Transform Snap: Optimize edge-snap using BVH tree
changes in BLI_kdopbvh: - `BLI_bvhtree_find_nearest_to_ray` now takes is_ray_normalized and scale argument. - `BLI_bvhtree_find_nearest_to_ray_angle` has been added (use for perspective view). changes in BLI_bvhutils: - `bvhtree_from_editmesh_edges_ex` was added. changes in math_geom: - `dist_squared_ray_to_seg_v3` was added. other changes: - `do_ray_start_correction` is no longer necessary to snap to verts. - the way in which the test of depth was done before is being simulated in callbacks.
This commit is contained in:
@@ -122,6 +122,14 @@ BVHTree *bvhtree_from_mesh_verts_ex(
|
||||
const bool vert_allocated, const BLI_bitmap *mask, int verts_num_active,
|
||||
float epsilon, int tree_type, int axis);
|
||||
|
||||
BVHTree *bvhtree_from_editmesh_edges(
|
||||
BVHTreeFromEditMesh *data, struct BMEditMesh *em,
|
||||
float epsilon, int tree_type, int axis);
|
||||
BVHTree *bvhtree_from_editmesh_edges_ex(
|
||||
BVHTreeFromEditMesh *data, struct BMEditMesh *em,
|
||||
const BLI_bitmap *edges_mask, int edges_num_active,
|
||||
float epsilon, int tree_type, int axis);
|
||||
|
||||
BVHTree *bvhtree_from_mesh_edges(
|
||||
struct BVHTreeFromMesh *data, struct DerivedMesh *mesh,
|
||||
float epsilon, int tree_type, int axis);
|
||||
|
||||
@@ -590,6 +590,77 @@ BVHTree *bvhtree_from_mesh_verts_ex(
|
||||
/** \name Edge Builder
|
||||
* \{ */
|
||||
|
||||
static BVHTree *bvhtree_from_editmesh_edges_create_tree(
|
||||
float epsilon, int tree_type, int axis,
|
||||
BMEditMesh *em, const int edges_num,
|
||||
const BLI_bitmap *edges_mask, int edges_num_active)
|
||||
{
|
||||
BVHTree *tree = NULL;
|
||||
int i;
|
||||
BM_mesh_elem_table_ensure(em->bm, BM_EDGE);
|
||||
if (edges_mask) {
|
||||
BLI_assert(IN_RANGE_INCL(edges_num_active, 0, edges_num));
|
||||
}
|
||||
else {
|
||||
edges_num_active = edges_num;
|
||||
}
|
||||
|
||||
tree = BLI_bvhtree_new(edges_num_active, epsilon, tree_type, axis);
|
||||
|
||||
if (tree) {
|
||||
BMIter iter;
|
||||
BMEdge *eed;
|
||||
BM_ITER_MESH_INDEX (eed, &iter, em->bm, BM_EDGES_OF_MESH, i) {
|
||||
if (edges_mask && !BLI_BITMAP_TEST_BOOL(edges_mask, i)) {
|
||||
continue;
|
||||
}
|
||||
float co[2][3];
|
||||
copy_v3_v3(co[0], eed->v1->co);
|
||||
copy_v3_v3(co[1], eed->v2->co);
|
||||
|
||||
BLI_bvhtree_insert(tree, i, co[0], 2);
|
||||
}
|
||||
BLI_assert(BLI_bvhtree_get_size(tree) == edges_num_active);
|
||||
BLI_bvhtree_balance(tree);
|
||||
}
|
||||
|
||||
return tree;
|
||||
}
|
||||
|
||||
/* Builds a bvh tree where nodes are the edges of the given em */
|
||||
BVHTree *bvhtree_from_editmesh_edges_ex(
|
||||
BVHTreeFromEditMesh *data, BMEditMesh *em,
|
||||
const BLI_bitmap *edges_mask, int edges_num_active,
|
||||
float epsilon, int tree_type, int axis)
|
||||
{
|
||||
int edge_num = em->bm->totedge;
|
||||
|
||||
BVHTree *tree = bvhtree_from_editmesh_edges_create_tree(
|
||||
epsilon, tree_type, axis,
|
||||
em, edge_num, edges_mask, edges_num_active);
|
||||
|
||||
if (tree) {
|
||||
memset(data, 0, sizeof(*data));
|
||||
data->tree = tree;
|
||||
data->em = em;
|
||||
data->nearest_callback = NULL; /* TODO */
|
||||
data->raycast_callback = NULL; /* TODO */
|
||||
/* TODO: not urgent however since users currently define own callbacks */
|
||||
data->nearest_to_ray_callback = NULL;
|
||||
}
|
||||
|
||||
return tree;
|
||||
}
|
||||
BVHTree *bvhtree_from_editmesh_edges(
|
||||
BVHTreeFromEditMesh *data, BMEditMesh *em,
|
||||
float epsilon, int tree_type, int axis)
|
||||
{
|
||||
return bvhtree_from_editmesh_edges_ex(
|
||||
data, em,
|
||||
NULL, -1,
|
||||
epsilon, tree_type, axis);
|
||||
}
|
||||
|
||||
/* Builds a bvh tree where nodes are the edges of the given dm */
|
||||
BVHTree *bvhtree_from_mesh_edges(
|
||||
BVHTreeFromMesh *data, DerivedMesh *dm,
|
||||
|
||||
@@ -96,7 +96,8 @@ typedef void (*BVHTree_NearestPointCallback)(void *userdata, int index, const fl
|
||||
typedef void (*BVHTree_RayCastCallback)(void *userdata, int index, const BVHTreeRay *ray, BVHTreeRayHit *hit);
|
||||
|
||||
/* callback must update nearest in case it finds a nearest result */
|
||||
typedef void (*BVHTree_NearestToRayCallback)(void *userdata, int index, const BVHTreeRay *ray, BVHTreeNearest *nearest);
|
||||
typedef void (*BVHTree_NearestToRayCallback)(void *userdata, const float ray_co[3], const float ray_dir[3],
|
||||
const float scale[3], int index, BVHTreeNearest *nearest);
|
||||
|
||||
/* callback to check if 2 nodes overlap (use thread if intersection results need to be stored) */
|
||||
typedef bool (*BVHTree_OverlapCallback)(void *userdata, int index_a, int index_b, int thread);
|
||||
@@ -142,8 +143,16 @@ int BLI_bvhtree_find_nearest(
|
||||
BVHTree *tree, const float co[3], BVHTreeNearest *nearest,
|
||||
BVHTree_NearestPointCallback callback, void *userdata);
|
||||
|
||||
int BLI_bvhtree_find_nearest_to_ray_angle(
|
||||
BVHTree *tree, const float co[3], const float dir[3],
|
||||
const bool ray_is_normalized, const float scale[3],
|
||||
BVHTreeNearest *nearest,
|
||||
BVHTree_NearestToRayCallback callback, void *userdata);
|
||||
|
||||
int BLI_bvhtree_find_nearest_to_ray(
|
||||
BVHTree *tree, const float co[3], const float dir[3], BVHTreeNearest *nearest,
|
||||
BVHTree *tree, const float co[3], const float dir[3],
|
||||
const bool ray_is_normalized, const float scale[3],
|
||||
BVHTreeNearest *nearest,
|
||||
BVHTree_NearestToRayCallback callback, void *userdata);
|
||||
|
||||
int BLI_bvhtree_ray_cast_ex(
|
||||
|
||||
@@ -115,6 +115,13 @@ float dist_signed_squared_to_corner_v3v3v3(
|
||||
const float p[3],
|
||||
const float v1[3], const float v2[3], const float v3[3],
|
||||
const float axis_ref[3]);
|
||||
float dist_squared_to_ray_v3(
|
||||
const float ray_origin[3], const float ray_direction[3],
|
||||
const float co[3], float *r_depth);
|
||||
float dist_squared_ray_to_seg_v3(
|
||||
const float ray_origin[3], const float ray_direction[3],
|
||||
const float v0[3], const float v1[3],
|
||||
float r_point[3], float *r_depth);
|
||||
float closest_to_line_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]);
|
||||
float closest_to_line_v3(float r_close[3], const float p[3], const float l1[3], const float l2[3]);
|
||||
void closest_to_line_segment_v2(float r_close[2], const float p[2], const float l1[2], const float l2[2]);
|
||||
|
||||
@@ -163,12 +163,23 @@ typedef struct BVHNearestRayData {
|
||||
BVHTree *tree;
|
||||
BVHTree_NearestToRayCallback callback;
|
||||
void *userdata;
|
||||
BVHTreeRay ray;
|
||||
|
||||
struct NearestRayToAABB_Precalc nearest_precalc;
|
||||
struct {
|
||||
bool sign[3];
|
||||
float origin[3];
|
||||
float direction[3];
|
||||
|
||||
float direction_scaled_square[3];
|
||||
float inv_dir[3];
|
||||
|
||||
float cdot_axis[3];
|
||||
} ray;
|
||||
|
||||
bool pick_smallest[3];
|
||||
|
||||
BVHTreeNearest nearest;
|
||||
|
||||
float scale[3];
|
||||
} BVHNearestRayData;
|
||||
|
||||
/** \} */
|
||||
@@ -1889,32 +1900,310 @@ void BLI_bvhtree_ray_cast_all(
|
||||
|
||||
/* -------------------------------------------------------------------- */
|
||||
|
||||
/** \name BLI_bvhtree_find_nearest_to_ray
|
||||
/** \name BLI_bvhtree_find_nearest_to_ray functions
|
||||
*
|
||||
* \{ */
|
||||
|
||||
static float calc_dist_sq_to_ray(BVHNearestRayData *data, BVHNode *node)
|
||||
static void dist_squared_ray_to_aabb_scaled_v3_precalc(
|
||||
BVHNearestRayData *data,
|
||||
const float ray_origin[3], const float ray_direction[3],
|
||||
const bool ray_is_normalized, const float scale[3])
|
||||
{
|
||||
const float *bv = node->bv;
|
||||
const float bb_min[3] = {bv[0], bv[2], bv[4]};
|
||||
const float bb_max[3] = {bv[1], bv[3], bv[5]};
|
||||
return dist_squared_ray_to_aabb_v3(&data->nearest_precalc, bb_min, bb_max, data->pick_smallest);
|
||||
if (scale) {
|
||||
copy_v3_v3(data->scale, scale);
|
||||
}
|
||||
else {
|
||||
copy_v3_fl(data->scale, 1.0f);
|
||||
}
|
||||
/* un-normalize ray */
|
||||
if (ray_is_normalized && scale &&
|
||||
(data->scale[0] != 1.0f || data->scale[1] != 1.0f || data->scale[2] != 1.0f))
|
||||
{
|
||||
data->ray.direction[0] = ray_direction[0] * data->scale[0];
|
||||
data->ray.direction[1] = ray_direction[1] * data->scale[1];
|
||||
data->ray.direction[2] = ray_direction[2] * data->scale[2];
|
||||
|
||||
mul_v3_v3fl(data->ray.direction, ray_direction, 1 / len_v3(data->ray.direction));
|
||||
}
|
||||
else {
|
||||
copy_v3_v3(data->ray.direction, ray_direction);
|
||||
}
|
||||
|
||||
float dir_sq[3];
|
||||
|
||||
for (int i = 0; i < 3; i++) {
|
||||
data->ray.origin[i] = ray_origin[i];
|
||||
data->ray.inv_dir[i] = (data->ray.direction[i] != 0.0f) ?
|
||||
(1.0f / data->ray.direction[i]) : FLT_MAX;
|
||||
/* It has to be in function of `ray.inv_dir`,
|
||||
* since the division of 1 by 0.0f, can be -inf or +inf */
|
||||
data->ray.sign[i] = (data->ray.inv_dir[i] < 0.0f);
|
||||
|
||||
data->ray.direction_scaled_square[i] = data->ray.direction[i] * data->scale[i];
|
||||
|
||||
dir_sq[i] = SQUARE(data->ray.direction_scaled_square[i]);
|
||||
|
||||
data->ray.direction_scaled_square[i] *= data->scale[i];
|
||||
}
|
||||
|
||||
/* `diag_sq` Length square of each face diagonal */
|
||||
float diag_sq[3] = {
|
||||
dir_sq[1] + dir_sq[2],
|
||||
dir_sq[0] + dir_sq[2],
|
||||
dir_sq[0] + dir_sq[1],
|
||||
};
|
||||
|
||||
data->ray.cdot_axis[0] = (diag_sq[0] != 0.0f) ? data->ray.direction[0] / diag_sq[0] : FLT_MAX;
|
||||
data->ray.cdot_axis[1] = (diag_sq[1] != 0.0f) ? data->ray.direction[1] / diag_sq[1] : FLT_MAX;
|
||||
data->ray.cdot_axis[2] = (diag_sq[2] != 0.0f) ? data->ray.direction[2] / diag_sq[2] : FLT_MAX;
|
||||
}
|
||||
|
||||
static void dfs_find_nearest_to_ray_dfs(BVHNearestRayData *data, BVHNode *node)
|
||||
/**
|
||||
* Returns the squared distance from a ray to a bound-box `AABB`.
|
||||
* It is based on `fast_ray_nearest_hit` solution to obtain
|
||||
* the coordinates of the nearest edge of Bound Box to the ray
|
||||
*/
|
||||
MINLINE float dist_squared_ray_to_aabb_scaled_v3__impl(
|
||||
const BVHNearestRayData *data,
|
||||
const float bv[6], float *r_depth_sq, bool r_axis_closest[3])
|
||||
{
|
||||
|
||||
/* `tmin` is a vector that has the smaller distances to each of the
|
||||
* infinite planes of the `AABB` faces (hit in nearest face X plane,
|
||||
* nearest face Y plane and nearest face Z plane) */
|
||||
float local_bvmin[3], local_bvmax[3];
|
||||
|
||||
if (data->ray.sign[0]) {
|
||||
local_bvmin[0] = bv[1];
|
||||
local_bvmax[0] = bv[0];
|
||||
}
|
||||
else {
|
||||
local_bvmin[0] = bv[0];
|
||||
local_bvmax[0] = bv[1];
|
||||
}
|
||||
|
||||
if (data->ray.sign[1]) {
|
||||
local_bvmin[1] = bv[3];
|
||||
local_bvmax[1] = bv[2];
|
||||
}
|
||||
else {
|
||||
local_bvmin[1] = bv[2];
|
||||
local_bvmax[1] = bv[3];
|
||||
}
|
||||
|
||||
if (data->ray.sign[2]) {
|
||||
local_bvmin[2] = bv[5];
|
||||
local_bvmax[2] = bv[4];
|
||||
}
|
||||
else {
|
||||
local_bvmin[2] = bv[4];
|
||||
local_bvmax[2] = bv[5];
|
||||
}
|
||||
|
||||
sub_v3_v3(local_bvmin, data->ray.origin);
|
||||
sub_v3_v3(local_bvmax, data->ray.origin);
|
||||
|
||||
const float tmin[3] = {
|
||||
local_bvmin[0] * data->ray.inv_dir[0],
|
||||
local_bvmin[1] * data->ray.inv_dir[1],
|
||||
local_bvmin[2] * data->ray.inv_dir[2],
|
||||
};
|
||||
|
||||
/* `tmax` is a vector that has the longer distances to each of the
|
||||
* infinite planes of the `AABB` faces (hit in farthest face X plane,
|
||||
* farthest face Y plane and farthest face Z plane) */
|
||||
const float tmax[3] = {
|
||||
local_bvmax[0] * data->ray.inv_dir[0],
|
||||
local_bvmax[1] * data->ray.inv_dir[1],
|
||||
local_bvmax[2] * data->ray.inv_dir[2],
|
||||
};
|
||||
/* `v1` and `v3` is be the coordinates of the nearest `AABB` edge to the ray*/
|
||||
float v1[3], v2[3];
|
||||
/* `rtmin` is the highest value of the smaller distances. == max_axis_v3(tmin)
|
||||
* `rtmax` is the lowest value of longer distances. == min_axis_v3(tmax)*/
|
||||
float rtmin, rtmax, mul;
|
||||
/* `main_axis` is the axis equivalent to edge close to the ray */
|
||||
int main_axis;
|
||||
|
||||
r_axis_closest[0] = false;
|
||||
r_axis_closest[1] = false;
|
||||
r_axis_closest[2] = false;
|
||||
|
||||
/* *** min_axis_v3(tmax) *** */
|
||||
if ((tmax[0] <= tmax[1]) && (tmax[0] <= tmax[2])) {
|
||||
// printf("# Hit in X %s\n", data->sign[0] ? "min", "max");
|
||||
rtmax = tmax[0];
|
||||
v1[0] = v2[0] = local_bvmax[0];
|
||||
mul = local_bvmax[0] * data->ray.direction_scaled_square[0];
|
||||
main_axis = 3;
|
||||
r_axis_closest[0] = data->ray.sign[0];
|
||||
}
|
||||
else if ((tmax[1] <= tmax[0]) && (tmax[1] <= tmax[2])) {
|
||||
// printf("# Hit in Y %s\n", data->sign[1] ? "min", "max");
|
||||
rtmax = tmax[1];
|
||||
v1[1] = v2[1] = local_bvmax[1];
|
||||
mul = local_bvmax[1] * data->ray.direction_scaled_square[1];
|
||||
main_axis = 2;
|
||||
r_axis_closest[1] = data->ray.sign[1];
|
||||
}
|
||||
else {
|
||||
// printf("# Hit in Z %s\n", data->sign[2] ? "min", "max");
|
||||
rtmax = tmax[2];
|
||||
v1[2] = v2[2] = local_bvmax[2];
|
||||
mul = local_bvmax[2] * data->ray.direction_scaled_square[2];
|
||||
main_axis = 1;
|
||||
r_axis_closest[2] = data->ray.sign[2];
|
||||
}
|
||||
|
||||
/* *** max_axis_v3(tmin) *** */
|
||||
if ((tmin[0] >= tmin[1]) && (tmin[0] >= tmin[2])) {
|
||||
// printf("# To X %s\n", data->sign[0] ? "max", "min");
|
||||
rtmin = tmin[0];
|
||||
v1[0] = v2[0] = local_bvmin[0];
|
||||
mul += local_bvmin[0] * data->ray.direction_scaled_square[0];
|
||||
main_axis -= 3;
|
||||
r_axis_closest[0] = !data->ray.sign[0];
|
||||
}
|
||||
else if ((tmin[1] >= tmin[0]) && (tmin[1] >= tmin[2])) {
|
||||
// printf("# To Y %s\n", data->sign[1] ? "max", "min");
|
||||
rtmin = tmin[1];
|
||||
v1[1] = v2[1] = local_bvmin[1];
|
||||
mul += local_bvmin[1] * data->ray.direction_scaled_square[1];
|
||||
main_axis -= 1;
|
||||
r_axis_closest[1] = !data->ray.sign[1];
|
||||
}
|
||||
else {
|
||||
// printf("# To Z %s\n", data->sign[2] ? "max", "min");
|
||||
rtmin = tmin[2];
|
||||
v1[2] = v2[2] = local_bvmin[2];
|
||||
mul += local_bvmin[2] * data->ray.direction_scaled_square[2];
|
||||
main_axis -= 2;
|
||||
r_axis_closest[2] = !data->ray.sign[2];
|
||||
}
|
||||
/* *** end min/max axis *** */
|
||||
|
||||
if (main_axis < 0)
|
||||
main_axis += 3;
|
||||
|
||||
/* if rtmin < rtmax, ray intersect `AABB` */
|
||||
if (rtmin <= rtmax) {
|
||||
#ifdef IGNORE_BEHIND_RAY
|
||||
/* `if rtmax < depth_min`, the whole `AABB` is behind us */
|
||||
if (rtmax < min_depth) {
|
||||
return fallback;
|
||||
}
|
||||
#endif
|
||||
const float proj = rtmin * data->ray.direction[main_axis];
|
||||
|
||||
if (data->ray.sign[main_axis])
|
||||
r_axis_closest[main_axis] = (proj - local_bvmax[main_axis]) < (local_bvmin[main_axis] - proj);
|
||||
else
|
||||
r_axis_closest[main_axis] = (proj - local_bvmin[main_axis]) < (local_bvmax[main_axis] - proj);
|
||||
|
||||
//if (r_depth_sq)
|
||||
// *r_depth_sq = SQUARE(rtmin);
|
||||
|
||||
return 0.0f;
|
||||
}
|
||||
#ifdef IGNORE_BEHIND_RAY
|
||||
/* `if rtmin < depth_min`, the whole `AABB` is behing us */
|
||||
else if (rtmin < min_depth) {
|
||||
return fallback;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (data->ray.sign[main_axis]) {
|
||||
v1[main_axis] = local_bvmax[main_axis];
|
||||
v2[main_axis] = local_bvmin[main_axis];
|
||||
}
|
||||
else {
|
||||
v1[main_axis] = local_bvmin[main_axis];
|
||||
v2[main_axis] = local_bvmax[main_axis];
|
||||
}
|
||||
{
|
||||
/* `proj` equals to nearest point on the ray closest to the edge `v1 v2` of the `AABB`. */
|
||||
const float proj = mul * data->ray.cdot_axis[main_axis];
|
||||
float depth_sq, r_point[3];
|
||||
if (v1[main_axis] > proj) { /* the nearest point to the ray is the point v1 */
|
||||
r_axis_closest[main_axis] = true;
|
||||
/* `depth` is equivalent the distance of the the projection of v1 on the ray */
|
||||
depth_sq = mul + data->ray.direction_scaled_square[main_axis] * v1[main_axis];
|
||||
|
||||
copy_v3_v3(r_point, v1);
|
||||
}
|
||||
else if (v2[main_axis] < proj) { /* the nearest point of the ray is the point v2 */
|
||||
r_axis_closest[main_axis] = false;
|
||||
|
||||
depth_sq = mul + data->ray.direction_scaled_square[main_axis] * v2[main_axis];
|
||||
|
||||
copy_v3_v3(r_point, v2);
|
||||
}
|
||||
else { /* the nearest point of the ray is on the edge of the `AABB`. */
|
||||
r_axis_closest[main_axis] = (proj - v1[main_axis]) < (v2[main_axis] - proj);
|
||||
|
||||
depth_sq = mul + data->ray.direction_scaled_square[main_axis] * proj;
|
||||
#if 0
|
||||
r_point[0] = main_axis == 0 ? proj : v2[0];
|
||||
r_point[1] = main_axis == 1 ? proj : v2[1];
|
||||
r_point[2] = main_axis == 2 ? proj : v2[2];
|
||||
#else
|
||||
v2[main_axis] = proj;
|
||||
copy_v3_v3(r_point, v2);
|
||||
#endif
|
||||
}
|
||||
depth_sq *= depth_sq;
|
||||
|
||||
if (r_depth_sq)
|
||||
*r_depth_sq = depth_sq;
|
||||
|
||||
/* TODO: scale can be optional */
|
||||
r_point[0] *= data->scale[0];
|
||||
r_point[1] *= data->scale[1];
|
||||
r_point[2] *= data->scale[2];
|
||||
|
||||
return len_squared_v3(r_point) - depth_sq;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* <pre>
|
||||
* + r_point
|
||||
* |
|
||||
* | dist
|
||||
* |
|
||||
* +----depth----+orig <-- dir
|
||||
*
|
||||
* tangent = dist/depth
|
||||
* </pre>
|
||||
*/
|
||||
static float calc_tangent_sq(BVHNearestRayData *data, BVHNode *node)
|
||||
{
|
||||
float depth_sq;
|
||||
const float dist_sq = dist_squared_ray_to_aabb_scaled_v3__impl(
|
||||
data, node->bv, &depth_sq, data->pick_smallest);
|
||||
|
||||
return (dist_sq != 0.0f) ? (dist_sq / depth_sq) : 0.0f;
|
||||
}
|
||||
|
||||
static float calc_dist_sq_to_ray(BVHNearestRayData *data, BVHNode *node)
|
||||
{
|
||||
return dist_squared_ray_to_aabb_scaled_v3__impl(
|
||||
data, node->bv, NULL,
|
||||
data->pick_smallest);
|
||||
}
|
||||
|
||||
static void dfs_find_lowest_tangent_dfs(BVHNearestRayData *data, BVHNode *node)
|
||||
{
|
||||
if (node->totnode == 0) {
|
||||
if (data->callback) {
|
||||
data->callback(data->userdata, node->index, &data->ray, &data->nearest);
|
||||
data->callback(data->userdata, data->ray.origin, data->ray.direction,
|
||||
data->scale, node->index, &data->nearest);
|
||||
}
|
||||
else {
|
||||
const float dist_sq = calc_dist_sq_to_ray(data, node);
|
||||
if (dist_sq != FLT_MAX) { /* not an invalid ray */
|
||||
data->nearest.index = node->index;
|
||||
data->nearest.dist_sq = dist_sq;
|
||||
/* TODO: return a value to the data->nearest.co
|
||||
* not urgent however since users currently define own callbacks */
|
||||
}
|
||||
data->nearest.index = node->index;
|
||||
data->nearest.dist_sq = calc_tangent_sq(data, node);
|
||||
/* TODO: return a value to the data->nearest.co
|
||||
* not urgent however since users currently define own callbacks */
|
||||
}
|
||||
}
|
||||
else {
|
||||
@@ -1922,25 +2211,63 @@ static void dfs_find_nearest_to_ray_dfs(BVHNearestRayData *data, BVHNode *node)
|
||||
/* First pick the closest node to dive on */
|
||||
if (data->pick_smallest[node->main_axis]) {
|
||||
for (i = 0; i != node->totnode; i++) {
|
||||
if (calc_dist_sq_to_ray(data, node->children[i]) >= data->nearest.dist_sq) {
|
||||
continue;
|
||||
if (calc_tangent_sq(data, node->children[i]) < data->nearest.dist_sq) {
|
||||
dfs_find_lowest_tangent_dfs(data, node->children[i]);
|
||||
}
|
||||
dfs_find_nearest_to_ray_dfs(data, node->children[i]);
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (i = node->totnode - 1; i >= 0; i--) {
|
||||
if (calc_dist_sq_to_ray(data, node->children[i]) >= data->nearest.dist_sq) {
|
||||
continue;
|
||||
if (calc_tangent_sq(data, node->children[i]) < data->nearest.dist_sq) {
|
||||
dfs_find_lowest_tangent_dfs(data, node->children[i]);
|
||||
}
|
||||
dfs_find_nearest_to_ray_dfs(data, node->children[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int BLI_bvhtree_find_nearest_to_ray(
|
||||
BVHTree *tree, const float co[3], const float dir[3], BVHTreeNearest *nearest,
|
||||
static void dfs_find_nearest_to_ray_dfs(BVHNearestRayData *data, BVHNode *node)
|
||||
{
|
||||
if (node->totnode == 0) {
|
||||
if (data->callback) {
|
||||
data->callback(data->userdata, data->ray.origin, data->ray.direction,
|
||||
data->scale, node->index, &data->nearest);
|
||||
}
|
||||
else {
|
||||
data->nearest.index = node->index;
|
||||
data->nearest.dist_sq = calc_dist_sq_to_ray(data, node);
|
||||
/* TODO: return a value to the data->nearest.co
|
||||
* not urgent however since users currently define own callbacks */
|
||||
}
|
||||
}
|
||||
else {
|
||||
int i;
|
||||
/* First pick the closest node to dive on */
|
||||
if (data->pick_smallest[node->main_axis]) {
|
||||
for (i = 0; i != node->totnode; i++) {
|
||||
if (calc_dist_sq_to_ray(data, node->children[i]) < data->nearest.dist_sq) {
|
||||
dfs_find_nearest_to_ray_dfs(data, node->children[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (i = node->totnode - 1; i >= 0; i--) {
|
||||
if (calc_dist_sq_to_ray(data, node->children[i]) < data->nearest.dist_sq) {
|
||||
dfs_find_nearest_to_ray_dfs(data, node->children[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the point whose tangent defined by the angle between the point and ray is the lowest
|
||||
* nearest.dist_sq returns the angle's tangent
|
||||
*/
|
||||
int BLI_bvhtree_find_nearest_to_ray_angle(
|
||||
BVHTree *tree, const float co[3], const float dir[3],
|
||||
const bool ray_is_normalized, const float scale[3],
|
||||
BVHTreeNearest *nearest,
|
||||
BVHTree_NearestToRayCallback callback, void *userdata)
|
||||
{
|
||||
BVHNearestRayData data;
|
||||
@@ -1951,11 +2278,46 @@ int BLI_bvhtree_find_nearest_to_ray(
|
||||
data.callback = callback;
|
||||
data.userdata = userdata;
|
||||
|
||||
copy_v3_v3(data.ray.origin, co);
|
||||
copy_v3_v3(data.ray.direction, dir);
|
||||
data.ray.radius = 0.0f; /* unused here */
|
||||
dist_squared_ray_to_aabb_scaled_v3_precalc(&data, co, dir, ray_is_normalized, scale);
|
||||
|
||||
dist_squared_ray_to_aabb_v3_precalc(&data.nearest_precalc, co, dir);
|
||||
if (nearest) {
|
||||
memcpy(&data.nearest, nearest, sizeof(*nearest));
|
||||
}
|
||||
else {
|
||||
data.nearest.index = -1;
|
||||
data.nearest.dist_sq = FLT_MAX;
|
||||
}
|
||||
|
||||
/* dfs search */
|
||||
if (root) {
|
||||
if (calc_tangent_sq(&data, root) < data.nearest.dist_sq)
|
||||
dfs_find_lowest_tangent_dfs(&data, root);
|
||||
}
|
||||
|
||||
/* copy back results */
|
||||
if (nearest) {
|
||||
memcpy(nearest, &data.nearest, sizeof(*nearest));
|
||||
}
|
||||
|
||||
return data.nearest.index;
|
||||
}
|
||||
|
||||
/* return the nearest point to ray */
|
||||
int BLI_bvhtree_find_nearest_to_ray(
|
||||
BVHTree *tree, const float co[3], const float dir[3],
|
||||
const bool ray_is_normalized, const float scale[3],
|
||||
BVHTreeNearest *nearest,
|
||||
BVHTree_NearestToRayCallback callback, void *userdata)
|
||||
{
|
||||
BVHNearestRayData data;
|
||||
BVHNode *root = tree->nodes[tree->totleaf];
|
||||
|
||||
data.tree = tree;
|
||||
|
||||
data.callback = callback;
|
||||
data.userdata = userdata;
|
||||
|
||||
dist_squared_ray_to_aabb_scaled_v3_precalc(&data, co, dir, ray_is_normalized, scale);
|
||||
|
||||
if (nearest) {
|
||||
memcpy(&data.nearest, nearest, sizeof(*nearest));
|
||||
|
||||
@@ -572,6 +572,67 @@ float dist_signed_squared_to_corner_v3v3v3(
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* return the distance squared of a point to a ray.
|
||||
*/
|
||||
float dist_squared_to_ray_v3(
|
||||
const float ray_origin[3], const float ray_direction[3],
|
||||
const float co[3], float *r_depth)
|
||||
{
|
||||
float dvec[3];
|
||||
sub_v3_v3v3(dvec, co, ray_origin);
|
||||
*r_depth = dot_v3v3(dvec, ray_direction);
|
||||
return len_squared_v3(dvec) - SQUARE(*r_depth);
|
||||
}
|
||||
/**
|
||||
* Find the closest point in a seg to a ray and return the distance squared.
|
||||
* \param r_point : Is the point on segment closest to ray (or to ray_origin if the ray and the segment are parallel).
|
||||
* \param depth: the distance of r_point projection on ray to the ray_origin.
|
||||
*/
|
||||
float dist_squared_ray_to_seg_v3(
|
||||
const float ray_origin[3], const float ray_direction[3],
|
||||
const float v0[3], const float v1[3],
|
||||
float r_point[3], float *r_depth)
|
||||
{
|
||||
float a[3], t[3], n[3], lambda;
|
||||
sub_v3_v3v3(a, v1, v0);
|
||||
sub_v3_v3v3(t, v0, ray_origin);
|
||||
cross_v3_v3v3(n, a, ray_direction);
|
||||
const float nlen = len_squared_v3(n);
|
||||
|
||||
/* if (nlen == 0.0f) the lines are parallel,
|
||||
* has no nearest point, only distance squared.*/
|
||||
if (nlen == 0.0f) {
|
||||
/* Calculate the distance to the point v0 then */
|
||||
copy_v3_v3(r_point, v0);
|
||||
*r_depth = dot_v3v3(t, ray_direction);
|
||||
}
|
||||
else {
|
||||
float c[3], cray[3];
|
||||
sub_v3_v3v3(c, n, t);
|
||||
cross_v3_v3v3(cray, c, ray_direction);
|
||||
lambda = dot_v3v3(cray, n) / nlen;
|
||||
if (lambda <= 0) {
|
||||
copy_v3_v3(r_point, v0);
|
||||
|
||||
*r_depth = dot_v3v3(t, ray_direction);
|
||||
}
|
||||
else if (lambda >= 1) {
|
||||
copy_v3_v3(r_point, v1);
|
||||
|
||||
sub_v3_v3v3(t, v1, ray_origin);
|
||||
*r_depth = dot_v3v3(t, ray_direction);
|
||||
}
|
||||
else {
|
||||
madd_v3_v3v3fl(r_point, v0, a, lambda);
|
||||
|
||||
sub_v3_v3v3(t, r_point, ray_origin);
|
||||
*r_depth = dot_v3v3(t, ray_direction);
|
||||
}
|
||||
}
|
||||
return len_squared_v3(t) - SQUARE(*r_depth);
|
||||
}
|
||||
|
||||
/* Adapted from "Real-Time Collision Detection" by Christer Ericson,
|
||||
* published by Morgan Kaufmann Publishers, copyright 2005 Elsevier Inc.
|
||||
*
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user