Math Lib: Add dist_squared_ray_to_aabb_v3 utility

This commit is contained in:
2016-01-25 18:17:45 +11:00
committed by Campbell Barton
parent fea44edeea
commit bfabb9d3c5
2 changed files with 240 additions and 0 deletions

View File

@@ -284,6 +284,23 @@ bool isect_ray_aabb_v3(
const struct IsectRayAABB_Precalc *data,
const float bb_min[3], const float bb_max[3], float *tmin);
struct NearestRayToAABB_Precalc {
float ray_origin[3];
float ray_dot_axis[3];
float idot_axis[3];
float cdot_axis[3];
float idiag_sq[3];
bool sign[3];
};
void dist_squared_ray_to_aabb_v3_precalc(
struct NearestRayToAABB_Precalc *data,
const float ray_origin[3], const float ray_direction[3]);
float dist_squared_ray_to_aabb_v3(
const struct NearestRayToAABB_Precalc *data,
const float bb_min[3], const float bb_max[3],
bool r_axis_closest[3]);
/* other */
bool isect_sweeping_sphere_tri_v3(const float p1[3], const float p2[3], const float radius,
const float v0[3], const float v1[3], const float v2[3], float *r_lambda, float ipoint[3]);

View File

@@ -2254,6 +2254,229 @@ bool isect_ray_aabb_v3(
return true;
}
void dist_squared_ray_to_aabb_v3_precalc(
struct NearestRayToAABB_Precalc *data,
const float ray_origin[3], const float ray_direction[3])
{
float dir_sq[3];
for (int i = 0; i < 3; i++) {
data->ray_origin[i] = ray_origin[i];
data->ray_dot_axis[i] = ray_direction[i];
data->idot_axis[i] = (data->ray_dot_axis[i] != 0.0f) ? (1.0f / data->ray_dot_axis[i]) : FLT_MAX;
/* It has to be a function of `idot_axis`,
* since the division of 1 by 0.0f, can be -inf or +inf */
data->sign[i] = (data->idot_axis[i] < 0.0f);
dir_sq[i] = SQUARE(data->ray_dot_axis[i]);
}
/* `diag_sq` Length square of each face diagonal */
float diag_sq[3] = {
dir_sq[1] + dir_sq[2],
dir_sq[0] + dir_sq[2],
dir_sq[0] + dir_sq[1],
};
data->idiag_sq[0] = (diag_sq[0] > FLT_EPSILON) ? (1.0f / diag_sq[0]) : FLT_MAX;
data->idiag_sq[1] = (diag_sq[1] > FLT_EPSILON) ? (1.0f / diag_sq[1]) : FLT_MAX;
data->idiag_sq[2] = (diag_sq[2] > FLT_EPSILON) ? (1.0f / diag_sq[2]) : FLT_MAX;
data->cdot_axis[0] = data->ray_dot_axis[0] * data->idiag_sq[0];
data->cdot_axis[1] = data->ray_dot_axis[1] * data->idiag_sq[1];
data->cdot_axis[2] = data->ray_dot_axis[2] * data->idiag_sq[2];
}
/**
* Returns the squared distance from a ray to a bound-box `AABB`.
* It is based on `fast_ray_nearest_hit` solution to obtain
* the coordinates of the nearest edge of Bound Box to the ray
*/
float dist_squared_ray_to_aabb_v3(
const struct NearestRayToAABB_Precalc *data,
const float bb_min[3], const float bb_max[3],
bool r_axis_closest[3])
{
/* `tmin` is a vector that has the smaller distances to each of the
* infinite planes of the `AABB` faces (hit in nearest face X plane,
* nearest face Y plane and nearest face Z plane) */
float local_bvmin[3], local_bvmax[3];
if (data->sign[0] == 0) {
local_bvmin[0] = bb_min[0] - data->ray_origin[0];
local_bvmax[0] = bb_max[0] - data->ray_origin[0];
}
else {
local_bvmin[0] = bb_max[0] - data->ray_origin[0];
local_bvmax[0] = bb_min[0] - data->ray_origin[0];
}
if (data->sign[1] == 0) {
local_bvmin[1] = bb_min[1] - data->ray_origin[1];
local_bvmax[1] = bb_max[1] - data->ray_origin[1];
}
else {
local_bvmin[1] = bb_max[1] - data->ray_origin[1];
local_bvmax[1] = bb_min[1] - data->ray_origin[1];
}
if (data->sign[2] == 0) {
local_bvmin[2] = bb_min[2] - data->ray_origin[2];
local_bvmax[2] = bb_max[2] - data->ray_origin[2];
}
else {
local_bvmin[2] = bb_max[2] - data->ray_origin[2];
local_bvmax[2] = bb_min[2] - data->ray_origin[2];
}
const float tmin[3] = {
local_bvmin[0] * data->idot_axis[0],
local_bvmin[1] * data->idot_axis[1],
local_bvmin[2] * data->idot_axis[2],
};
/* `tmax` is a vector that has the longer distances to each of the
* infinite planes of the `AABB` faces (hit in farthest face X plane,
* farthest face Y plane and farthest face Z plane) */
const float tmax[3] = {
local_bvmax[0] * data->idot_axis[0],
local_bvmax[1] * data->idot_axis[1],
local_bvmax[2] * data->idot_axis[2],
};
/* `v1` and `v3` is be the coordinates of the nearest `AABB` edge to the ray*/
float v1[3], v2[3];
/* `rtmin` is the highest value of the smaller distances. == max_axis_v3(tmin)
* `rtmax` is the lowest value of longer distances. == min_axis_v3(tmax)*/
float rtmin, rtmax, mul, rdist;
/* `main_axis` is the axis equivalent to edge close to the ray;
* `id_rate` is index of `data->project_rate`. Each edge has a proportional distance to
* the distance between tmin and tmax. This proportion is stored in `data->project_rate",
* getting this value, you can get the distance between the origin and
* the nearest point on the ray to the edge:
* `(rtmax + data->project_rate[face][id_rate] * (rtmin - rtmax))` */
int main_axis;
r_axis_closest[0] = false;
r_axis_closest[1] = false;
r_axis_closest[2] = false;
/* *** min_axis_v3(tmax) *** */
if ((tmax[0] <= tmax[1]) && (tmax[0] <= tmax[2])) {
// printf("# Hit in X %s\n", data->sign[0] ? "min", "max");
rtmax = tmax[0];
v1[0] = v2[0] = local_bvmax[0];
mul = local_bvmax[0] * data->ray_dot_axis[0];
main_axis = 3;
r_axis_closest[0] = data->sign[0];
}
else if ((tmax[1] <= tmax[0]) && (tmax[1] <= tmax[2])) {
// printf("# Hit in Y %s\n", data->sign[0] ? "min", "max");
rtmax = tmax[1];
v1[1] = v2[1] = local_bvmax[1];
mul = local_bvmax[1] * data->ray_dot_axis[1];
main_axis = 2;
r_axis_closest[1] = data->sign[1];
}
else {
// printf("# Hit in Z %s\n", data->sign[0] ? "min", "max");
rtmax = tmax[2];
v1[2] = v2[2] = local_bvmax[2];
mul = local_bvmax[2] * data->ray_dot_axis[2];
main_axis = 1;
r_axis_closest[2] = data->sign[2];
}
/* *** max_axis_v3(tmin) *** */
if ((tmin[0] >= tmin[1]) && (tmin[0] >= tmin[2])) {
// printf("# To X %s\n", data->sign[0] ? "min", "max");
rtmin = tmin[0];
v1[0] = v2[0] = local_bvmin[0];
mul += local_bvmin[0] * data->ray_dot_axis[0];
main_axis -= 3;
r_axis_closest[0] = !data->sign[0];
}
else if ((tmin[1] >= tmin[0]) && (tmin[1] >= tmin[2])) {
// printf("# To Y %s\n", data->sign[0] ? "min", "max");
rtmin = tmin[1];
v1[1] = v2[1] = local_bvmin[1];
mul += local_bvmin[1] * data->ray_dot_axis[1];
main_axis -= 1;
r_axis_closest[1] = !data->sign[1];
}
else {
// printf("# To Z %s\n", data->sign[0] ? "min", "max");
rtmin = tmin[2];
v1[2] = v2[2] = local_bvmin[2];
mul += local_bvmin[2] * data->ray_dot_axis[2];
main_axis -= 2;
r_axis_closest[2] = !data->sign[2];
}
/* *** end min/max axis *** */
/* `if rtmax < 0`, the whole `AABB` is behing us */
if ((rtmax < 0.0f) && (rtmin < 0.0f)) {
return FLT_MAX;
}
if (main_axis < 0) {
main_axis += 3;
}
if (data->sign[main_axis] == 0) {
v1[main_axis] = local_bvmin[main_axis];
v2[main_axis] = local_bvmax[main_axis];
}
else {
v1[main_axis] = local_bvmax[main_axis];
v2[main_axis] = local_bvmin[main_axis];
}
/* if rtmin < rtmax, ray intersect `AABB` */
if (rtmin <= rtmax) {
const float proj = rtmin * data->ray_dot_axis[main_axis];
rdist = 0.0f;
r_axis_closest[main_axis] = (proj - v1[main_axis]) < (v2[main_axis] - proj);
}
else {
/* `proj` equals to nearest point on the ray closest to the edge `v1 v2` of the `AABB`. */
const float proj = mul * data->cdot_axis[main_axis];
float depth;
if (v1[main_axis] > proj) { /* the nearest point to the ray is the point v1 */
/* `depth` is equivalent the distance from the origin to the point v1,
* Here's a faster way to calculate the dot product of v1 and ray
* (depth = dot_v3v3(v1, data->ray.direction))*/
depth = mul + data->ray_dot_axis[main_axis] * v1[main_axis];
rdist = len_squared_v3(v1) - SQUARE(depth);
r_axis_closest[main_axis] = true;
}
else if (v2[main_axis] < proj) { /* the nearest point of the ray is the point v2 */
depth = mul + data->ray_dot_axis[main_axis] * v2[main_axis];
rdist = len_squared_v3(v2) - SQUARE(depth);
r_axis_closest[main_axis] = false;
}
else { /* the nearest point of the ray is on the edge of the `AABB`. */
float v[2];
mul *= data->idiag_sq[main_axis];
if (main_axis == 0) {
v[0] = (mul * data->ray_dot_axis[1]) - v1[1];
v[1] = (mul * data->ray_dot_axis[2]) - v1[2];
}
else if (main_axis == 1) {
v[0] = (mul * data->ray_dot_axis[0]) - v1[0];
v[1] = (mul * data->ray_dot_axis[2]) - v1[2];
}
else {
v[0] = (mul * data->ray_dot_axis[0]) - v1[0];
v[1] = (mul * data->ray_dot_axis[1]) - v1[1];
}
rdist = len_squared_v2(v);
r_axis_closest[main_axis] = (proj - v1[main_axis]) < (v2[main_axis] - proj);
}
}
return rdist;
}
/* find closest point to p on line through (l1, l2) and return lambda,
* where (0 <= lambda <= 1) when cp is in the line segment (l1, l2)
*/