Roll back changes from Big Mathutils Commit on 2005/05/20.

This commit is contained in:
Stephen Swaney
2005-05-22 17:40:00 +00:00
parent 910b0f2cda
commit ece00ff04a
19 changed files with 3697 additions and 3161 deletions

View File

@@ -1523,7 +1523,7 @@ PyObject *CreateGlobalDictionary( void )
PyDict_SetItemString( dict, "__name__", PyDict_SetItemString( dict, "__name__",
PyString_FromString( "__main__" ) ); PyString_FromString( "__main__" ) );
return EXPP_incr_ret(dict); return dict;
} }
/***************************************************************************** /*****************************************************************************

View File

@@ -46,14 +46,12 @@
#include <BSE_editaction.h> #include <BSE_editaction.h>
#include <BKE_constraint.h> #include <BKE_constraint.h>
#include <MEM_guardedalloc.h> #include <MEM_guardedalloc.h>
#include <BKE_utildefines.h>
#include "constant.h" #include "constant.h"
#include "gen_utils.h" #include "gen_utils.h"
#include "NLA.h" #include "NLA.h"
#include "quat.h" #include "quat.h"
#include "matrix.h" #include "matrix.h"
#include "vector.h" #include "vector.h"
#include "Types.h"
//--------------------Python API function prototypes for the Bone module---- //--------------------Python API function prototypes for the Bone module----
static PyObject *M_Bone_New( PyObject * self, PyObject * args ); static PyObject *M_Bone_New( PyObject * self, PyObject * args );
@@ -539,19 +537,45 @@ PyObject *Bone_CreatePyObject( struct Bone * bone )
//allocate space for python vars //allocate space for python vars
blen_bone->name = PyMem_Malloc( 32 + 1 ); blen_bone->name = PyMem_Malloc( 32 + 1 );
blen_bone->parent = PyMem_Malloc( 32 + 1 ); blen_bone->parent = PyMem_Malloc( 32 + 1 );
blen_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); blen_bone->head =
blen_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); ( VectorObject * )
blen_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); blen_bone->tail =
blen_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); ( VectorObject * )
blen_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW ); blen_bone->loc =
blen_bone->dquat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW ); ( VectorObject * )
blen_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->parmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); blen_bone->dloc =
blen_bone->defmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); ( VectorObject * )
blen_bone->irestmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->posemat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); blen_bone->size =
( VectorObject * )
newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->dsize =
( VectorObject * )
newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
blen_bone->quat =
( QuaternionObject * )
newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
blen_bone->dquat =
( QuaternionObject * )
newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
blen_bone->obmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
blen_bone->parmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
blen_bone->defmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
blen_bone->irestmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
blen_bone->posemat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
if( !updatePyBone( blen_bone ) ) if( !updatePyBone( blen_bone ) )
return EXPP_ReturnPyObjError( PyExc_AttributeError, return EXPP_ReturnPyObjError( PyExc_AttributeError,
@@ -600,19 +624,45 @@ static PyObject *M_Bone_New( PyObject * self, PyObject * args )
//allocate space for python vars //allocate space for python vars
py_bone->name = PyMem_Malloc( 32 + 1 ); py_bone->name = PyMem_Malloc( 32 + 1 );
py_bone->parent = PyMem_Malloc( 32 + 1 ); py_bone->parent = PyMem_Malloc( 32 + 1 );
py_bone->head = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); py_bone->head =
py_bone->tail = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); ( VectorObject * )
py_bone->loc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->dloc = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); py_bone->tail =
py_bone->size = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); ( VectorObject * )
py_bone->dsize = ( VectorObject *)newVectorObject( NULL, 3, Py_NEW ); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->quat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW ); py_bone->loc =
py_bone->dquat = ( QuaternionObject *)newQuaternionObject( NULL, Py_NEW ); ( VectorObject * )
py_bone->obmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->parmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); py_bone->dloc =
py_bone->defmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); ( VectorObject * )
py_bone->irestmat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->posemat = ( MatrixObject *)newMatrixObject( NULL, 4, 4 , Py_NEW); py_bone->size =
( VectorObject * )
newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->dsize =
( VectorObject * )
newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ), 3 );
py_bone->quat =
( QuaternionObject * )
newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
py_bone->dquat =
( QuaternionObject * )
newQuaternionObject( PyMem_Malloc( 4 * sizeof( float ) ) );
py_bone->obmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
py_bone->parmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
py_bone->defmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
py_bone->irestmat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
py_bone->posemat =
( MatrixObject * )
newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
//default py values //default py values
BLI_strncpy( py_bone->name, name_str, strlen( name_str ) + 1 ); BLI_strncpy( py_bone->name, name_str, strlen( name_str ) + 1 );
@@ -709,17 +759,19 @@ static PyObject *Bone_getWeight( BPy_Bone * self )
static PyObject *Bone_getHead( BPy_Bone * self ) static PyObject *Bone_getHead( BPy_Bone * self )
{ {
PyObject *attr = NULL; PyObject *attr = NULL;
float vec[3]; float *vec;
int x; int x;
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars //use python vars
vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ ) for( x = 0; x < 3; x++ )
vec[x] = self->head->vec[x]; vec[x] = self->head->vec[x];
attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW ); attr = ( PyObject * ) newVectorObject( vec, 3 );
} else { } else {
//use bone datastruct //use bone datastruct
attr = newVectorObject( NULL, 3, Py_NEW ); attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->head[0]; ( ( VectorObject * ) attr )->vec[0] = self->bone->head[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->head[1]; ( ( VectorObject * ) attr )->vec[1] = self->bone->head[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->head[2]; ( ( VectorObject * ) attr )->vec[2] = self->bone->head[2];
@@ -735,17 +787,19 @@ static PyObject *Bone_getHead( BPy_Bone * self )
static PyObject *Bone_getTail( BPy_Bone * self ) static PyObject *Bone_getTail( BPy_Bone * self )
{ {
PyObject *attr = NULL; PyObject *attr = NULL;
float vec[3]; float *vec;
int x; int x;
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars //use python vars
vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ ) for( x = 0; x < 3; x++ )
vec[x] = self->tail->vec[x]; vec[x] = self->tail->vec[x];
attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW ); attr = ( PyObject * ) newVectorObject( vec, 3 );
} else { } else {
//use bone datastruct //use bone datastruct
attr = newVectorObject( NULL, 3, Py_NEW ); attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->tail[0]; ( ( VectorObject * ) attr )->vec[0] = self->bone->tail[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->tail[1]; ( ( VectorObject * ) attr )->vec[1] = self->bone->tail[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->tail[2]; ( ( VectorObject * ) attr )->vec[2] = self->bone->tail[2];
@@ -761,17 +815,19 @@ static PyObject *Bone_getTail( BPy_Bone * self )
static PyObject *Bone_getLoc( BPy_Bone * self ) static PyObject *Bone_getLoc( BPy_Bone * self )
{ {
PyObject *attr = NULL; PyObject *attr = NULL;
float vec[3]; float *vec;
int x; int x;
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars //use python vars
vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ ) for( x = 0; x < 3; x++ )
vec[x] = self->loc->vec[x]; vec[x] = self->loc->vec[x];
attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW ); attr = ( PyObject * ) newVectorObject( vec, 3 );
} else { } else {
//use bone datastruct //use bone datastruct
attr = newVectorObject( vec, 3, Py_NEW ); attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->loc[0]; ( ( VectorObject * ) attr )->vec[0] = self->bone->loc[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->loc[1]; ( ( VectorObject * ) attr )->vec[1] = self->bone->loc[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->loc[2]; ( ( VectorObject * ) attr )->vec[2] = self->bone->loc[2];
@@ -787,17 +843,19 @@ static PyObject *Bone_getLoc( BPy_Bone * self )
static PyObject *Bone_getSize( BPy_Bone * self ) static PyObject *Bone_getSize( BPy_Bone * self )
{ {
PyObject *attr = NULL; PyObject *attr = NULL;
float vec[3]; float *vec;
int x; int x;
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars //use python vars
vec = PyMem_Malloc( 3 * sizeof( float ) );
for( x = 0; x < 3; x++ ) for( x = 0; x < 3; x++ )
vec[x] = self->size->vec[x]; vec[x] = self->size->vec[x];
attr = ( PyObject * ) newVectorObject( vec, 3, Py_NEW ); attr = ( PyObject * ) newVectorObject( vec, 3 );
} else { } else {
//use bone datastruct //use bone datastruct
attr = newVectorObject( vec, 3, Py_NEW ); attr = newVectorObject( PyMem_Malloc( 3 * sizeof( float ) ),
3 );
( ( VectorObject * ) attr )->vec[0] = self->bone->size[0]; ( ( VectorObject * ) attr )->vec[0] = self->bone->size[0];
( ( VectorObject * ) attr )->vec[1] = self->bone->size[1]; ( ( VectorObject * ) attr )->vec[1] = self->bone->size[1];
( ( VectorObject * ) attr )->vec[2] = self->bone->size[2]; ( ( VectorObject * ) attr )->vec[2] = self->bone->size[2];
@@ -813,18 +871,20 @@ static PyObject *Bone_getSize( BPy_Bone * self )
static PyObject *Bone_getQuat( BPy_Bone * self ) static PyObject *Bone_getQuat( BPy_Bone * self )
{ {
PyObject *attr = NULL; PyObject *attr = NULL;
float quat[4]; float *quat;
int x; int x;
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars - p.s. - you must return a copy or else //use python vars - p.s. - you must return a copy or else
//python will trash the internal var //python will trash the internal var
quat = PyMem_Malloc( 4 * sizeof( float ) );
for( x = 0; x < 4; x++ ) for( x = 0; x < 4; x++ )
quat[x] = self->quat->quat[x]; quat[x] = self->quat->quat[x];
attr = ( PyObject * ) newQuaternionObject( quat, Py_NEW ); attr = ( PyObject * ) newQuaternionObject( quat );
} else { } else {
//use bone datastruct //use bone datastruct
attr = newQuaternionObject( NULL, Py_NEW ); attr = newQuaternionObject( PyMem_Malloc
( 4 * sizeof( float ) ) );
( ( QuaternionObject * ) attr )->quat[0] = self->bone->quat[0]; ( ( QuaternionObject * ) attr )->quat[0] = self->bone->quat[0];
( ( QuaternionObject * ) attr )->quat[1] = self->bone->quat[1]; ( ( QuaternionObject * ) attr )->quat[1] = self->bone->quat[1];
( ( QuaternionObject * ) attr )->quat[2] = self->bone->quat[2]; ( ( QuaternionObject * ) attr )->quat[2] = self->bone->quat[2];
@@ -1625,7 +1685,7 @@ static PyObject *Bone_getRestMatrix( BPy_Bone * self, PyObject * args )
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected 'bonespace' or 'worldspace'" ) ); "expected 'bonespace' or 'worldspace'" ) );
matrix = newMatrixObject( NULL, 4, 4 , Py_NEW); matrix = newMatrixObject( PyMem_Malloc( 16 * sizeof( float ) ), 4, 4 );
if( !self->bone ) { //test to see if linked to armature if( !self->bone ) { //test to see if linked to armature
//use python vars //use python vars

File diff suppressed because it is too large Load Diff

View File

@@ -29,48 +29,14 @@
* *
* ***** END GPL/BL DUAL LICENSE BLOCK ***** * ***** END GPL/BL DUAL LICENSE BLOCK *****
*/ */
//Include this file for access to vector, quat, matrix, euler, etc...
#ifndef EXPP_Mathutils_H #ifndef EXPP_Mathutils_H
#define EXPP_Mathutils_H #define EXPP_Mathutils_H
#include <Python.h>
#include "vector.h"
#include "matrix.h"
#include "quat.h"
#include "euler.h"
#include "Types.h" #include "Types.h"
PyObject *Mathutils_Init( void ); PyObject *Mathutils_Init( void );
PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat);
PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec);
PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args);
//DEPRECATED
PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args);
PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args);
PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args);
PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args);
#endif /* EXPP_Mathutils_H */ #endif /* EXPP_Mathutils_H */

View File

@@ -58,15 +58,14 @@
#include "BLI_blenlib.h" #include "BLI_blenlib.h"
#include "BLI_arithb.h" #include "BLI_arithb.h"
#include "MEM_guardedalloc.h" #include "MEM_guardedalloc.h"
#include "BKE_utildefines.h"
#include "blendef.h" #include "blendef.h"
#include "mydevice.h" #include "mydevice.h"
#include "Object.h" #include "Object.h"
#include "vector.h"
#include "constant.h" #include "constant.h"
#include "gen_utils.h" #include "gen_utils.h"
#include "Mathutils.h"
/* only used for ob.oopsloc at the moment */ /* only used for ob.oopsloc at the moment */
#include "DNA_oops_types.h" #include "DNA_oops_types.h"
@@ -760,11 +759,12 @@ static PyObject *NMVert_getattr( PyObject * self, char *name )
BPy_NMVert *mv = ( BPy_NMVert * ) self; BPy_NMVert *mv = ( BPy_NMVert * ) self;
if( !strcmp( name, "co" ) || !strcmp( name, "loc" ) ) if( !strcmp( name, "co" ) || !strcmp( name, "loc" ) )
return newVectorObject(mv->co,3,Py_WRAP); return newVectorProxy( mv->co, 3 );
else if( strcmp( name, "no" ) == 0 ) else if( strcmp( name, "no" ) == 0 )
return newVectorObject(mv->no,3,Py_WRAP); return newVectorProxy( mv->no, 3 );
else if( strcmp( name, "uvco" ) == 0 ) else if( strcmp( name, "uvco" ) == 0 )
return newVectorObject(mv->uvco,3,Py_WRAP); return newVectorProxy( mv->uvco, 3 );
else if( strcmp( name, "index" ) == 0 ) else if( strcmp( name, "index" ) == 0 )
return PyInt_FromLong( mv->index ); return PyInt_FromLong( mv->index );
else if( strcmp( name, "sel" ) == 0 ) else if( strcmp( name, "sel" ) == 0 )

View File

@@ -59,7 +59,6 @@
#include "Ipo.h" #include "Ipo.h"
#include "Lattice.h" #include "Lattice.h"
#include "modules.h" #include "modules.h"
#include "Mathutils.h"
#include "constant.h" #include "constant.h"
/* only used for oops location get/set at the moment */ /* only used for oops location get/set at the moment */
@@ -647,14 +646,14 @@ PyObject *M_Object_New( PyObject * self, PyObject * args )
object->dupend = 100; object->dupend = 100;
/* Gameengine defaults */ /* Gameengine defaults */
object->mass = 1.0f; object->mass = 1.0;
object->inertia = 1.0f; object->inertia = 1.0;
object->formfactor = 0.4f; object->formfactor = 0.4;
object->damping = 0.04f; object->damping = 0.04;
object->rdamping = 0.1f; object->rdamping = 0.1;
object->anisotropicFriction[0] = 1.0f; object->anisotropicFriction[0] = 1.0;
object->anisotropicFriction[1] = 1.0f; object->anisotropicFriction[1] = 1.0;
object->anisotropicFriction[2] = 1.0f; object->anisotropicFriction[2] = 1.0;
object->gameflag = OB_PROP; object->gameflag = OB_PROP;
object->lay = 1; // Layer, by default visible object->lay = 1; // Layer, by default visible
@@ -1115,20 +1114,21 @@ static PyObject *Object_getDrawType( BPy_Object * self )
static PyObject *Object_getEuler( BPy_Object * self ) static PyObject *Object_getEuler( BPy_Object * self )
{ {
float eul[3]; EulerObject *eul;
eul[0] = self->object->rot[0]; eul = ( EulerObject * ) newEulerObject( NULL );
eul[1] = self->object->rot[1]; eul->eul[0] = self->object->rot[0];
eul[2] = self->object->rot[2]; eul->eul[1] = self->object->rot[1];
eul->eul[2] = self->object->rot[2];
return ( PyObject * ) newEulerObject( eul, Py_WRAP ); return ( PyObject * ) eul;
} }
static PyObject *Object_getInverseMatrix( BPy_Object * self ) static PyObject *Object_getInverseMatrix( BPy_Object * self )
{ {
MatrixObject *inverse = MatrixObject *inverse =
( MatrixObject * ) newMatrixObject( NULL, 4, 4, Py_NEW); ( MatrixObject * ) newMatrixObject( NULL, 4, 4 );
Mat4Invert( (float ( * )[4])*inverse->matrix, self->object->obmat ); Mat4Invert( (float ( * )[4])*inverse->matrix, self->object->obmat );
return ( ( PyObject * ) inverse ); return ( ( PyObject * ) inverse );
@@ -1175,29 +1175,35 @@ static PyObject *Object_getMaterials( BPy_Object * self, PyObject * args )
static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args ) static PyObject *Object_getMatrix( BPy_Object * self, PyObject * args )
{ {
float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, PyObject *matrix;
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
char *space = "worldspace"; /* default to world */ char *space = "worldspace"; /* default to world */
if( !PyArg_ParseTuple( args, "|s", &space ) ) { if( !PyArg_ParseTuple( args, "|s", &space ) ) {
return ( EXPP_ReturnPyObjError( PyExc_AttributeError, return ( EXPP_ReturnPyObjError( PyExc_AttributeError,
"expected a string or nothing" ) ); "expected a string or nothing" ) );
} }
//new matrix
matrix = newMatrixObject( NULL, 4, 4 );
if( BLI_streq( space, "worldspace" ) ) { /* Worldspace matrix */ if( BLI_streq( space, "worldspace" ) ) { /* Worldspace matrix */
disable_where_script( 1 ); disable_where_script( 1 );
where_is_object( self->object ); where_is_object( self->object );
disable_where_script( 0 ); disable_where_script( 0 );
Mat4CpyMat4((float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
self->object->obmat );
} else if( BLI_streq( space, "localspace" ) ) { /* Localspace matrix */ } else if( BLI_streq( space, "localspace" ) ) { /* Localspace matrix */
object_to_mat4( self->object, (float (*)[4])matrix ); object_to_mat4( self->object,
return newMatrixObject(matrix,4,4,Py_NEW); ( float ( * )[4] ) *( ( MatrixObject * ) matrix )->matrix );
} else if( BLI_streq( space, "old_worldspace" ) ) {
/* old behavior, prior to 2.34, check this method's doc string: */ /* old behavior, prior to 2.34, check this method's doc string: */
} else if( BLI_streq( space, "old_worldspace" ) ) {
Mat4CpyMat4( (float ( * )[4]) *( ( MatrixObject * ) matrix )->matrix,
self->object->obmat );
} else { } else {
return ( EXPP_ReturnPyObjError( PyExc_RuntimeError, return ( EXPP_ReturnPyObjError( PyExc_RuntimeError,
"wrong parameter, expected nothing or either 'worldspace' (default),\n\ "wrong parameter, expected nothing or either 'worldspace' (default),\n\
'localspace' or 'old_worldspace'" ) ); 'localspace' or 'old_worldspace'" ) );
} }
return newMatrixObject((float*)self->object->obmat,4,4,Py_WRAP); return matrix;
} }
static PyObject *Object_getName( BPy_Object * self ) static PyObject *Object_getName( BPy_Object * self )
@@ -1379,7 +1385,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
does not have its own memory, does not have its own memory,
we must create vectors that allocate space */ we must create vectors that allocate space */
vector = newVectorObject( NULL, 3, Py_NEW); vector = newVectorObject( NULL, 3 );
memcpy( ( ( VectorObject * ) vector )->vec, memcpy( ( ( VectorObject * ) vector )->vec,
tmpvec, 3 * sizeof( float ) ); tmpvec, 3 * sizeof( float ) );
PyList_SET_ITEM( bbox, i, vector ); PyList_SET_ITEM( bbox, i, vector );
@@ -1400,7 +1406,7 @@ static PyObject *Object_getBoundBox( BPy_Object * self )
/* create vectors referencing object bounding box coords */ /* create vectors referencing object bounding box coords */
for( i = 0; i < 8; i++ ) { for( i = 0; i < 8; i++ ) {
vector = newVectorObject( vec, 3, Py_WRAP ); vector = newVectorObject( vec, 3 );
PyList_SET_ITEM( bbox, i, vector ); PyList_SET_ITEM( bbox, i, vector );
vec += 3; vec += 3;
} }
@@ -3917,18 +3923,17 @@ int setupSB(Object* ob){
} }
if(ob->soft){ if(ob->soft){
ob->soft->nodemass = 1.0f; ob->soft->nodemass = 1.0;
ob->soft->grav = 0.0f; ob->soft->grav = 0.0;
ob->soft->mediafrict = 0.5f; ob->soft->mediafrict = 0.5;
ob->soft->rklimit = 0.1f; ob->soft->rklimit = 0.1;
ob->soft->goalspring = 0.5f; ob->soft->goalspring = 0.5;
ob->soft->goalfrict = 0.0f; ob->soft->goalfrict = 0.0;
ob->soft->mingoal = 0.0f; ob->soft->mingoal = 0.0;
ob->soft->maxgoal = 1.0f; ob->soft->maxgoal = 1.0;
ob->soft->inspring = 0.5f; ob->soft->inspring = 0.5;
ob->soft->infrict = 0.5f; ob->soft->infrict = 0.5;
ob->soft->defgoal = 0.7f; ob->soft->defgoal = 0.7;
return 1; return 1;
} }
else { else {

View File

@@ -33,6 +33,7 @@
#ifndef EXPP_OBJECT_H #ifndef EXPP_OBJECT_H
#define EXPP_OBJECT_H #define EXPP_OBJECT_H
#include <Python.h>
#include <stdio.h> #include <stdio.h>
#include <BDR_editobject.h> #include <BDR_editobject.h>
#include <BKE_armature.h> #include <BKE_armature.h>
@@ -59,7 +60,10 @@
#include <DNA_action_types.h> #include <DNA_action_types.h>
#include "gen_utils.h" #include "gen_utils.h"
#include "vector.h"
#include "matrix.h"
#include "euler.h"
#include "quat.h"
/* The Object PyType Object defined in Object.c */ /* The Object PyType Object defined in Object.c */
extern PyTypeObject Object_Type; extern PyTypeObject Object_Type;

View File

@@ -57,7 +57,6 @@ void types_InitAll( void )
CurNurb_Type.ob_type = &PyType_Type; CurNurb_Type.ob_type = &PyType_Type;
Curve_Type.ob_type = &PyType_Type; Curve_Type.ob_type = &PyType_Type;
Effect_Type.ob_type = &PyType_Type; Effect_Type.ob_type = &PyType_Type;
Font_Type.ob_type = &PyType_Type;
Image_Type.ob_type = &PyType_Type; Image_Type.ob_type = &PyType_Type;
Ipo_Type.ob_type = &PyType_Type; Ipo_Type.ob_type = &PyType_Type;
IpoCurve_Type.ob_type = &PyType_Type; IpoCurve_Type.ob_type = &PyType_Type;

View File

@@ -830,7 +830,7 @@ static PyObject *M_Window_GetViewMatrix( PyObject * self )
viewmat = viewmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->viewmat, 4, ( PyObject * ) newMatrixObject( ( float * ) G.vd->viewmat, 4,
4, Py_WRAP ); 4 );
if( !viewmat ) if( !viewmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError, return EXPP_ReturnPyObjError( PyExc_MemoryError,
@@ -854,7 +854,7 @@ static PyObject *M_Window_GetPerspMatrix( PyObject * self )
perspmat = perspmat =
( PyObject * ) newMatrixObject( ( float * ) G.vd->persmat, 4, ( PyObject * ) newMatrixObject( ( float * ) G.vd->persmat, 4,
4, Py_WRAP); 4 );
if( !perspmat ) if( !perspmat )
return EXPP_ReturnPyObjError( PyExc_MemoryError, return EXPP_ReturnPyObjError( PyExc_MemoryError,

View File

@@ -29,385 +29,329 @@
* ***** END GPL/BL DUAL LICENSE BLOCK ***** * ***** END GPL/BL DUAL LICENSE BLOCK *****
*/ */
#include <BLI_arithb.h> #include "euler.h"
#include <BKE_utildefines.h>
#include "Mathutils.h"
#include "gen_utils.h"
//-------------------------DOC STRINGS --------------------------- //doc strings
char Euler_Zero_doc[] = "() - set all values in the euler to 0"; char Euler_Zero_doc[] = "() - set all values in the euler to 0";
char Euler_Unique_doc[] ="() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock"; char Euler_Unique_doc[] =
char Euler_ToMatrix_doc[] = "() - returns a rotation matrix representing the euler rotation"; "() - sets the euler rotation a unique shortest arc rotation - tests for gimbal lock";
char Euler_ToQuat_doc[] = "() - returns a quaternion representing the euler rotation"; char Euler_ToMatrix_doc[] =
char Euler_Rotate_doc[] = "() - rotate a euler by certain amount around an axis of rotation"; "() - returns a rotation matrix representing the euler rotation";
//-----------------------METHOD DEFINITIONS ---------------------- char Euler_ToQuat_doc[] =
"() - returns a quaternion representing the euler rotation";
//methods table
struct PyMethodDef Euler_methods[] = { struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_Zero, METH_NOARGS, Euler_Zero_doc}, {"zero", ( PyCFunction ) Euler_Zero, METH_NOARGS,
{"unique", (PyCFunction) Euler_Unique, METH_NOARGS, Euler_Unique_doc}, Euler_Zero_doc},
{"toMatrix", (PyCFunction) Euler_ToMatrix, METH_NOARGS, Euler_ToMatrix_doc}, {"unique", ( PyCFunction ) Euler_Unique, METH_NOARGS,
{"toQuat", (PyCFunction) Euler_ToQuat, METH_NOARGS, Euler_ToQuat_doc}, Euler_Unique_doc},
{"rotate", (PyCFunction) Euler_Rotate, METH_VARARGS, Euler_Rotate_doc}, {"toMatrix", ( PyCFunction ) Euler_ToMatrix, METH_NOARGS,
Euler_ToMatrix_doc},
{"toQuat", ( PyCFunction ) Euler_ToQuat, METH_NOARGS,
Euler_ToQuat_doc},
{NULL, NULL, 0, NULL} {NULL, NULL, 0, NULL}
}; };
//-----------------------------METHODS----------------------------
//----------------------------Euler.toQuat()---------------------- /*****************************/
//return a quaternion representation of the euler // Euler Python Object
PyObject *Euler_ToQuat(EulerObject * self) /*****************************/
//euler methods
PyObject *Euler_ToQuat( EulerObject * self )
{ {
float eul[3]; float *quat;
float quat[4];
int x; int x;
for(x = 0; x < 3; x++) { for( x = 0; x < 3; x++ ) {
eul[x] = self->eul[x] * ((float)Py_PI / 180); self->eul[x] *= ( float ) ( Py_PI / 180 );
} }
EulToQuat(eul, quat); quat = PyMem_Malloc( 4 * sizeof( float ) );
if(self->data.blend_data) EulToQuat( self->eul, quat );
return (PyObject *) newQuaternionObject(quat, Py_WRAP); for( x = 0; x < 3; x++ ) {
else self->eul[x] *= ( float ) ( 180 / Py_PI );
return (PyObject *) newQuaternionObject(quat, Py_NEW); }
return ( PyObject * ) newQuaternionObject( quat );
} }
//----------------------------Euler.toMatrix()---------------------
//return a matrix representation of the euler PyObject *Euler_ToMatrix( EulerObject * self )
PyObject *Euler_ToMatrix(EulerObject * self)
{ {
float eul[3]; float *mat;
float mat[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
int x; int x;
for(x = 0; x < 3; x++) { for( x = 0; x < 3; x++ ) {
eul[x] = self->eul[x] * ((float)Py_PI / 180); self->eul[x] *= ( float ) ( Py_PI / 180 );
} }
EulToMat3(eul, (float (*)[3]) mat); mat = PyMem_Malloc( 3 * 3 * sizeof( float ) );
if(self->data.blend_data) EulToMat3( self->eul, ( float ( * )[3] ) mat );
return (PyObject *) newMatrixObject(mat, 3, 3 , Py_WRAP); for( x = 0; x < 3; x++ ) {
else self->eul[x] *= ( float ) ( 180 / Py_PI );
return (PyObject *) newMatrixObject(mat, 3, 3 , Py_NEW); }
return ( PyObject * ) newMatrixObject( mat, 3, 3 );
} }
//----------------------------Euler.unique()-----------------------
//sets the x,y,z values to a unique euler rotation PyObject *Euler_Unique( EulerObject * self )
PyObject *Euler_Unique(EulerObject * self)
{ {
double heading, pitch, bank; float heading, pitch, bank;
double pi2 = Py_PI * 2.0f; float pi2 = ( float ) Py_PI * 2.0f;
double piO2 = Py_PI / 2.0f; float piO2 = ( float ) Py_PI / 2.0f;
double Opi2 = 1.0f / pi2; float Opi2 = 1.0f / pi2;
//radians //radians
heading = self->eul[0] * (float)Py_PI / 180; heading = self->eul[0] * ( float ) ( Py_PI / 180 );
pitch = self->eul[1] * (float)Py_PI / 180; pitch = self->eul[1] * ( float ) ( Py_PI / 180 );
bank = self->eul[2] * (float)Py_PI / 180; bank = self->eul[2] * ( float ) ( Py_PI / 180 );
//wrap heading in +180 / -180 //wrap heading in +180 / -180
pitch += Py_PI; pitch += ( float ) Py_PI;
pitch -= floor(pitch * Opi2) * pi2; pitch -= ( float ) floor( pitch * Opi2 ) * pi2;
pitch -= Py_PI; pitch -= ( float ) Py_PI;
if(pitch < -piO2) { if( pitch < -piO2 ) {
pitch = -Py_PI - pitch; pitch = ( float ) -Py_PI - pitch;
heading += Py_PI; heading += ( float ) Py_PI;
bank += Py_PI; bank += ( float ) Py_PI;
} else if(pitch > piO2) { } else if( pitch > piO2 ) {
pitch = Py_PI - pitch; pitch = ( float ) Py_PI - pitch;
heading += Py_PI; heading += ( float ) Py_PI;
bank += Py_PI; bank += ( float ) Py_PI;
} }
//gimbal lock test //gimbal lock test
if(fabs(pitch) > piO2 - 1e-4) { if( fabs( pitch ) > piO2 - 1e-4 ) {
heading += bank; heading += bank;
bank = 0.0f; bank = 0.0f;
} else { } else {
bank += Py_PI; bank += ( float ) Py_PI;
bank -= (floor(bank * Opi2)) * pi2; bank -= ( float ) ( floor( bank * Opi2 ) ) * pi2;
bank -= Py_PI; bank -= ( float ) Py_PI;
} }
heading += Py_PI; heading += ( float ) Py_PI;
heading -= (floor(heading * Opi2)) * pi2; heading -= ( float ) ( floor( heading * Opi2 ) ) * pi2;
heading -= Py_PI; heading -= ( float ) Py_PI;
//back to degrees //back to degrees
self->eul[0] = heading * 180 / (float)Py_PI; self->eul[0] = heading * ( float ) ( 180 / Py_PI );
self->eul[1] = pitch * 180 / (float)Py_PI; self->eul[1] = pitch * ( float ) ( 180 / Py_PI );
self->eul[2] = bank * 180 / (float)Py_PI; self->eul[2] = bank * ( float ) ( 180 / Py_PI );
return (PyObject*)self; return EXPP_incr_ret( Py_None );
} }
//----------------------------Euler.zero()-------------------------
//sets the euler to 0,0,0 PyObject *Euler_Zero( EulerObject * self )
PyObject *Euler_Zero(EulerObject * self)
{ {
self->eul[0] = 0.0; self->eul[0] = 0.0;
self->eul[1] = 0.0; self->eul[1] = 0.0;
self->eul[2] = 0.0; self->eul[2] = 0.0;
return (PyObject*)self; return EXPP_incr_ret( Py_None );
} }
//----------------------------Euler.rotate()-----------------------
//rotates a euler a certain amount and returns the result static void Euler_dealloc( EulerObject * self )
//should return a unique euler rotation (i.e. no 720 degree pitches :)
PyObject *Euler_Rotate(EulerObject * self, PyObject *args)
{ {
float angle = 0.0f; /* since we own this memory... */
char *axis; PyMem_Free( self->eul );
int x;
if(!PyArg_ParseTuple(args, "fs", &angle, &axis)){ PyObject_DEL( self );
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate():expected angle (float) and axis (x,y,z)");
}
if(!STREQ3(axis,"x","y","z")){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"euler.rotate(): expected axis to be 'x', 'y' or 'z'");
}
//covert to radians
angle *= ((float)Py_PI / 180);
for(x = 0; x < 3; x++) {
self->eul[x] *= ((float)Py_PI / 180);
}
euler_rot(self->eul, angle, *axis);
//convert back from radians
for(x = 0; x < 3; x++) {
self->eul[x] *= (180 / (float)Py_PI);
}
return (PyObject*)self;
} }
//----------------------------dealloc()(internal) ------------------
//free the py_object static PyObject *Euler_getattr( EulerObject * self, char *name )
static void Euler_dealloc(EulerObject * self)
{ {
//only free py_data if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
if(self->data.py_data){ return PyFloat_FromDouble( self->eul[name[0] - 'x'] );
PyMem_Free(self->data.py_data);
} }
PyObject_DEL(self); return Py_FindMethod( Euler_methods, ( PyObject * ) self, name );
} }
//----------------------------getattr()(internal) ------------------
//object.attribute access (get) static int Euler_setattr( EulerObject * self, char *name, PyObject * e )
static PyObject *Euler_getattr(EulerObject * self, char *name)
{ {
int x; float val;
if(STREQ(name,"x")){ if( !PyArg_Parse( e, "f", &val ) )
return PyFloat_FromDouble(self->eul[0]); return EXPP_ReturnIntError( PyExc_TypeError,
}else if(STREQ(name, "y")){ "unable to parse float argument\n" );
return PyFloat_FromDouble(self->eul[1]);
}else if(STREQ(name, "z")){
return PyFloat_FromDouble(self->eul[2]);
}
return Py_FindMethod(Euler_methods, (PyObject *) self, name); if( ELEM3( name[0], 'x', 'y', 'z' ) && name[1] == 0 ) {
self->eul[name[0] - 'x'] = val;
return 0;
} else
return -1;
} }
//----------------------------setattr()(internal) ------------------
//object.attribute access (set) /* Eulers Sequence methods */
static int Euler_setattr(EulerObject * self, char *name, PyObject * e) static PyObject *Euler_item( EulerObject * self, int i )
{ {
PyObject *f = NULL; if( i < 0 || i >= 3 )
return EXPP_ReturnPyObjError( PyExc_IndexError,
"array index out of range\n" );
f = PyNumber_Float(e); return Py_BuildValue( "f", self->eul[i] );
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->eul[0] = PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->eul[1] = PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
self->eul[2] = PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"euler.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
} }
//----------------------------print object (internal)--------------
//print the object to screen static PyObject *Euler_slice( EulerObject * self, int begin, int end )
static PyObject *Euler_repr(EulerObject * self)
{ {
int i; PyObject *list;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < 3; i++){
if(i < (2)){
sprintf(buffer, "%.6f, ", self->eul[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->eul[i]);
strcat(str,buffer);
}
}
strcat(str, "](euler)");
return EXPP_incr_ret(PyString_FromString(str));
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Euler_len(EulerObject * self)
{
return 3;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Euler_item(EulerObject * self, int i)
{
if(i < 0 || i >= 3)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"euler[attribute]: array index out of range\n");
return Py_BuildValue("f", self->eul[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Euler_ass_item(EulerObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= 3){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"euler[attribute] = x: array assignment index out of range\n");
}
self->eul[i] = PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Euler_slice(EulerObject * self, int begin, int end)
{
PyObject *list = NULL;
int count; int count;
CLAMP(begin, 0, 3); if( begin < 0 )
CLAMP(end, 0, 3); begin = 0;
begin = MIN2(begin,end); if( end > 3 )
end = 3;
if( begin > end )
begin = end;
list = PyList_New(end - begin); list = PyList_New( end - begin );
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin, for( count = begin; count < end; count++ ) {
PyFloat_FromDouble(self->eul[count])); PyList_SetItem( list, count - begin,
PyFloat_FromDouble( self->eul[count] ) );
} }
return list; return list;
} }
//----------------------------object[z:y]------------------------
//sequence slice (set) static int Euler_ass_item( EulerObject * self, int i, PyObject * ob )
static int Euler_ass_slice(EulerObject * self, int begin, int end,
PyObject * seq)
{ {
int i, y, size = 0; if( i < 0 || i >= 3 )
float eul[3]; return EXPP_ReturnIntError( PyExc_IndexError,
"array assignment index out of range\n" );
CLAMP(begin, 0, 3); if( !PyNumber_Check( ob ) )
CLAMP(end, 0, 3); return EXPP_ReturnIntError( PyExc_IndexError,
begin = MIN2(begin,end); "Euler member must be a number\n" );
size = PySequence_Length(seq); if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
if(size != (end - begin)){ return EXPP_ReturnIntError( PyExc_TypeError,
return EXPP_ReturnIntError(PyExc_TypeError, "int or float expected\n" );
"euler[begin:end] = []: size mismatch in slice assignment\n"); } else {
} self->eul[i] = ( float ) PyFloat_AsDouble( ob );
for (i = 0; i < size; i++) {
PyObject *e, *f;
e = PySequence_GetItem(seq, i);
if (e == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"euler[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(e);
if(f == NULL) { // parsed item not a number
Py_DECREF(e);
return EXPP_ReturnIntError(PyExc_TypeError,
"euler[begin:end] = []: sequence argument not a number\n");
}
eul[i] = PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,e);
}
//parsed well - now set in vector
for(y = 0; y < 3; y++){
self->eul[begin + y] = eul[y];
} }
return 0; return 0;
} }
//-----------------PROTCOL DECLARATIONS--------------------------
static int Euler_ass_slice( EulerObject * self, int begin, int end,
PyObject * seq )
{
int count, z;
if( begin < 0 )
begin = 0;
if( end > 3 )
end = 3;
if( begin > end )
begin = end;
if( !PySequence_Check( seq ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"illegal argument type for built-in operation\n" );
if( PySequence_Length( seq ) != ( end - begin ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"size mismatch in slice assignment\n" );
z = 0;
for( count = begin; count < end; count++ ) {
PyObject *ob = PySequence_GetItem( seq, z );
z++;
if( !PyFloat_Check( ob ) && !PyInt_Check( ob ) ) {
Py_DECREF( ob );
return -1;
} else {
if( !PyArg_Parse( ob, "f", &self->eul[count] ) ) {
Py_DECREF( ob );
return -1;
}
}
}
return 0;
}
static PyObject *Euler_repr( EulerObject * self )
{
int i, maxindex = 3 - 1;
char ftoa[24];
PyObject *str1, *str2;
str1 = PyString_FromString( "[" );
for( i = 0; i < maxindex; i++ ) {
sprintf( ftoa, "%.4f, ", self->eul[i] );
str2 = PyString_FromString( ftoa );
if( !str1 || !str2 )
goto error;
PyString_ConcatAndDel( &str1, str2 );
}
sprintf( ftoa, "%.4f]\n", self->eul[maxindex] );
str2 = PyString_FromString( ftoa );
if( !str1 || !str2 )
goto error;
PyString_ConcatAndDel( &str1, str2 );
if( str1 )
return str1;
error:
Py_XDECREF( str1 );
Py_XDECREF( str2 );
return EXPP_ReturnPyObjError( PyExc_MemoryError,
"couldn't create PyString!\n" );
}
static PySequenceMethods Euler_SeqMethods = { static PySequenceMethods Euler_SeqMethods = {
(inquiry) Euler_len, /* sq_length */ ( inquiry ) 0, /* sq_length */
(binaryfunc) 0, /* sq_concat */ ( binaryfunc ) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */ ( intargfunc ) 0, /* sq_repeat */
(intargfunc) Euler_item, /* sq_item */ ( intargfunc ) Euler_item, /* sq_item */
(intintargfunc) Euler_slice, /* sq_slice */ ( intintargfunc ) Euler_slice, /* sq_slice */
(intobjargproc) Euler_ass_item, /* sq_ass_item */ ( intobjargproc ) Euler_ass_item, /* sq_ass_item */
(intintobjargproc) Euler_ass_slice, /* sq_ass_slice */ ( intintobjargproc ) Euler_ass_slice, /* sq_ass_slice */
}; };
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject euler_Type = { PyTypeObject euler_Type = {
PyObject_HEAD_INIT(NULL) PyObject_HEAD_INIT( NULL )
0, /*ob_size */ 0, /*ob_size */
"euler", /*tp_name */ "euler", /*tp_name */
sizeof(EulerObject), /*tp_basicsize */ sizeof( EulerObject ), /*tp_basicsize */
0, /*tp_itemsize */ 0, /*tp_itemsize */
(destructor) Euler_dealloc, /*tp_dealloc */ ( destructor ) Euler_dealloc, /*tp_dealloc */
(printfunc) 0, /*tp_print */ ( printfunc ) 0, /*tp_print */
(getattrfunc) Euler_getattr, /*tp_getattr */ ( getattrfunc ) Euler_getattr, /*tp_getattr */
(setattrfunc) Euler_setattr, /*tp_setattr */ ( setattrfunc ) Euler_setattr, /*tp_setattr */
0, /*tp_compare */ 0, /*tp_compare */
(reprfunc) Euler_repr, /*tp_repr */ ( reprfunc ) Euler_repr, /*tp_repr */
0, /*tp_as_number */ 0, /*tp_as_number */
&Euler_SeqMethods, /*tp_as_sequence */ &Euler_SeqMethods, /*tp_as_sequence */
}; };
//------------------------newEulerObject (internal)-------------
//creates a new euler object PyObject *newEulerObject( float *eul )
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newEulerObject(float *eul, int type)
{ {
EulerObject *self; EulerObject *self;
int x; int x;
euler_Type.ob_type = &PyType_Type; euler_Type.ob_type = &PyType_Type;
self = PyObject_NEW(EulerObject, &euler_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(type == Py_WRAP){ self = PyObject_NEW( EulerObject, &euler_Type );
self->data.blend_data = eul;
self->eul = self->data.blend_data; /*
}else if (type == Py_NEW){ we own the self->eul memory and will free it later.
self->data.py_data = PyMem_Malloc(3 * sizeof(float)); if we received an input arg, copy to our internal array
self->eul = self->data.py_data; */
if(!eul) { //new empty
for(x = 0; x < 3; x++) { self->eul = PyMem_Malloc( 3 * sizeof( float ) );
self->eul[x] = 0.0f; if( ! self->eul )
} return EXPP_ReturnPyObjError( PyExc_MemoryError,
}else{ "newEulerObject:PyMem_Malloc failed" );
for(x = 0; x < 3; x++){
self->eul[x] = eul[x]; if( !eul ) {
} for( x = 0; x < 3; x++ ) {
self->eul[x] = 0.0f;
}
} else{
for( x = 0; x < 3; x++){
self->eul[x] = eul[x];
} }
}else{ //bad type
return NULL;
} }
return (PyObject *) EXPP_incr_ret((PyObject *)self);
}
return ( PyObject * ) self;
}

View File

@@ -1,3 +1,4 @@
/* /*
* $Id$ * $Id$
* *
@@ -34,28 +35,33 @@
#ifndef EXPP_euler_h #ifndef EXPP_euler_h
#define EXPP_euler_h #define EXPP_euler_h
#include "Python.h"
#include "gen_utils.h"
#include "Types.h"
#include <BLI_arithb.h>
#include "quat.h"
#include "matrix.h"
#include "BKE_utildefines.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*****************************/
// Euler Python Object
/*****************************/
#define EulerObject_Check(v) ((v)->ob_type == &euler_Type) #define EulerObject_Check(v) ((v)->ob_type == &euler_Type)
typedef struct { typedef struct {
PyObject_VAR_HEAD PyObject_VAR_HEAD float *eul;
struct{
float *py_data; //python managed
float *blend_data; //blender managed
}data;
float *eul; //1D array of data (alias)
} EulerObject; } EulerObject;
/*struct data contains a pointer to the actual data that the
object uses. It can use either PyMem allocated data (which will
be stored in py_data) or be a wrapper for data allocated through
blender (stored in blend_data). This is an either/or struct not both*/
//prototypes //prototypes
PyObject *newEulerObject( float *eul );
PyObject *Euler_Zero( EulerObject * self ); PyObject *Euler_Zero( EulerObject * self );
PyObject *Euler_Unique( EulerObject * self ); PyObject *Euler_Unique( EulerObject * self );
PyObject *Euler_ToMatrix( EulerObject * self ); PyObject *Euler_ToMatrix( EulerObject * self );
PyObject *Euler_ToQuat( EulerObject * self ); PyObject *Euler_ToQuat( EulerObject * self );
PyObject *Euler_Rotate( EulerObject * self, PyObject *args );
PyObject *newEulerObject( float *eul, int type );
#endif /* EXPP_euler_h */ #endif /* EXPP_euler_h */

View File

@@ -120,31 +120,6 @@ int EXPP_ReturnIntError( PyObject * type, char *error_msg )
/* Description: This function increments the reference count of the given */ /* Description: This function increments the reference count of the given */
/* Python object (usually Py_None) and returns it. */ /* Python object (usually Py_None) and returns it. */
/*****************************************************************************/ /*****************************************************************************/
void EXPP_incr2( PyObject * ob1, PyObject * ob2 )
{
Py_INCREF( ob1 );
Py_INCREF( ob2 );
}
void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
{
Py_INCREF( ob1 );
Py_INCREF( ob2 );
Py_INCREF( ob3 );
}
void EXPP_decr2( PyObject * ob1, PyObject * ob2 )
{
Py_DECREF( ob1 );
Py_DECREF( ob2 );
}
void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 )
{
Py_DECREF( ob1 );
Py_DECREF( ob2 );
Py_DECREF( ob3 );
}
PyObject *EXPP_incr_ret( PyObject * object ) PyObject *EXPP_incr_ret( PyObject * object )
{ {

View File

@@ -50,8 +50,6 @@
#include <DNA_listBase.h> #include <DNA_listBase.h>
#define Py_PI 3.14159265358979323846 #define Py_PI 3.14159265358979323846
#define Py_WRAP 1024
#define Py_NEW 2048
/* /*
Py_RETURN_NONE Py_RETURN_NONE
@@ -74,10 +72,6 @@ char *event_to_name( short event );
float EXPP_ClampFloat( float value, float min, float max ); float EXPP_ClampFloat( float value, float min, float max );
int EXPP_ClampInt( int value, int min, int max ); int EXPP_ClampInt( int value, int min, int max );
void EXPP_incr2( PyObject * ob1, PyObject * ob2 );
void EXPP_incr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
void EXPP_decr2( PyObject * ob1, PyObject * ob2 );
void EXPP_decr3( PyObject * ob1, PyObject * ob2, PyObject * ob3 );
PyObject *EXPP_incr_ret( PyObject * object ); PyObject *EXPP_incr_ret( PyObject * object );
PyObject *EXPP_incr_ret_True(void); PyObject *EXPP_incr_ret_True(void);
PyObject *EXPP_incr_ret_False(void); PyObject *EXPP_incr_ret_False(void);

File diff suppressed because it is too large Load Diff

View File

@@ -33,31 +33,37 @@
#ifndef EXPP_matrix_h #ifndef EXPP_matrix_h
#define EXPP_matrix_h #define EXPP_matrix_h
#define MatrixObject_Check(v) ((v)->ob_type == &matrix_Type) #include "Python.h"
#include "BLI_arithb.h"
#include "vector.h"
#include "gen_utils.h"
#include "Types.h"
#include "quat.h"
#include "euler.h"
#define Matrix_CheckPyObject(v) ((v)->ob_type == &matrix_Type)
/*****************************/
/* Matrix Python Object */
/*****************************/
typedef float **ptRow; typedef float **ptRow;
typedef struct _Matrix { typedef struct _Matrix {
PyObject_VAR_HEAD PyObject_VAR_HEAD /* standard python macro */
struct{ ptRow matrix;
float *py_data; //python managed float *contigPtr;
float *blend_data; //blender managed
}data;
ptRow matrix; //ptr to the contigPtr (accessor)
float *contigPtr; //1D array of data (alias)
int rowSize; int rowSize;
int colSize; int colSize;
PyObject *coerced_object; int flag;
//0 - no coercion
//1 - coerced from int
//2 - coerced from float
} MatrixObject; } MatrixObject;
/*coerced_object is a pointer to the object that it was
coerced from when a dummy vector needs to be created from
the coerce() function for numeric protocol operations*/
/*struct data contains a pointer to the actual data that the /*****************************************************************************/
object uses. It can use either PyMem allocated data (which will /* Python API function prototypes. */
be stored in py_data) or be a wrapper for data allocated through /*****************************************************************************/
blender (stored in blend_data). This is an either/or struct not both*/ PyObject *newMatrixObject( float *mat, int rowSize, int colSize );
//prototypes
PyObject *Matrix_Zero( MatrixObject * self ); PyObject *Matrix_Zero( MatrixObject * self );
PyObject *Matrix_Identity( MatrixObject * self ); PyObject *Matrix_Identity( MatrixObject * self );
PyObject *Matrix_Transpose( MatrixObject * self ); PyObject *Matrix_Transpose( MatrixObject * self );
@@ -68,6 +74,5 @@ PyObject *Matrix_RotationPart( MatrixObject * self );
PyObject *Matrix_Resize4x4( MatrixObject * self ); PyObject *Matrix_Resize4x4( MatrixObject * self );
PyObject *Matrix_toEuler( MatrixObject * self ); PyObject *Matrix_toEuler( MatrixObject * self );
PyObject *Matrix_toQuat( MatrixObject * self ); PyObject *Matrix_toQuat( MatrixObject * self );
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type);
#endif /* EXPP_matrix_H */ #endif /* EXPP_matrix_H */

File diff suppressed because it is too large Load Diff

View File

@@ -34,27 +34,34 @@
#ifndef EXPP_quat_h #ifndef EXPP_quat_h
#define EXPP_quat_h #define EXPP_quat_h
#include "Python.h"
#include "gen_utils.h"
#include "Types.h"
#include <BLI_arithb.h>
#include "euler.h"
#include "matrix.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*****************************/
// Quaternion Python Object
/*****************************/
#define QuaternionObject_Check(v) ((v)->ob_type == &quaternion_Type) #define QuaternionObject_Check(v) ((v)->ob_type == &quaternion_Type)
typedef struct { typedef struct {
PyObject_VAR_HEAD PyObject_VAR_HEAD float *quat;
struct{ int flag;
float *py_data; //python managed //0 - no coercion
float *blend_data; //blender managed //1 - coerced from int
}data; //2 - coerced from float
float *quat; //1D array of data (alias)
PyObject *coerced_object;
} QuaternionObject; } QuaternionObject;
/*coerced_object is a pointer to the object that it was
coerced from when a dummy vector needs to be created from
the coerce() function for numeric protocol operations*/
/*struct data contains a pointer to the actual data that the
object uses. It can use either PyMem allocated data (which will
be stored in py_data) or be a wrapper for data allocated through
blender (stored in blend_data). This is an either/or struct not both*/
//prototypes //prototypes
PyObject *newQuaternionObject( float *quat );
PyObject *Quaternion_Identity( QuaternionObject * self ); PyObject *Quaternion_Identity( QuaternionObject * self );
PyObject *Quaternion_Negate( QuaternionObject * self ); PyObject *Quaternion_Negate( QuaternionObject * self );
PyObject *Quaternion_Conjugate( QuaternionObject * self ); PyObject *Quaternion_Conjugate( QuaternionObject * self );
@@ -62,6 +69,5 @@ PyObject *Quaternion_Inverse( QuaternionObject * self );
PyObject *Quaternion_Normalize( QuaternionObject * self ); PyObject *Quaternion_Normalize( QuaternionObject * self );
PyObject *Quaternion_ToEuler( QuaternionObject * self ); PyObject *Quaternion_ToEuler( QuaternionObject * self );
PyObject *Quaternion_ToMatrix( QuaternionObject * self ); PyObject *Quaternion_ToMatrix( QuaternionObject * self );
PyObject *newQuaternionObject( float *quat, int type );
#endif /* EXPP_quat_h */ #endif /* EXPP_quat_h */

File diff suppressed because it is too large Load Diff

View File

@@ -33,34 +33,40 @@
#ifndef EXPP_vector_h #ifndef EXPP_vector_h
#define EXPP_vector_h #define EXPP_vector_h
#include "Python.h"
#include "gen_utils.h"
#include "Types.h"
#include "matrix.h"
#include "BKE_utildefines.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/*****************************/
// Vector Python Object
/*****************************/
#define VectorObject_Check(v) ((v)->ob_type == &vector_Type) #define VectorObject_Check(v) ((v)->ob_type == &vector_Type)
typedef struct { typedef struct {
PyObject_VAR_HEAD PyObject_VAR_HEAD float *vec;
struct{
float *py_data; //python managed
float *blend_data; //blender managed
}data;
float *vec; //1D array of data (alias)
int size; int size;
PyObject *coerced_object; int flag;
//0 - no coercion
//1 - coerced from int
//2 - coerced from float
int delete_pymem; /* flag to delete the memory vec points at */
} VectorObject; } VectorObject;
/*coerced_object is a pointer to the object that it was
coerced from when a dummy vector needs to be created from
the coerce() function for numeric protocol operations*/
/*struct data contains a pointer to the actual data that the
object uses. It can use either PyMem allocated data (which will
be stored in py_data) or be a wrapper for data allocated through
blender (stored in blend_data). This is an either/or struct not both*/
//prototypes //prototypes
PyObject *newVectorObject( float *vec, int size );
PyObject *newVectorProxy( float *vec, int size );
PyObject *Vector_Zero( VectorObject * self ); PyObject *Vector_Zero( VectorObject * self );
PyObject *Vector_Normalize( VectorObject * self ); PyObject *Vector_Normalize( VectorObject * self );
PyObject *Vector_Negate( VectorObject * self ); PyObject *Vector_Negate( VectorObject * self );
PyObject *Vector_Resize2D( VectorObject * self ); PyObject *Vector_Resize2D( VectorObject * self );
PyObject *Vector_Resize3D( VectorObject * self ); PyObject *Vector_Resize3D( VectorObject * self );
PyObject *Vector_Resize4D( VectorObject * self ); PyObject *Vector_Resize4D( VectorObject * self );
PyObject *newVectorObject(float *vec, int size, int type);
#endif /* EXPP_vector_h */ #endif /* EXPP_vector_h */