Code de-duplication in imageprocess.c -- made it use interpolation functions from blenlib

This commit is contained in:
2012-11-11 08:48:35 +00:00
parent a9eb610473
commit 92c8c2ed69
4 changed files with 196 additions and 250 deletions

View File

@@ -29,7 +29,16 @@
#ifndef BLI_MATH_INTERP
#define BLI_MATH_INTERP
void BLI_bicubic_interpolation(const float *buffer, float *output, int width, int height, int components, float u, float v);
void BLI_bilinear_interpolation(const float *buffer, float *output, int width, int height, int components, float u, float v);
void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height,
int components, float u, float v);
void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
int components, float u, float v);
void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height,
int components, float u, float v);
void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
int components, float u, float v);
#endif

View File

@@ -60,12 +60,44 @@ static float P(float k)
}
#endif
static void vector_from_float(const float *data, float vector[4], int components)
{
if (components == 1) {
vector[0] = data[0];
}
else if (components == 3) {
copy_v3_v3(vector, data);
}
else {
copy_v4_v4(vector, data);
}
}
static void vector_from_byte(const unsigned char *data, float vector[4], int components)
{
if (components == 1) {
vector[0] = data[0];
}
else if (components == 3) {
vector[0] = data[0];
vector[1] = data[1];
vector[2] = data[2];
}
else {
vector[0] = data[0];
vector[1] = data[1];
vector[2] = data[2];
vector[3] = data[3];
}
}
/* BICUBIC INTERPOLATION */
void BLI_bicubic_interpolation(const float *buffer, float *output, int width, int height, int components, float u, float v)
BLI_INLINE void bicubic_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
unsigned char *byte_output, float *float_output, int width, int height,
int components, float u, float v)
{
int i, j, n, m, x1, y1;
float a, b, w, wx, wy[4], out[4];
const float *data;
/* sample area entirely outside image? */
if (ceil(u) < 0 || floor(u) > width - 1 || ceil(v) < 0 || floor(v) > height - 1) {
@@ -92,6 +124,8 @@ void BLI_bicubic_interpolation(const float *buffer, float *output, int width, in
CLAMP(x1, 0, width - 1);
wx = P(n - a);
for (m = -1; m <= 2; m++) {
float data[4];
y1 = j + m;
CLAMP(y1, 0, height - 1);
/* normally we could do this */
@@ -99,15 +133,20 @@ void BLI_bicubic_interpolation(const float *buffer, float *output, int width, in
/* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */
w = wx * wy[m + 1];
data = buffer + width * y1 * 4 + 4 * x1;
if (float_output) {
const float *float_data = float_buffer + width * y1 * 4 + 4 * x1;
vector_from_float(float_data, data, components);
}
else {
const unsigned char *byte_data = byte_buffer + width * y1 * 4 + 4 * x1;
vector_from_byte(byte_data, data, components);
}
if (components == 1) {
out[0] += data[0] * w;
}
else if (components == 2) {
out[0] += data[0] * w;
out[1] += data[1] * w;
}
else if (components == 3) {
out[0] += data[0] * w;
out[1] += data[1] * w;
@@ -131,15 +170,22 @@ void BLI_bicubic_interpolation(const float *buffer, float *output, int width, in
x1 = i + n;
y1 = j + m;
if (x1 > 0 && x1 < width && y1 > 0 && y1 < height) {
data = in->rect_float + width * y1 * 4 + 4 * x1;
float data[4];
if (float_output) {
const float *float_data = float_buffer + width * y1 * 4 + 4 * x1;
vector_from_float(float_data, data, components);
}
else {
const unsigned char *byte_data = byte_buffer + width * y1 * 4 + 4 * x1;
vector_from_byte(byte_data, data, components);
}
if (components == 1) {
out[0] += data[0] * P(n - a) * P(b - m);
}
else if (components == 2) {
out[0] += data[0] * P(n - a) * P(b - m);
out[1] += data[1] * P(n - a) * P(b - m);
}
else if (components == 3) {
out[0] += data[0] * P(n - a) * P(b - m);
out[1] += data[1] * P(n - a) * P(b - m);
@@ -156,33 +202,54 @@ void BLI_bicubic_interpolation(const float *buffer, float *output, int width, in
}
#endif
if (components == 1) {
output[0] = out[0];
}
else if (components == 2) {
output[0] = out[0];
output[1] = out[1];
}
else if (components == 3) {
output[0] = out[0];
output[1] = out[1];
output[2] = out[2];
if (float_output) {
if (components == 1) {
float_output[0] = out[0];
}
else if (components == 3) {
copy_v3_v3(float_output, out);
}
else {
copy_v4_v4(float_output, out);
}
}
else {
output[0] = out[0];
output[1] = out[1];
output[2] = out[2];
output[3] = out[3];
if (components == 1) {
byte_output[0] = out[0];
}
else if (components == 3) {
byte_output[0] = out[0];
byte_output[1] = out[1];
byte_output[2] = out[2];
}
else {
byte_output[0] = out[0];
byte_output[1] = out[1];
byte_output[2] = out[2];
byte_output[3] = out[3];
}
}
}
/* BILINEAR INTERPOLATION */
void BLI_bilinear_interpolation(const float *buffer, float *output, int width, int height, int components, float u, float v)
void BLI_bicubic_interpolation_fl(const float *buffer, float *output, int width, int height,
int components, float u, float v)
{
bicubic_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
}
void BLI_bicubic_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
int components, float u, float v)
{
bicubic_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
}
/* BILINEAR INTERPOLATION */
BLI_INLINE void bilinear_interpolation(const unsigned char *byte_buffer, const float *float_buffer,
unsigned char *byte_output, float *float_output, int width, int height,
int components, float u, float v)
{
const float *row1, *row2, *row3, *row4;
float a, b;
float a_b, ma_b, a_mb, ma_mb;
float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f};
int y1, y2, x1, x2;
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
@@ -197,39 +264,88 @@ void BLI_bilinear_interpolation(const float *buffer, float *output, int width, i
return;
}
/* sample including outside of edges of image */
if (x1 < 0 || y1 < 0) row1 = empty;
else row1 = buffer + width * y1 * 4 + 4 * x1;
if (float_output) {
const float *row1, *row2, *row3, *row4;
float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f};
if (x1 < 0 || y2 > height - 1) row2 = empty;
else row2 = buffer + width * y2 * 4 + 4 * x1;
/* sample including outside of edges of image */
if (x1 < 0 || y1 < 0) row1 = empty;
else row1 = float_buffer + width * y1 * 4 + 4 * x1;
if (x2 > width - 1 || y1 < 0) row3 = empty;
else row3 = buffer + width * y1 * 4 + 4 * x2;
if (x1 < 0 || y2 > height - 1) row2 = empty;
else row2 = float_buffer + width * y2 * 4 + 4 * x1;
if (x2 > width - 1 || y2 > height - 1) row4 = empty;
else row4 = buffer + width * y2 * 4 + 4 * x2;
if (x2 > width - 1 || y1 < 0) row3 = empty;
else row3 = float_buffer + width * y1 * 4 + 4 * x2;
a = u - floorf(u);
b = v - floorf(v);
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
if (x2 > width - 1 || y2 > height - 1) row4 = empty;
else row4 = float_buffer + width * y2 * 4 + 4 * x2;
if (components == 1) {
output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
}
else if (components == 2) {
output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
}
else if (components == 3) {
output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
a = u - floorf(u);
b = v - floorf(v);
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
if (components == 1) {
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
}
else if (components == 3) {
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
}
else {
float_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
float_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
float_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
float_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
}
}
else {
output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
const unsigned char *row1, *row2, *row3, *row4;
unsigned char empty[4] = {0, 0, 0, 0};
/* sample including outside of edges of image */
if (x1 < 0 || y1 < 0) row1 = empty;
else row1 = byte_buffer + width * y1 * 4 + 4 * x1;
if (x1 < 0 || y2 > height - 1) row2 = empty;
else row2 = byte_buffer + width * y2 * 4 + 4 * x1;
if (x2 > width - 1 || y1 < 0) row3 = empty;
else row3 = byte_buffer + width * y1 * 4 + 4 * x2;
if (x2 > width - 1 || y2 > height - 1) row4 = empty;
else row4 = byte_buffer + width * y2 * 4 + 4 * x2;
a = u - floorf(u);
b = v - floorf(v);
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
if (components == 1) {
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
}
else if (components == 3) {
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
}
else {
byte_output[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
byte_output[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
byte_output[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
byte_output[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
}
}
}
void BLI_bilinear_interpolation_fl(const float *buffer, float *output, int width, int height,
int components, float u, float v)
{
bilinear_interpolation(NULL, buffer, NULL, output, width, height, components, u, v);
}
void BLI_bilinear_interpolation_char(const unsigned char *buffer, unsigned char *output, int width, int height,
int components, float u, float v)
{
bilinear_interpolation(buffer, NULL, output, NULL, width, height, components, u, v);
}

View File

@@ -91,11 +91,11 @@ void RenderLayersBaseProg::doInterpolation(float output[4], float x, float y, Pi
break;
case COM_PS_BILINEAR:
BLI_bilinear_interpolation(this->m_inputBuffer, output, width, height, this->m_elementsize, x, y);
BLI_bilinear_interpolation_fl(this->m_inputBuffer, output, width, height, this->m_elementsize, x, y);
break;
case COM_PS_BICUBIC:
BLI_bicubic_interpolation(this->m_inputBuffer, output, width, height, this->m_elementsize, x, y);
BLI_bicubic_interpolation_fl(this->m_inputBuffer, output, width, height, this->m_elementsize, x, y);
break;
}

View File

@@ -43,6 +43,7 @@
#include "BLI_utildefines.h"
#include "BLI_threads.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "IMB_imbuf_types.h"
#include "IMB_imbuf.h"
@@ -95,132 +96,15 @@ static void pixel_from_buffer(struct ImBuf *ibuf, unsigned char **outI, float **
*outF = ibuf->rect_float + offset;
}
/**************************************************************************
* INTERPOLATIONS
*
* Reference and docs:
* http://wiki.blender.org/index.php/User:Damiles#Interpolations_Algorithms
***************************************************************************/
/* BICUBIC Interpolation functions
* More info: http://wiki.blender.org/index.php/User:Damiles#Bicubic_pixel_interpolation
* function assumes out to be zero'ed, only does RGBA */
static float P(float k)
{
float p1, p2, p3, p4;
p1 = MAX2(k + 2.0f, 0);
p2 = MAX2(k + 1.0f, 0);
p3 = MAX2(k, 0);
p4 = MAX2(k - 1.0f, 0);
return (float)(1.0f / 6.0f) * (p1 * p1 * p1 - 4.0f * p2 * p2 * p2 + 6.0f * p3 * p3 * p3 - 4.0f * p4 * p4 * p4);
}
#if 0
/* older, slower function, works the same as above */
static float P(float k)
{
return (float)(1.0f / 6.0f) * (pow(MAX2(k + 2.0f, 0), 3.0f) - 4.0f * pow(MAX2(k + 1.0f, 0), 3.0f) + 6.0f * pow(MAX2(k, 0), 3.0f) - 4.0f * pow(MAX2(k - 1.0f, 0), 3.0f));
}
#endif
/* BICUBIC Interpolation */
void bicubic_interpolation_color(struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
{
int i, j, n, m, x1, y1;
unsigned char *dataI;
float a, b, w, wx, wy[4], outR, outG, outB, outA, *dataF;
/* sample area entirely outside image? */
if (ceil(u) < 0 || floor(u) > in->x - 1 || ceil(v) < 0 || floor(v) > in->y - 1) {
return;
}
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
i = (int)floor(u);
j = (int)floor(v);
a = u - i;
b = v - j;
outR = outG = outB = outA = 0.0f;
/* Optimized and not so easy to read */
/* avoid calling multiple times */
wy[0] = P(b - (-1));
wy[1] = P(b - 0);
wy[2] = P(b - 1);
wy[3] = P(b - 2);
for (n = -1; n <= 2; n++) {
x1 = i + n;
CLAMP(x1, 0, in->x - 1);
wx = P(n - a);
for (m = -1; m <= 2; m++) {
y1 = j + m;
CLAMP(y1, 0, in->y - 1);
/* normally we could do this */
/* w = P(n-a) * P(b-m); */
/* except that would call P() 16 times per pixel therefor pow() 64 times, better precalc these */
w = wx * wy[m + 1];
if (outF) {
dataF = in->rect_float + in->x * y1 * 4 + 4 * x1;
outR += dataF[0] * w;
outG += dataF[1] * w;
outB += dataF[2] * w;
outA += dataF[3] * w;
}
if (outI) {
dataI = (unsigned char *)in->rect + in->x * y1 * 4 + 4 * x1;
outR += dataI[0] * w;
outG += dataI[1] * w;
outB += dataI[2] * w;
outA += dataI[3] * w;
}
}
}
/* Done with optimized part */
#if 0
/* older, slower function, works the same as above */
for (n = -1; n <= 2; n++) {
for (m = -1; m <= 2; m++) {
x1 = i + n;
y1 = j + m;
if (x1 > 0 && x1 < in->x && y1 > 0 && y1 < in->y) {
if (do_float) {
dataF = in->rect_float + in->x * y1 * 4 + 4 * x1;
outR += dataF[0] * P(n - a) * P(b - m);
outG += dataF[1] * P(n - a) * P(b - m);
outB += dataF[2] * P(n - a) * P(b - m);
outA += dataF[3] * P(n - a) * P(b - m);
}
if (do_rect) {
dataI = (unsigned char *)in->rect + in->x * y1 * 4 + 4 * x1;
outR += dataI[0] * P(n - a) * P(b - m);
outG += dataI[1] * P(n - a) * P(b - m);
outB += dataI[2] * P(n - a) * P(b - m);
outA += dataI[3] * P(n - a) * P(b - m);
}
}
}
}
#endif
if (outI) {
outI[0] = (int)outR;
outI[1] = (int)outG;
outI[2] = (int)outB;
outI[3] = (int)outA;
}
if (outF) {
outF[0] = outR;
outF[1] = outG;
outF[2] = outB;
outF[3] = outA;
BLI_bicubic_interpolation_fl(in->rect_float, outF, in->x, in->y, 4, u, v);
}
else {
BLI_bicubic_interpolation_char((unsigned char*) in->rect, outI, in->x, in->y, 4, u, v);
}
}
@@ -239,77 +123,14 @@ void bicubic_interpolation(ImBuf *in, ImBuf *out, float u, float v, int xout, in
bicubic_interpolation_color(in, outI, outF, u, v);
}
/* function assumes out to be zero'ed, only does RGBA */
/* BILINEAR INTERPOLATION */
void bilinear_interpolation_color(struct ImBuf *in, unsigned char outI[4], float outF[4], float u, float v)
{
float *row1, *row2, *row3, *row4, a, b;
unsigned char *row1I, *row2I, *row3I, *row4I;
float a_b, ma_b, a_mb, ma_mb;
float empty[4] = {0.0f, 0.0f, 0.0f, 0.0f};
unsigned char emptyI[4] = {0, 0, 0, 0};
int y1, y2, x1, x2;
/* ImBuf in must have a valid rect or rect_float, assume this is already checked */
x1 = (int)floor(u);
x2 = (int)ceil(u);
y1 = (int)floor(v);
y2 = (int)ceil(v);
/* sample area entirely outside image? */
if (x2 < 0 || x1 > in->x - 1 || y2 < 0 || y1 > in->y - 1) {
return;
}
if (outF) {
/* sample including outside of edges of image */
if (x1 < 0 || y1 < 0) row1 = empty;
else row1 = in->rect_float + in->x * y1 * 4 + 4 * x1;
if (x1 < 0 || y2 > in->y - 1) row2 = empty;
else row2 = in->rect_float + in->x * y2 * 4 + 4 * x1;
if (x2 > in->x - 1 || y1 < 0) row3 = empty;
else row3 = in->rect_float + in->x * y1 * 4 + 4 * x2;
if (x2 > in->x - 1 || y2 > in->y - 1) row4 = empty;
else row4 = in->rect_float + in->x * y2 * 4 + 4 * x2;
a = u - floorf(u);
b = v - floorf(v);
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
outF[0] = ma_mb * row1[0] + a_mb * row3[0] + ma_b * row2[0] + a_b * row4[0];
outF[1] = ma_mb * row1[1] + a_mb * row3[1] + ma_b * row2[1] + a_b * row4[1];
outF[2] = ma_mb * row1[2] + a_mb * row3[2] + ma_b * row2[2] + a_b * row4[2];
outF[3] = ma_mb * row1[3] + a_mb * row3[3] + ma_b * row2[3] + a_b * row4[3];
BLI_bilinear_interpolation_fl(in->rect_float, outF, in->x, in->y, 4, u, v);
}
if (outI) {
/* sample including outside of edges of image */
if (x1 < 0 || y1 < 0) row1I = emptyI;
else row1I = (unsigned char *)in->rect + in->x * y1 * 4 + 4 * x1;
if (x1 < 0 || y2 > in->y - 1) row2I = emptyI;
else row2I = (unsigned char *)in->rect + in->x * y2 * 4 + 4 * x1;
if (x2 > in->x - 1 || y1 < 0) row3I = emptyI;
else row3I = (unsigned char *)in->rect + in->x * y1 * 4 + 4 * x2;
if (x2 > in->x - 1 || y2 > in->y - 1) row4I = emptyI;
else row4I = (unsigned char *)in->rect + in->x * y2 * 4 + 4 * x2;
a = u - floorf(u);
b = v - floorf(v);
a_b = a * b; ma_b = (1.0f - a) * b; a_mb = a * (1.0f - b); ma_mb = (1.0f - a) * (1.0f - b);
/* need to add 0.5 to avoid rounding down (causes darken with the smear brush)
* tested with white images and this should not wrap back to zero */
outI[0] = (ma_mb * row1I[0] + a_mb * row3I[0] + ma_b * row2I[0] + a_b * row4I[0]) + 0.5f;
outI[1] = (ma_mb * row1I[1] + a_mb * row3I[1] + ma_b * row2I[1] + a_b * row4I[1]) + 0.5f;
outI[2] = (ma_mb * row1I[2] + a_mb * row3I[2] + ma_b * row2I[2] + a_b * row4I[2]) + 0.5f;
outI[3] = (ma_mb * row1I[3] + a_mb * row3I[3] + ma_b * row2I[3] + a_b * row4I[3]) + 0.5f;
else {
BLI_bilinear_interpolation_char((unsigned char*) in->rect, outI, in->x, in->y, 4, u, v);
}
}