCurrentEdge().nature & nat) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
if(ve.getNature() & nat != 0):
|
||||
if (ve.nature & nat) != 0:
|
||||
count = count+1
|
||||
winner = ve
|
||||
if(it.isIncoming() == 0):
|
||||
if it.isIncoming() == 0: # FIXME
|
||||
winnerOrientation = 1
|
||||
else:
|
||||
winnerOrientation = 0
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
if(winner != None):
|
||||
if winner is not None:
|
||||
# check whether this edge was part of the selection
|
||||
if(winner.qi() != 0):
|
||||
#print("---", winner.getId().getFirst(), winner.getId().getSecond())
|
||||
if winner.qi != 0:
|
||||
#print("---", winner.id.first, winner.id.second)
|
||||
# if not, let's check whether it's short enough with
|
||||
# respect to the chain made without staying in the selection
|
||||
#------------------------------------------------------------
|
||||
# Did we compute the prospective chain length already ?
|
||||
if(self._length == 0):
|
||||
if self._length == 0:
|
||||
#if not, let's do it
|
||||
_it = pyChainSilhouetteGenericIterator(0,0)
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
_it.init()
|
||||
while(_it.isEnd() == 0):
|
||||
while not _it.isEnd():
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.increment()
|
||||
if(_it.isBegin() != 0):
|
||||
if _it.isBegin():
|
||||
break;
|
||||
_it.setBegin(winner)
|
||||
_it.setCurrentEdge(winner)
|
||||
_it.setOrientation(winnerOrientation)
|
||||
if(_it.isBegin() == 0):
|
||||
if not _it.isBegin():
|
||||
_it.decrement()
|
||||
while ((_it.isEnd() == 0) and (_it.isBegin() == 0)):
|
||||
while (not _it.isEnd()) and (not _it.isBegin()):
|
||||
ve = _it.getObject()
|
||||
#print("--------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
self._length = self._length + ve.getLength2D()
|
||||
#print("--------", ve.id.first, ve.id.second)
|
||||
self._length = self._length + ve.length_2d
|
||||
_it.decrement()
|
||||
|
||||
# let's do the comparison:
|
||||
@@ -644,12 +644,12 @@ class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
|
||||
_cit.setCurrentEdge(winner)
|
||||
_cit.setOrientation(winnerOrientation)
|
||||
_cit.init()
|
||||
while((_cit.isEnd() == 0) and (_cit.getObject().qi() != 0)):
|
||||
while not _cit.isEnd() and _cit.getObject().qi != 0:
|
||||
ve = _cit.getObject()
|
||||
#print("-------- --------", ve.getId().getFirst(), ve.getId().getSecond())
|
||||
connexl = connexl + ve.getLength2D()
|
||||
#print("-------- --------", ve.id.first, ve.id.second)
|
||||
connexl = connexl + ve.length_2d
|
||||
_cit.increment()
|
||||
if((connexl > self._percent * self._length) or (connexl > self._absLength)):
|
||||
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
||||
winner = None
|
||||
return winner
|
||||
|
||||
@@ -671,35 +671,35 @@ class pyNoIdChainSilhouetteIterator(ChainingIterator):
|
||||
it = AdjacencyIterator(iter)
|
||||
tvertex = self.getVertex()
|
||||
if type(tvertex) is TVertex:
|
||||
mateVE = tvertex.mate(self.getCurrentEdge())
|
||||
while(it.isEnd() == 0):
|
||||
mateVE = tvertex.get_mate(self.getCurrentEdge())
|
||||
while not it.isEnd():
|
||||
ve = it.getObject()
|
||||
feB = self.getCurrentEdge().fedgeB()
|
||||
feA = ve.fedgeA()
|
||||
vB = feB.vertexB()
|
||||
vA = feA.vertexA()
|
||||
if vA.getId().getFirst() == vB.getId().getFirst():
|
||||
feB = self.getCurrentEdge().last_fedge
|
||||
feA = ve.first_fedge
|
||||
vB = feB.second_svertex
|
||||
vA = feA.first_svertex
|
||||
if vA.id.first == vB.id.first:
|
||||
winner = ve
|
||||
break
|
||||
feA = self.getCurrentEdge().fedgeA()
|
||||
feB = ve.fedgeB()
|
||||
vB = feB.vertexB()
|
||||
vA = feA.vertexA()
|
||||
if vA.getId().getFirst() == vB.getId().getFirst():
|
||||
feA = self.getCurrentEdge().first_fedge
|
||||
feB = ve.last_fedge
|
||||
vB = feB.second_svertex
|
||||
vA = feA.first_svertex
|
||||
if vA.id.first == vB.id.first:
|
||||
winner = ve
|
||||
break
|
||||
feA = self.getCurrentEdge().fedgeB()
|
||||
feB = ve.fedgeB()
|
||||
vB = feB.vertexB()
|
||||
vA = feA.vertexB()
|
||||
if vA.getId().getFirst() == vB.getId().getFirst():
|
||||
feA = self.getCurrentEdge().last_fedge
|
||||
feB = ve.last_fedge
|
||||
vB = feB.second_svertex
|
||||
vA = feA.second_svertex
|
||||
if vA.id.first == vB.id.first:
|
||||
winner = ve
|
||||
break
|
||||
feA = self.getCurrentEdge().fedgeA()
|
||||
feB = ve.fedgeA()
|
||||
vB = feB.vertexA()
|
||||
vA = feA.vertexA()
|
||||
if vA.getId().getFirst() == vB.getId().getFirst():
|
||||
feA = self.getCurrentEdge().first_fedge
|
||||
feB = ve.first_fedge
|
||||
vB = feB.first_svertex
|
||||
vA = feA.first_svertex
|
||||
if vA.id.first == vB.id.first:
|
||||
winner = ve
|
||||
break
|
||||
it.increment()
|
||||
@@ -707,24 +707,24 @@ class pyNoIdChainSilhouetteIterator(ChainingIterator):
|
||||
## case of NonTVertex
|
||||
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
||||
for i in range(len(natures)):
|
||||
currentNature = self.getCurrentEdge().getNature()
|
||||
if(natures[i] & currentNature):
|
||||
currentNature = self.getCurrentEdge().nature
|
||||
if (natures[i] & currentNature) != 0:
|
||||
count=0
|
||||
while(it.isEnd() == 0):
|
||||
while not it.isEnd():
|
||||
visitNext = 0
|
||||
oNature = it.getObject().getNature()
|
||||
if(oNature & natures[i] != 0):
|
||||
if(natures[i] != oNature):
|
||||
oNature = it.getObject().nature
|
||||
if (oNature & natures[i]) != 0:
|
||||
if natures[i] != oNature:
|
||||
for j in range(i):
|
||||
if(natures[j] & oNature != 0):
|
||||
if (natures[j] & oNature) != 0:
|
||||
visitNext = 1
|
||||
break
|
||||
if(visitNext != 0):
|
||||
if visitNext != 0:
|
||||
break
|
||||
count = count+1
|
||||
winner = it.getObject()
|
||||
it.increment()
|
||||
if(count != 1):
|
||||
if count != 1:
|
||||
winner = None
|
||||
break
|
||||
return winner
|
||||
|
||||
Reference in New Issue
Block a user