Cycles: add constant folding for more color operation nodes.

Invert, brightness & constrast, separate/combine and Mix RGB blend modes
and clamping.
This commit is contained in:
2016-06-19 13:28:50 +03:00
committed by Brecht Van Lommel
parent 81e391a727
commit f7bada00a7
6 changed files with 462 additions and 309 deletions

View File

@@ -142,6 +142,7 @@ CCL_NAMESPACE_END
#include "svm_noise.h"
#include "svm_texture.h"
#include "svm_color_util.h"
#include "svm_math_util.h"
#include "svm_attribute.h"

View File

@@ -25,12 +25,7 @@ ccl_device void svm_node_brightness(ShaderData *sd, float *stack, uint in_color,
float brightness = stack_load_float(stack, bright_offset);
float contrast = stack_load_float(stack, contrast_offset);
float a = 1.0f + contrast;
float b = brightness - contrast*0.5f;
color.x = max(a*color.x + b, 0.0f);
color.y = max(a*color.y + b, 0.0f);
color.z = max(a*color.z + b, 0.0f);
color = svm_brightness_contrast(color, brightness, contrast);
if(stack_valid(out_color))
stack_store_float3(stack, out_color, color);

View File

@@ -0,0 +1,306 @@
/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
ccl_device float3 svm_mix_blend(float t, float3 col1, float3 col2)
{
return interp(col1, col2, t);
}
ccl_device float3 svm_mix_add(float t, float3 col1, float3 col2)
{
return interp(col1, col1 + col2, t);
}
ccl_device float3 svm_mix_mul(float t, float3 col1, float3 col2)
{
return interp(col1, col1 * col2, t);
}
ccl_device float3 svm_mix_screen(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 tm3 = make_float3(tm, tm, tm);
return one - (tm3 + t*(one - col2))*(one - col1);
}
ccl_device float3 svm_mix_overlay(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
if(outcol.x < 0.5f)
outcol.x *= tm + 2.0f*t*col2.x;
else
outcol.x = 1.0f - (tm + 2.0f*t*(1.0f - col2.x))*(1.0f - outcol.x);
if(outcol.y < 0.5f)
outcol.y *= tm + 2.0f*t*col2.y;
else
outcol.y = 1.0f - (tm + 2.0f*t*(1.0f - col2.y))*(1.0f - outcol.y);
if(outcol.z < 0.5f)
outcol.z *= tm + 2.0f*t*col2.z;
else
outcol.z = 1.0f - (tm + 2.0f*t*(1.0f - col2.z))*(1.0f - outcol.z);
return outcol;
}
ccl_device float3 svm_mix_sub(float t, float3 col1, float3 col2)
{
return interp(col1, col1 - col2, t);
}
ccl_device float3 svm_mix_div(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
if(col2.x != 0.0f) outcol.x = tm*outcol.x + t*outcol.x/col2.x;
if(col2.y != 0.0f) outcol.y = tm*outcol.y + t*outcol.y/col2.y;
if(col2.z != 0.0f) outcol.z = tm*outcol.z + t*outcol.z/col2.z;
return outcol;
}
ccl_device float3 svm_mix_diff(float t, float3 col1, float3 col2)
{
return interp(col1, fabs(col1 - col2), t);
}
ccl_device float3 svm_mix_dark(float t, float3 col1, float3 col2)
{
return min(col1, col2)*t + col1*(1.0f - t);
}
ccl_device float3 svm_mix_light(float t, float3 col1, float3 col2)
{
return max(col1, col2*t);
}
ccl_device float3 svm_mix_dodge(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
if(outcol.x != 0.0f) {
float tmp = 1.0f - t*col2.x;
if(tmp <= 0.0f)
outcol.x = 1.0f;
else if((tmp = outcol.x/tmp) > 1.0f)
outcol.x = 1.0f;
else
outcol.x = tmp;
}
if(outcol.y != 0.0f) {
float tmp = 1.0f - t*col2.y;
if(tmp <= 0.0f)
outcol.y = 1.0f;
else if((tmp = outcol.y/tmp) > 1.0f)
outcol.y = 1.0f;
else
outcol.y = tmp;
}
if(outcol.z != 0.0f) {
float tmp = 1.0f - t*col2.z;
if(tmp <= 0.0f)
outcol.z = 1.0f;
else if((tmp = outcol.z/tmp) > 1.0f)
outcol.z = 1.0f;
else
outcol.z = tmp;
}
return outcol;
}
ccl_device float3 svm_mix_burn(float t, float3 col1, float3 col2)
{
float tmp, tm = 1.0f - t;
float3 outcol = col1;
tmp = tm + t*col2.x;
if(tmp <= 0.0f)
outcol.x = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.x)/tmp)) < 0.0f)
outcol.x = 0.0f;
else if(tmp > 1.0f)
outcol.x = 1.0f;
else
outcol.x = tmp;
tmp = tm + t*col2.y;
if(tmp <= 0.0f)
outcol.y = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.y)/tmp)) < 0.0f)
outcol.y = 0.0f;
else if(tmp > 1.0f)
outcol.y = 1.0f;
else
outcol.y = tmp;
tmp = tm + t*col2.z;
if(tmp <= 0.0f)
outcol.z = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.z)/tmp)) < 0.0f)
outcol.z = 0.0f;
else if(tmp > 1.0f)
outcol.z = 1.0f;
else
outcol.z = tmp;
return outcol;
}
ccl_device float3 svm_mix_hue(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
float3 hsv2 = rgb_to_hsv(col2);
if(hsv2.y != 0.0f) {
float3 hsv = rgb_to_hsv(outcol);
hsv.x = hsv2.x;
float3 tmp = hsv_to_rgb(hsv);
outcol = interp(outcol, tmp, t);
}
return outcol;
}
ccl_device float3 svm_mix_sat(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
float3 hsv = rgb_to_hsv(outcol);
if(hsv.y != 0.0f) {
float3 hsv2 = rgb_to_hsv(col2);
hsv.y = tm*hsv.y + t*hsv2.y;
outcol = hsv_to_rgb(hsv);
}
return outcol;
}
ccl_device float3 svm_mix_val(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 hsv = rgb_to_hsv(col1);
float3 hsv2 = rgb_to_hsv(col2);
hsv.z = tm*hsv.z + t*hsv2.z;
return hsv_to_rgb(hsv);
}
ccl_device float3 svm_mix_color(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
float3 hsv2 = rgb_to_hsv(col2);
if(hsv2.y != 0.0f) {
float3 hsv = rgb_to_hsv(outcol);
hsv.x = hsv2.x;
hsv.y = hsv2.y;
float3 tmp = hsv_to_rgb(hsv);
outcol = interp(outcol, tmp, t);
}
return outcol;
}
ccl_device float3 svm_mix_soft(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 scr = one - (one - col2)*(one - col1);
return tm*col1 + t*((one - col1)*col2*col1 + col1*scr);
}
ccl_device float3 svm_mix_linear(float t, float3 col1, float3 col2)
{
return col1 + t*(2.0f*col2 + make_float3(-1.0f, -1.0f, -1.0f));
}
ccl_device float3 svm_mix_clamp(float3 col)
{
float3 outcol = col;
outcol.x = saturate(col.x);
outcol.y = saturate(col.y);
outcol.z = saturate(col.z);
return outcol;
}
ccl_device_noinline float3 svm_mix(NodeMix type, float fac, float3 c1, float3 c2)
{
float t = saturate(fac);
switch(type) {
case NODE_MIX_BLEND: return svm_mix_blend(t, c1, c2);
case NODE_MIX_ADD: return svm_mix_add(t, c1, c2);
case NODE_MIX_MUL: return svm_mix_mul(t, c1, c2);
case NODE_MIX_SCREEN: return svm_mix_screen(t, c1, c2);
case NODE_MIX_OVERLAY: return svm_mix_overlay(t, c1, c2);
case NODE_MIX_SUB: return svm_mix_sub(t, c1, c2);
case NODE_MIX_DIV: return svm_mix_div(t, c1, c2);
case NODE_MIX_DIFF: return svm_mix_diff(t, c1, c2);
case NODE_MIX_DARK: return svm_mix_dark(t, c1, c2);
case NODE_MIX_LIGHT: return svm_mix_light(t, c1, c2);
case NODE_MIX_DODGE: return svm_mix_dodge(t, c1, c2);
case NODE_MIX_BURN: return svm_mix_burn(t, c1, c2);
case NODE_MIX_HUE: return svm_mix_hue(t, c1, c2);
case NODE_MIX_SAT: return svm_mix_sat(t, c1, c2);
case NODE_MIX_VAL: return svm_mix_val (t, c1, c2);
case NODE_MIX_COLOR: return svm_mix_color(t, c1, c2);
case NODE_MIX_SOFT: return svm_mix_soft(t, c1, c2);
case NODE_MIX_LINEAR: return svm_mix_linear(t, c1, c2);
case NODE_MIX_CLAMP: return svm_mix_clamp(c1);
}
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device_inline float3 svm_brightness_contrast(float3 color, float brightness, float contrast)
{
float a = 1.0f + contrast;
float b = brightness - contrast*0.5f;
color.x = max(a*color.x + b, 0.0f);
color.y = max(a*color.y + b, 0.0f);
color.z = max(a*color.z + b, 0.0f);
return color;
}
CCL_NAMESPACE_END

View File

@@ -16,280 +16,6 @@
CCL_NAMESPACE_BEGIN
ccl_device float3 svm_mix_blend(float t, float3 col1, float3 col2)
{
return interp(col1, col2, t);
}
ccl_device float3 svm_mix_add(float t, float3 col1, float3 col2)
{
return interp(col1, col1 + col2, t);
}
ccl_device float3 svm_mix_mul(float t, float3 col1, float3 col2)
{
return interp(col1, col1 * col2, t);
}
ccl_device float3 svm_mix_screen(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 tm3 = make_float3(tm, tm, tm);
return one - (tm3 + t*(one - col2))*(one - col1);
}
ccl_device float3 svm_mix_overlay(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
if(outcol.x < 0.5f)
outcol.x *= tm + 2.0f*t*col2.x;
else
outcol.x = 1.0f - (tm + 2.0f*t*(1.0f - col2.x))*(1.0f - outcol.x);
if(outcol.y < 0.5f)
outcol.y *= tm + 2.0f*t*col2.y;
else
outcol.y = 1.0f - (tm + 2.0f*t*(1.0f - col2.y))*(1.0f - outcol.y);
if(outcol.z < 0.5f)
outcol.z *= tm + 2.0f*t*col2.z;
else
outcol.z = 1.0f - (tm + 2.0f*t*(1.0f - col2.z))*(1.0f - outcol.z);
return outcol;
}
ccl_device float3 svm_mix_sub(float t, float3 col1, float3 col2)
{
return interp(col1, col1 - col2, t);
}
ccl_device float3 svm_mix_div(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
if(col2.x != 0.0f) outcol.x = tm*outcol.x + t*outcol.x/col2.x;
if(col2.y != 0.0f) outcol.y = tm*outcol.y + t*outcol.y/col2.y;
if(col2.z != 0.0f) outcol.z = tm*outcol.z + t*outcol.z/col2.z;
return outcol;
}
ccl_device float3 svm_mix_diff(float t, float3 col1, float3 col2)
{
return interp(col1, fabs(col1 - col2), t);
}
ccl_device float3 svm_mix_dark(float t, float3 col1, float3 col2)
{
return min(col1, col2)*t + col1*(1.0f - t);
}
ccl_device float3 svm_mix_light(float t, float3 col1, float3 col2)
{
return max(col1, col2*t);
}
ccl_device float3 svm_mix_dodge(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
if(outcol.x != 0.0f) {
float tmp = 1.0f - t*col2.x;
if(tmp <= 0.0f)
outcol.x = 1.0f;
else if((tmp = outcol.x/tmp) > 1.0f)
outcol.x = 1.0f;
else
outcol.x = tmp;
}
if(outcol.y != 0.0f) {
float tmp = 1.0f - t*col2.y;
if(tmp <= 0.0f)
outcol.y = 1.0f;
else if((tmp = outcol.y/tmp) > 1.0f)
outcol.y = 1.0f;
else
outcol.y = tmp;
}
if(outcol.z != 0.0f) {
float tmp = 1.0f - t*col2.z;
if(tmp <= 0.0f)
outcol.z = 1.0f;
else if((tmp = outcol.z/tmp) > 1.0f)
outcol.z = 1.0f;
else
outcol.z = tmp;
}
return outcol;
}
ccl_device float3 svm_mix_burn(float t, float3 col1, float3 col2)
{
float tmp, tm = 1.0f - t;
float3 outcol = col1;
tmp = tm + t*col2.x;
if(tmp <= 0.0f)
outcol.x = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.x)/tmp)) < 0.0f)
outcol.x = 0.0f;
else if(tmp > 1.0f)
outcol.x = 1.0f;
else
outcol.x = tmp;
tmp = tm + t*col2.y;
if(tmp <= 0.0f)
outcol.y = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.y)/tmp)) < 0.0f)
outcol.y = 0.0f;
else if(tmp > 1.0f)
outcol.y = 1.0f;
else
outcol.y = tmp;
tmp = tm + t*col2.z;
if(tmp <= 0.0f)
outcol.z = 0.0f;
else if((tmp = (1.0f - (1.0f - outcol.z)/tmp)) < 0.0f)
outcol.z = 0.0f;
else if(tmp > 1.0f)
outcol.z = 1.0f;
else
outcol.z = tmp;
return outcol;
}
ccl_device float3 svm_mix_hue(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
float3 hsv2 = rgb_to_hsv(col2);
if(hsv2.y != 0.0f) {
float3 hsv = rgb_to_hsv(outcol);
hsv.x = hsv2.x;
float3 tmp = hsv_to_rgb(hsv);
outcol = interp(outcol, tmp, t);
}
return outcol;
}
ccl_device float3 svm_mix_sat(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 outcol = col1;
float3 hsv = rgb_to_hsv(outcol);
if(hsv.y != 0.0f) {
float3 hsv2 = rgb_to_hsv(col2);
hsv.y = tm*hsv.y + t*hsv2.y;
outcol = hsv_to_rgb(hsv);
}
return outcol;
}
ccl_device float3 svm_mix_val(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 hsv = rgb_to_hsv(col1);
float3 hsv2 = rgb_to_hsv(col2);
hsv.z = tm*hsv.z + t*hsv2.z;
return hsv_to_rgb(hsv);
}
ccl_device float3 svm_mix_color(float t, float3 col1, float3 col2)
{
float3 outcol = col1;
float3 hsv2 = rgb_to_hsv(col2);
if(hsv2.y != 0.0f) {
float3 hsv = rgb_to_hsv(outcol);
hsv.x = hsv2.x;
hsv.y = hsv2.y;
float3 tmp = hsv_to_rgb(hsv);
outcol = interp(outcol, tmp, t);
}
return outcol;
}
ccl_device float3 svm_mix_soft(float t, float3 col1, float3 col2)
{
float tm = 1.0f - t;
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 scr = one - (one - col2)*(one - col1);
return tm*col1 + t*((one - col1)*col2*col1 + col1*scr);
}
ccl_device float3 svm_mix_linear(float t, float3 col1, float3 col2)
{
return col1 + t*(2.0f*col2 + make_float3(-1.0f, -1.0f, -1.0f));
}
ccl_device float3 svm_mix_clamp(float3 col)
{
float3 outcol = col;
outcol.x = saturate(col.x);
outcol.y = saturate(col.y);
outcol.z = saturate(col.z);
return outcol;
}
ccl_device_noinline float3 svm_mix(NodeMix type, float fac, float3 c1, float3 c2)
{
float t = saturate(fac);
switch(type) {
case NODE_MIX_BLEND: return svm_mix_blend(t, c1, c2);
case NODE_MIX_ADD: return svm_mix_add(t, c1, c2);
case NODE_MIX_MUL: return svm_mix_mul(t, c1, c2);
case NODE_MIX_SCREEN: return svm_mix_screen(t, c1, c2);
case NODE_MIX_OVERLAY: return svm_mix_overlay(t, c1, c2);
case NODE_MIX_SUB: return svm_mix_sub(t, c1, c2);
case NODE_MIX_DIV: return svm_mix_div(t, c1, c2);
case NODE_MIX_DIFF: return svm_mix_diff(t, c1, c2);
case NODE_MIX_DARK: return svm_mix_dark(t, c1, c2);
case NODE_MIX_LIGHT: return svm_mix_light(t, c1, c2);
case NODE_MIX_DODGE: return svm_mix_dodge(t, c1, c2);
case NODE_MIX_BURN: return svm_mix_burn(t, c1, c2);
case NODE_MIX_HUE: return svm_mix_hue(t, c1, c2);
case NODE_MIX_SAT: return svm_mix_sat(t, c1, c2);
case NODE_MIX_VAL: return svm_mix_val (t, c1, c2);
case NODE_MIX_COLOR: return svm_mix_color(t, c1, c2);
case NODE_MIX_SOFT: return svm_mix_soft(t, c1, c2);
case NODE_MIX_LINEAR: return svm_mix_linear(t, c1, c2);
case NODE_MIX_CLAMP: return svm_mix_clamp(c1);
}
return make_float3(0.0f, 0.0f, 0.0f);
}
/* Node */
ccl_device void svm_node_mix(KernelGlobals *kg, ShaderData *sd, float *stack, uint fac_offset, uint c1_offset, uint c2_offset, int *offset)

View File

@@ -19,6 +19,7 @@
#include "nodes.h"
#include "scene.h"
#include "svm.h"
#include "svm_color_util.h"
#include "svm_math_util.h"
#include "osl.h"
@@ -3578,6 +3579,28 @@ InvertNode::InvertNode()
{
}
bool InvertNode::constant_fold(ShaderGraph *graph, ShaderOutput *, ShaderInput *optimized)
{
ShaderInput *fac_in = input("Fac");
ShaderInput *color_in = input("Color");
ShaderOutput *color_out = output("Color");
if(!fac_in->link) {
/* evaluate fully constant node */
if(!color_in->link) {
optimized->set(interp(color, make_float3(1.0f, 1.0f, 1.0f) - color, fac));
return true;
}
/* remove no-op node */
else if(fac == 0.0f) {
graph->relink(this, color_out, color_in->link);
return true;
}
}
return false;
}
void InvertNode::compile(SVMCompiler& compiler)
{
ShaderInput *fac_in = input("Fac");
@@ -3666,37 +3689,54 @@ void MixNode::compile(OSLCompiler& compiler)
bool MixNode::constant_fold(ShaderGraph *graph, ShaderOutput *, ShaderInput *optimized)
{
if(type != NODE_MIX_BLEND) {
return false;
}
ShaderInput *fac_in = input("Fac");
ShaderInput *color1_in = input("Color1");
ShaderInput *color2_in = input("Color2");
ShaderOutput *color_out = output("Color");
/* remove useless mix colors nodes */
if(color1_in->link && color1_in->link == color2_in->link) {
graph->relink(this, color_out, color1_in->link);
/* evaluate fully constant node */
if(all_inputs_constant()) {
float3 result = svm_mix(type, fac, color1, color2);
optimized->set(use_clamp ? svm_mix_clamp(result) : result);
return true;
}
/* remove unused mix color input when factor is 0.0 or 1.0 */
if(!fac_in->link) {
/* factor 0.0 */
if(fac == 0.0f) {
if(color1_in->link)
graph->relink(this, color_out, color1_in->link);
else
optimized->set(color1);
/* remove no-op node when factor is 0.0 */
if(!fac_in->link && fac <= 0.0f) {
/* note that some of the modes will clamp out of bounds values even without use_clamp */
if(!color1_in->link) {
float3 result = svm_mix(type, 0.0f, color1, color1);
optimized->set(use_clamp ? svm_mix_clamp(result) : result);
return true;
}
/* factor 1.0 */
else if(fac == 1.0f) {
if(color2_in->link)
graph->relink(this, color_out, color2_in->link);
else
optimized->set(color2);
else if(!use_clamp && type != NODE_MIX_LIGHT && type != NODE_MIX_DODGE && type != NODE_MIX_BURN) {
graph->relink(this, color_out, color1_in->link);
return true;
}
}
if(type != NODE_MIX_BLEND) {
return false;
}
/* remove useless mix colors nodes */
if(color1_in->link && color1_in->link == color2_in->link && !use_clamp) {
graph->relink(this, color_out, color1_in->link);
return true;
}
if(!color1_in->link && !color2_in->link && color1 == color2) {
optimized->set(use_clamp ? svm_mix_clamp(color1) : color1);
return true;
}
/* remove no-op mix color node when factor is 1.0 */
if(!fac_in->link && fac >= 1.0f) {
if(!color2_in->link) {
optimized->set(use_clamp ? svm_mix_clamp(color2) : color2);
return true;
}
else if(!use_clamp) {
graph->relink(this, color_out, color2_in->link);
return true;
}
}
@@ -3724,6 +3764,16 @@ CombineRGBNode::CombineRGBNode()
{
}
bool CombineRGBNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized)
{
if(all_inputs_constant()) {
optimized->set(make_float3(r, g, b));
return true;
}
return false;
}
void CombineRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *red_in = input("R");
@@ -3769,6 +3819,16 @@ CombineXYZNode::CombineXYZNode()
{
}
bool CombineXYZNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized)
{
if(all_inputs_constant()) {
optimized->set(make_float3(x, y, z));
return true;
}
return false;
}
void CombineXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *x_in = input("X");
@@ -3814,6 +3874,16 @@ CombineHSVNode::CombineHSVNode()
{
}
bool CombineHSVNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized)
{
if(all_inputs_constant()) {
optimized->set(hsv_to_rgb(make_float3(h, s, v)));
return true;
}
return false;
}
void CombineHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *hue_in = input("H");
@@ -3899,6 +3969,16 @@ BrightContrastNode::BrightContrastNode()
{
}
bool BrightContrastNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimized)
{
if(all_inputs_constant()) {
optimized->set(svm_brightness_contrast(color, bright, contrast));
return true;
}
return false;
}
void BrightContrastNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
@@ -3939,6 +4019,20 @@ SeparateRGBNode::SeparateRGBNode()
{
}
bool SeparateRGBNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized)
{
if(all_inputs_constant()) {
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == socket) {
optimized->set(color[channel]);
return true;
}
}
}
return false;
}
void SeparateRGBNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Image");
@@ -3984,6 +4078,20 @@ SeparateXYZNode::SeparateXYZNode()
{
}
bool SeparateXYZNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized)
{
if(all_inputs_constant()) {
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == socket) {
optimized->set(vector[channel]);
return true;
}
}
}
return false;
}
void SeparateXYZNode::compile(SVMCompiler& compiler)
{
ShaderInput *vector_in = input("Vector");
@@ -4029,6 +4137,22 @@ SeparateHSVNode::SeparateHSVNode()
{
}
bool SeparateHSVNode::constant_fold(ShaderGraph *, ShaderOutput *socket, ShaderInput *optimized)
{
if(all_inputs_constant()) {
float3 hsv = rgb_to_hsv(color);
for(int channel = 0; channel < 3; channel++) {
if(outputs[channel] == socket) {
optimized->set(hsv[channel]);
return true;
}
}
}
return false;
}
void SeparateHSVNode::compile(SVMCompiler& compiler)
{
ShaderInput *color_in = input("Color");
@@ -4525,13 +4649,7 @@ bool MathNode::constant_fold(ShaderGraph *, ShaderOutput *, ShaderInput *optimiz
{
if(all_inputs_constant()) {
float value = svm_math(type, value1, value2);
if(use_clamp) {
value = saturate(value);
}
optimized->set(value);
optimized->set(use_clamp ? saturate(value) : value);
return true;
}

View File

@@ -643,7 +643,7 @@ public:
class InvertNode : public ShaderNode {
public:
SHADER_NODE_CLASS(InvertNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float fac;
@@ -667,6 +667,7 @@ public:
class CombineRGBNode : public ShaderNode {
public:
SHADER_NODE_CLASS(CombineRGBNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float r, g, b;
@@ -675,6 +676,7 @@ public:
class CombineHSVNode : public ShaderNode {
public:
SHADER_NODE_CLASS(CombineHSVNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float h, s, v;
@@ -683,6 +685,7 @@ public:
class CombineXYZNode : public ShaderNode {
public:
SHADER_NODE_CLASS(CombineXYZNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float x, y, z;
@@ -701,6 +704,7 @@ public:
class BrightContrastNode : public ShaderNode {
public:
SHADER_NODE_CLASS(BrightContrastNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_1; }
float3 color;
@@ -711,6 +715,7 @@ public:
class SeparateRGBNode : public ShaderNode {
public:
SHADER_NODE_CLASS(SeparateRGBNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float3 color;
@@ -719,6 +724,7 @@ public:
class SeparateHSVNode : public ShaderNode {
public:
SHADER_NODE_CLASS(SeparateHSVNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float3 color;
@@ -727,6 +733,7 @@ public:
class SeparateXYZNode : public ShaderNode {
public:
SHADER_NODE_CLASS(SeparateXYZNode)
bool constant_fold(ShaderGraph *graph, ShaderOutput *socket, ShaderInput *optimized);
virtual int get_group() { return NODE_GROUP_LEVEL_3; }
float3 vector;