fix numerous memory leaks in the math types.

fixed bug:  #1633  Memory leak in M_Mathutils_Vector

The math types ( matrix, vector, quad ) now make
copies of data passed to them rather than holding
a pointer to memory that cannot be freed, or that
may go away unexpectedly.

This also clarifies the problem of who is responsible
for freeing memory allocations.

Pre-checkin files are tagged mem_leak-1 in case this
breaks something.
This commit is contained in:
Stephen Swaney
2004-10-12 23:58:03 +00:00
parent 4e8b2babdc
commit b711409f8d
3 changed files with 205 additions and 81 deletions

View File

@@ -252,6 +252,7 @@ static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args )
{
PyObject *listObject = NULL;
PyObject *checkOb = NULL;
PyObject *retval = NULL;
int x;
float *vec;
@@ -269,7 +270,7 @@ static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args )
"2D, 3D and 4D vectors supported\n" ) );
for( x = 0; x < PyList_Size( listObject ); x++ ) {
checkOb = PyList_GetItem( listObject, x );
checkOb = PyList_GetItem( listObject, x ); /* borrowed refernce */
if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected list of numbers\n" ) );
@@ -286,8 +287,11 @@ static PyObject *M_Mathutils_Vector( PyObject * self, PyObject * args )
"python list not parseable\n" );
}
}
return ( PyObject * ) newVectorObject( vec,
PyList_Size( listObject ) );
retval = ( PyObject * ) newVectorObject( vec,
PyList_Size( listObject ) );
PyMem_Free( vec );
return retval;
}
//***************************************************************************
@@ -298,6 +302,7 @@ static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args )
VectorObject *vector;
float *vec;
int x;
PyObject *retval;
if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vector ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -308,7 +313,10 @@ static PyObject *M_Mathutils_CopyVec( PyObject * self, PyObject * args )
vec[x] = vector->vec[x];
}
return ( PyObject * ) newVectorObject( vec, vector->size );
retval = ( PyObject * ) newVectorObject( vec, vector->size );
PyMem_Free( vec );
return retval;
}
//finds perpendicular vector - only 3D is supported
@@ -326,7 +334,7 @@ static PyObject *M_Mathutils_CrossVecs( PyObject * self, PyObject * args )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"only 3D vectors are supported\n" ) );
vecCross = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
vecCross = newVectorObject( NULL, 3 );
Crossf( ( ( VectorObject * ) vecCross )->vec, vec1->vec, vec2->vec );
return vecCross;
@@ -414,6 +422,7 @@ static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args )
VectorObject *vec2;
float *vec;
int x;
PyObject *retval;
if( !PyArg_ParseTuple
( args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2 ) )
@@ -428,7 +437,10 @@ static PyObject *M_Mathutils_MidpointVecs( PyObject * self, PyObject * args )
for( x = 0; x < vec1->size; x++ ) {
vec[x] = 0.5f * ( vec1->vec[x] + vec2->vec[x] );
}
return ( PyObject * ) newVectorObject( vec, vec1->size );
retval = ( PyObject * ) newVectorObject( vec, vec1->size );
PyMem_Free( vec );
return retval;
}
//row vector multiplication
@@ -438,6 +450,7 @@ static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args )
PyObject *ob2 = NULL;
MatrixObject *mat;
VectorObject *vec;
PyObject *retval;
float *vecNew;
int x, y;
int z = 0;
@@ -467,13 +480,17 @@ static PyObject *M_Mathutils_VecMultMat( PyObject * self, PyObject * args )
dot = 0;
}
return ( PyObject * ) newVectorObject( vecNew, vec->size );
retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
PyMem_Free( vecNew );
return retval;
}
static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args )
{
VectorObject *vec1;
VectorObject *vec2;
PyObject *retval;
float *vec;
float dot = 0.0f;
float dot2 = 0.0f;
@@ -501,7 +518,10 @@ static PyObject *M_Mathutils_ProjectVecs( PyObject * self, PyObject * args )
for( x = 0; x < vec1->size; x++ ) {
vec[x] = dot * vec2->vec[x];
}
return ( PyObject * ) newVectorObject( vec, vec1->size );
retval = ( PyObject * ) newVectorObject( vec, vec1->size );
PyMem_Free( vec );
return retval;
}
//End Vector Utils
@@ -518,6 +538,7 @@ static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
PyObject *rowC = NULL;
PyObject *rowD = NULL;
PyObject *checkOb = NULL;
PyObject *retval = NULL;
int x, rowSize, colSize;
float *mat;
int OK;
@@ -570,8 +591,9 @@ static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
colSize = PyList_Size( rowA );
//check for numeric types
/* PyList_GetItem() returns borrowed ref */
for( x = 0; x < colSize; x++ ) {
checkOb = PyList_GetItem( rowA, x );
checkOb = PyList_GetItem( rowA, x );
if( !PyInt_Check( checkOb ) && !PyFloat_Check( checkOb ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"1st list - expected list of numbers\n" ) );
@@ -631,7 +653,10 @@ static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
}
}
//pass to matrix creation
return newMatrixObject( mat, rowSize, colSize );
retval = newMatrixObject( mat, rowSize, colSize );
PyMem_Free( mat);
return retval;
}
//***************************************************************************
@@ -641,7 +666,7 @@ static PyObject *M_Mathutils_Matrix( PyObject * self, PyObject * args )
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static PyObject *M_Mathutils_RotationMatrix( PyObject * self, PyObject * args )
{
PyObject *retval;
float *mat;
float angle = 0.0f;
char *axis = NULL;
@@ -781,7 +806,10 @@ static PyObject *M_Mathutils_RotationMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject( mat, matSize, matSize );
retval = newMatrixObject( mat, matSize, matSize );
PyMem_Free( mat );
return retval;
}
//***************************************************************************
@@ -792,6 +820,7 @@ static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
PyObject * args )
{
VectorObject *vec;
PyObject *retval;
float *mat;
if( !PyArg_ParseTuple( args, "O!", &vector_Type, &vec ) ) {
@@ -810,7 +839,10 @@ static PyObject *M_Mathutils_TranslationMatrix( PyObject * self,
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject( mat, 4, 4 );
retval = newMatrixObject( mat, 4, 4 );
PyMem_Free( mat );
return retval;
}
@@ -827,6 +859,7 @@ static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args )
float *mat;
float norm = 0.0f;
int x;
PyObject *retval;
if( !PyArg_ParseTuple
( args, "fi|O!", &factor, &matSize, &vector_Type, &vec ) ) {
@@ -923,7 +956,10 @@ static PyObject *M_Mathutils_ScaleMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject( mat, matSize, matSize );
retval = newMatrixObject( mat, matSize, matSize );
PyMem_Free( mat );
return retval;
}
//***************************************************************************
@@ -940,6 +976,7 @@ static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
VectorObject *vec = NULL;
float norm = 0.0f;
int x;
PyObject *retval;
if( !PyArg_ParseTuple
( args, "si|O!", &plane, &matSize, &vector_Type, &vec ) ) {
@@ -1075,7 +1112,10 @@ static PyObject *M_Mathutils_OrthoProjectionMatrix( PyObject * self,
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject( mat, matSize, matSize );
retval = newMatrixObject( mat, matSize, matSize );
PyMem_Free( mat );
return retval;
}
//***************************************************************************
@@ -1088,6 +1128,7 @@ static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args )
int matSize;
char *plane;
float *mat;
PyObject *retval;
if( !PyArg_ParseTuple( args, "sfi", &plane, &factor, &matSize ) ) {
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -1170,7 +1211,10 @@ static PyObject *M_Mathutils_ShearMatrix( PyObject * self, PyObject * args )
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject( mat, matSize, matSize );
retval = newMatrixObject( mat, matSize, matSize );
PyMem_Free( mat );
return retval;
}
//***************************************************************************
@@ -1181,6 +1225,7 @@ static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args )
MatrixObject *matrix;
float *mat;
int x, y, z;
PyObject *retval;
if( !PyArg_ParseTuple( args, "O!", &matrix_Type, &matrix ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -1197,9 +1242,12 @@ static PyObject *M_Mathutils_CopyMat( PyObject * self, PyObject * args )
}
}
return ( PyObject * ) newMatrixObject( mat, matrix->rowSize,
matrix->colSize );
retval = ( PyObject * ) newMatrixObject( mat, matrix->rowSize,
matrix->colSize );
PyMem_Free( mat );
return retval;
}
static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
{
@@ -1207,6 +1255,7 @@ static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
PyObject *ob2 = NULL;
MatrixObject *mat;
VectorObject *vec;
PyObject *retval;
float *vecNew;
int x, y;
int z = 0;
@@ -1237,7 +1286,10 @@ static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
dot = 0;
}
return ( PyObject * ) newVectorObject( vecNew, vec->size );
retval = ( PyObject * ) newVectorObject( vecNew, vec->size );
PyMem_Free( vecNew );
return retval;
}
//***************************************************************************
@@ -1247,11 +1299,12 @@ static PyObject *M_Mathutils_MatMultVec( PyObject * self, PyObject * args )
static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args )
{
PyObject *listObject;
float *vec;
float *quat;
float *vec = NULL;
float *quat = NULL;
float angle = 0.0f;
int x;
float norm;
PyObject *retval;
if( !PyArg_ParseTuple
( args, "O!|f", &PyList_Type, &listObject, &angle ) )
@@ -1289,11 +1342,15 @@ static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args )
quat[3] =
( float ) ( sin( ( double ) ( angle ) / 2 ) ) * vec[2];
PyMem_Free( vec );
return newQuaternionObject( quat );
retval = newQuaternionObject( quat );
} else
return newQuaternionObject( vec );
retval = newQuaternionObject( vec );
/* freeing a NULL ptr is ok */
PyMem_Free( vec );
PyMem_Free( quat );
return retval;
}
//***************************************************************************
@@ -1302,7 +1359,8 @@ static PyObject *M_Mathutils_Quaternion( PyObject * self, PyObject * args )
static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args )
{
QuaternionObject *quatU;
float *quat;
float *quat = NULL;
PyObject *retval;
if( !PyArg_ParseTuple( args, "O!", &quaternion_Type, &quatU ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -1314,14 +1372,17 @@ static PyObject *M_Mathutils_CopyQuat( PyObject * self, PyObject * args )
quat[2] = quatU->quat[2];
quat[3] = quatU->quat[3];
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args )
{
QuaternionObject *quatU;
QuaternionObject *quatV;
float *quat;
float *quat = NULL;
PyObject *retval;
if( !PyArg_ParseTuple( args, "O!O!", &quaternion_Type, &quatU,
&quaternion_Type, &quatV ) )
@@ -1330,14 +1391,15 @@ static PyObject *M_Mathutils_CrossQuats( PyObject * self, PyObject * args )
quat = PyMem_Malloc( 4 * sizeof( float ) );
QuatMul( quat, quatU->quat, quatV->quat );
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args )
{
QuaternionObject *quatU;
QuaternionObject *quatV;
float *quat;
int x;
float dot = 0.0f;
@@ -1346,7 +1408,6 @@ static PyObject *M_Mathutils_DotQuats( PyObject * self, PyObject * args )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
"expected Quaternion types" ) );
quat = PyMem_Malloc( 4 * sizeof( float ) );
for( x = 0; x < 4; x++ ) {
dot += quatU->quat[x] * quatV->quat[x];
}
@@ -1359,8 +1420,9 @@ static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
{
QuaternionObject *quatU;
QuaternionObject *quatV;
float *quat;
float *tempQuat;
float *quat = NULL;
float *tempQuat = NULL;
PyObject *retval;
int x;
float dot = 0.0f;
@@ -1388,14 +1450,19 @@ static PyObject *M_Mathutils_DifferenceQuats( PyObject * self,
}
QuatMul( quat, tempQuat, quatV->quat );
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
PyMem_Free( tempQuat );
return retval;
}
static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args )
{
QuaternionObject *quatU;
QuaternionObject *quatV;
float *quat;
float *quat = NULL;
PyObject *retval;
float param, x, y, cosD, sinD, deltaD, IsinD, val;
int flag, z;
@@ -1432,7 +1499,9 @@ static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args )
val = -val;
quat[z] = ( quatU->quat[z] * x ) + ( val * y );
}
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
//***************************************************************************
@@ -1442,7 +1511,8 @@ static PyObject *M_Mathutils_Slerp( PyObject * self, PyObject * args )
static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args )
{
PyObject *listObject;
float *vec;
float *vec = NULL;
PyObject *retval;
int x;
if( !PyArg_ParseTuple( args, "O!", &PyList_Type, &listObject ) )
@@ -1461,7 +1531,10 @@ static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args )
"python list not parseable\n" );
}
return ( PyObject * ) newEulerObject( vec );
retval = ( PyObject * ) newEulerObject( vec );
PyMem_Free( vec );
return retval;
}
@@ -1471,7 +1544,8 @@ static PyObject *M_Mathutils_Euler( PyObject * self, PyObject * args )
static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args )
{
EulerObject *eulU;
float *eul;
float *eul = NULL;
PyObject *retval;
if( !PyArg_ParseTuple( args, "O!", &euler_Type, &eulU ) )
return ( EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -1482,7 +1556,9 @@ static PyObject *M_Mathutils_CopyEuler( PyObject * self, PyObject * args )
eul[1] = eulU->eul[1];
eul[2] = eulU->eul[2];
return ( PyObject * ) newEulerObject( eul );
retval = ( PyObject * ) newEulerObject( eul );
PyMem_Free( eul );
return retval;
}
static PyObject *M_Mathutils_RotateEuler( PyObject * self, PyObject * args )

View File

@@ -150,14 +150,16 @@ PyObject *Quaternion_Conjugate( QuaternionObject * self )
static void Quaternion_dealloc( QuaternionObject * self )
{
PyMem_Free( self->quat );
PyObject_DEL( self );
}
static PyObject *Quaternion_getattr( QuaternionObject * self, char *name )
{
double mag = 0.0f;
float *vec;
float *vec = NULL;
int x;
PyObject *retval;
if( ELEM4( name[0], 'w', 'x', 'y', 'z' ) && name[1] == 0 ) {
return PyFloat_FromDouble( self->quat[name[0] - 'w'] );
@@ -186,7 +188,9 @@ static PyObject *Quaternion_getattr( QuaternionObject * self, char *name )
vec[x] = ( self->quat[x + 1] / ( ( float ) ( mag ) ) );
}
Normalise( vec );
return ( PyObject * ) newVectorObject( vec, 3 );
retval = ( PyObject * ) newVectorObject( vec, 3 );
PyMem_Free( vec );
return retval;
}
return Py_FindMethod( Quaternion_methods, ( PyObject * ) self, name );
}
@@ -334,7 +338,8 @@ static PyObject *Quaternion_repr( QuaternionObject * self )
PyObject *Quaternion_add( PyObject * q1, PyObject * q2 )
{
float *quat;
float *quat = NULL;
PyObject *retval;
int x;
if( ( !QuaternionObject_Check( q1 ) )
@@ -353,12 +358,15 @@ PyObject *Quaternion_add( PyObject * q1, PyObject * q2 )
( ( ( QuaternionObject * ) q2 )->quat[x] );
}
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 )
{
float *quat;
float *quat = NULL;
PyObject *retval;
int x;
if( ( !QuaternionObject_Check( q1 ) )
@@ -376,12 +384,16 @@ PyObject *Quaternion_sub( PyObject * q1, PyObject * q2 )
( ( ( QuaternionObject * ) q1 )->quat[x] ) -
( ( ( QuaternionObject * ) q2 )->quat[x] );
}
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 )
{
float *quat;
float *quat = NULL;
PyObject *retval;
int x;
if( ( !QuaternionObject_Check( q1 ) )
@@ -400,15 +412,18 @@ PyObject *Quaternion_mul( PyObject * q1, PyObject * q2 )
( ( QuaternionObject * ) q1 )->quat[x] *
( ( QuaternionObject * ) q2 )->quat[x];
}
return ( PyObject * ) newQuaternionObject( quat );
retval = ( PyObject * ) newQuaternionObject( quat );
PyMem_Free( quat );
return retval;
}
//coercion of unknown types to type QuaternionObject for numeric protocols
int Quaternion_coerce( PyObject ** q1, PyObject ** q2 )
{
long *tempI;
double *tempF;
float *quat;
long *tempI = NULL;
double *tempF = NULL;
float *quat = NULL;
int x;
if( QuaternionObject_Check( *q1 ) ) {
@@ -429,8 +444,9 @@ int Quaternion_coerce( PyObject ** q1, PyObject ** q2 )
}
PyMem_Free( tempI );
*q2 = newQuaternionObject( quat );
PyMem_Free( quat );
( ( QuaternionObject * ) * q2 )->flag = 1; //int coercion
Py_INCREF( *q1 );
Py_INCREF( *q1 ); /* fixme: is this needed? */
return 0;
} else if( PyFloat_Check( *q2 ) ) { //cast scalar to Quaternion
tempF = PyMem_Malloc( 1 *
@@ -444,14 +460,15 @@ int Quaternion_coerce( PyObject ** q1, PyObject ** q2 )
}
PyMem_Free( tempF );
*q2 = newQuaternionObject( quat );
PyMem_Free( quat );
( ( QuaternionObject * ) * q2 )->flag = 2; //float coercion
Py_INCREF( *q1 );
Py_INCREF( *q1 ); /* fixme: is this needed? */
return 0;
}
}
//unknown type or numeric cast failure
printf( "attempting quaternion operation with unsupported type...\n" );
Py_INCREF( *q1 );
Py_INCREF( *q1 ); /* fixme: is this needed? */
return 0; //operation will type check
}
} else {
@@ -514,6 +531,13 @@ PyTypeObject quaternion_Type = {
&Quaternion_SeqMethods, /*tp_as_sequence */
};
/*
newQuaternionObject
if the quat arg is not null, this method allocates memory and copies *quat into it.
we will free the memory in the dealloc routine.
*/
PyObject *newQuaternionObject( float *quat )
{
QuaternionObject *self;
@@ -523,14 +547,17 @@ PyObject *newQuaternionObject( float *quat )
self = PyObject_NEW( QuaternionObject, &quaternion_Type );
self->quat = PyMem_Malloc( 4 * sizeof( float ) );
if( !quat ) {
self->quat = PyMem_Malloc( 4 * sizeof( float ) );
for( x = 0; x < 4; x++ ) {
self->quat[x] = 0.0f;
}
self->quat[3] = 1.0f;
} else {
self->quat = quat;
for( x = 0; x < 4; x++ ) {
self->quat[x] = quat[x];
}
}
self->flag = 0;

View File

@@ -392,6 +392,7 @@ PyObject *Vector_add( PyObject * v1, PyObject * v2 )
{
float *vec;
int x;
PyObject *retval;
if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -413,15 +414,18 @@ PyObject *Vector_add( PyObject * v1, PyObject * v2 )
( ( VectorObject * ) v2 )->vec[x];
}
return ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
retval = ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
PyMem_Free( vec );
return retval;
}
PyObject *Vector_sub( PyObject * v1, PyObject * v2 )
{
float *vec;
int x;
PyObject *retval;
if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -443,15 +447,18 @@ PyObject *Vector_sub( PyObject * v1, PyObject * v2 )
( ( VectorObject * ) v2 )->vec[x];
}
return ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
retval = ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
PyMem_Free( vec );
return retval;
}
PyObject *Vector_mul( PyObject * v1, PyObject * v2 )
{
float *vec;
int x;
PyObject *retval;
if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -473,15 +480,18 @@ PyObject *Vector_mul( PyObject * v1, PyObject * v2 )
( ( VectorObject * ) v2 )->vec[x];
}
return ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
retval = ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
PyMem_Free( vec );
return retval;
}
PyObject *Vector_div( PyObject * v1, PyObject * v2 )
{
float *vec;
int x;
PyObject *retval;
if( ( !VectorObject_Check( v1 ) ) || ( !VectorObject_Check( v2 ) ) )
return EXPP_ReturnPyObjError( PyExc_TypeError,
@@ -507,9 +517,11 @@ PyObject *Vector_div( PyObject * v1, PyObject * v2 )
( ( VectorObject * ) v2 )->vec[x];
}
return ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
retval = ( PyObject * ) newVectorObject( vec,
( ( ( VectorObject * ) v1 )->
size ) );
PyMem_Free( vec );
return retval;
}
//coercion of unknown types to type VectorObject for numeric protocols
@@ -522,7 +534,7 @@ int Vector_coerce( PyObject ** v1, PyObject ** v2 )
if( VectorObject_Check( *v1 ) ) {
if( VectorObject_Check( *v2 ) ) { //two vectors
Py_INCREF( *v1 );
Py_INCREF( *v1 ); /* fixme: wahy are we bumping the ref count? */
Py_INCREF( *v2 );
return 0;
} else {
@@ -540,9 +552,8 @@ int Vector_coerce( PyObject ** v1, PyObject ** v2 )
v1 )->size ) *
sizeof( float ) );
for( x = 0;
x <
( ( ( VectorObject * ) *
v1 )->size ); x++ ) {
x < ( ( ( VectorObject * ) * v1 )->size );
x++ ) {
vec[x] = ( float ) *tempI;
}
PyMem_Free( tempI );
@@ -641,11 +652,19 @@ PyTypeObject vector_Type = {
/*
* create a Vector Object
* if vec arg is NULL
* allocate memory on python stack.
* initialize to zero in homogenous coords.
* create a Vector Object( vec, size )
*
* Note: Vector now uses copy semantics like STL containers.
* Memory for vec member is allocated on python stack.
* We own this memory and will free it later.
*
* size arg is number of floats to alloc.
*
* if vec arg is NULL
* fill our vec with zeros
* initialize 4d vectors to zero in homogenous coords.
* else
* vec param is copied into our local memory and always freed.
*/
PyObject *newVectorObject( float *vec, int size )
@@ -657,17 +676,19 @@ PyObject *newVectorObject( float *vec, int size )
self = PyObject_NEW( VectorObject, &vector_Type );
self->vec = PyMem_Malloc( size * sizeof( float ) );
self->delete_pymem = 1; /* must free this alloc later */
if( !vec ) {
self->vec = PyMem_Malloc( size * sizeof( float ) );
for( x = 0; x < size; x++ ) {
self->vec[x] = 0.0f;
}
if( size == 4 )
if( size == 4 ) /* do the homogenous thing */
self->vec[3] = 1.0f;
self->delete_pymem = 1; /* must free this alloc later */
} else {
self->vec = vec;
self->delete_pymem = 0;
for( x = 0; x < size; x++ ){
self->vec[x] = vec[x];
}
}
self->size = size;