OVERVIEW
* In 2.7 terminology, all layers and groups are now collection datablocks.
* These collections are nestable, linkable, instanceable, overrideable, ..
which opens up new ways to set up scenes and link + override data.
* Viewport/render visibility and selectability are now a part of the collection
and shared across all view layers and linkable.
* View layers define which subset of the scene collection hierarchy is excluded
for each. For many workflows one view layer can be used, these are more of an
advanced feature now.
OUTLINER
* The outliner now has a "View Layer" display mode instead of "Collections",
which can display the collections and/or objects in the view layer.
* In this display mode, collections can be excluded with the right click menu.
These will then be greyed out and their objects will be excluded.
* To view collections not linked to any scene, the "Blender File" display mode
can be used, with the new filtering option to just see Colleciton datablocks.
* The outliner right click menus for collections and objects were reorganized.
* Drag and drop still needs to be improved. Like before, dragging the icon or
text gives different results, we'll unify this later.
LINKING AND OVERRIDES
* Collections can now be linked into the scene without creating an instance,
with the link/append operator or from the collections view in the outliner.
* Collections can get static overrides with the right click menu in the outliner,
but this is rather unreliable and not clearly communicated at the moment.
* We still need to improve the make override operator to turn collection instances
into collections with overrides directly in the scene.
PERFORMANCE
* We tried to make performance not worse than before and improve it in some
cases. The main thing that's still a bit slower is multiple scenes, we have to
change the layer syncing to only updated affected scenes.
* Collections keep a list of their parent collections for faster incremental
updates in syncing and caching.
* View layer bases are now in a object -> base hash to avoid quadratic time
lookups internally and in API functions like visible_get().
VERSIONING
* Compatibility with 2.7 files should be improved due to the new visibility
controls. Of course users may not want to set up their scenes differently
now to avoid having separate layers and groups.
* Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero
files. There's a few things which are know to be not quite compatible, like
nested layer collections inside groups.
* The versioning code for 2.8 files is quite complicated, and isolated behind
#ifdef so it can be removed at the end of the release cycle.
KNOWN ISSUES
* The G-key group operators in the 3D viewport were left mostly as is, they
need to be modified still to fit better.
* Same for the groups panel in the object properties. This needs to be updated
still, or perhaps replaced by something better.
* Collections must all have a unique name. Less restrictive namespacing is to
be done later, we'll have to see how important this is as all objects within
the collections must also have a unique name anyway.
* Full scene copy and delete scene are exactly doing the right thing yet.
Differential Revision: https://developer.blender.org/D3383https://code.blender.org/2018/05/collections-and-groups/
This is a usefull feature that can be used to do a lot of precomputation on
the GPU instead of the CPU.
Implementation is simple and only covers the most usefull case.
How to use:
- Create shader with transform feedback.
- Create a pass with DRW_STATE_TRANS_FEEDBACK.
- Create a target Gwn_VertBuf (make sure it's big enough).
- Create a shading group with DRW_shgroup_transform_feedback_create().
- Add your draw calls to the shading group.
- Render your pass normaly.
Current limitation:
- Only one output buffer.
- Cannot pause/resume tfb rendering to interleave with normal drawcalls.
- Cannot get the number of verts drawn.
This shader is used instead of blitting back and forth to a single sample
buffer.
This means it resolves the color and depth samples and outputs a fragment
which can be depth tested and blended on top of an existing framebuffer.
We do static shader variation with manual loop unrolling for performance
reason. In my test I get 25% more perf with intel integrated gpu and 75%
performance gain with dedicated nvidia card compared to a single shader
with a uniform for sample count.
Now they are properly converted to Linear space before interpolation.
Since the only way to get vertex color in eevee and cycles is via the
attribute node with the CD_AUTO_FROM_NAME flag, we have to know at binding
time which type of buffer will be connected to this auto input.
We store this information inside the batch cache (together with the according
uniform name) and pass it as uniform to the shader which does conversion if
needed. The same shader can then be reused to draw another mesh with
different auto layers configuration.
Because:
- Less redundancy.
- Better suffixes.
Also a few modification to GPU_texture_create_* to simplify the API:
- make the format explicit to the texture creation process.
- remove the component count as it's specified in the GPUTextureFormat.
Not really happy with the fix, but it works. With the new window draw method
we are no longer storing the 3D viewport in 4 buffers, by having the GPU
viewport function directly as the 3rd buffer. This means we need to draw the
action zones into it, and so we need to keep the framebuffer bound a little
longer.
For Blender 2.8 we had to be compatible with very old OpenGL versions, and
triple buffer was designed to work without offscreen rendering, by copying
the the backbuffer to a texture right before swapping. This way we could
avoid redrawing unchanged regions by copying them from this texture on the
next redraws. Triple buffer used to suffer from poor performance and driver
bugs on specific cards, so alternative draw methods remained available.
Now that we require newer OpenGL, we can have just a single draw method
that draw each region into an offscreen buffer, and then draws those to
the screen. This has some advantages:
* Poor 3D view performance when using Region Overlap should be solved now,
since we can also cache overlapping regions in offscreen buffers.
* Page flip, anaglyph and interlace stereo drawing can be a little faster
by avoiding a copy to an intermediate texture.
* The new 3D view drawing already writes to an offscreen buffer, which we
can draw from directly instead of duplicating it to another buffer.
* Eventually we will be able to remove depth and stencil buffers from the
window and save memory, though at the moment there are still some tools
using it so it's not possible yet.
* This also fixes a bug with Eevee sampling not progressing with stereo
drawing in the 3D viewport.
Differential Revision: https://developer.blender.org/D3061
This allows for background rendering with EEVEE and other opengl render
engine.
I've only tested it on Linux for the moment so I can't say about other
platforms.
We do lazy init because we cannot assume we will need Ghost for rendering
before having parsed all arguments and we cannot know if a script will
trigger rendering. This is also because it currently does not work without
any display server (blender will crash).
Added Object Overlap Overlay
- Added R32UI support to GPU_framebuffer
- Added R32U support to draw manager
- The overlay mode has a object data pass that will render 'needed' data to specific buffers so we can mix them together via a deferred rendering. In future will also add UV's and other data
- Overlap is implemented as an overlay so it could be used on top of the Scene lighted Solid mode (that will be rendered by Eevee.
Reviewers: fclem, brecht
Reviewed By: fclem
Subscribers: sergey
Tags: #code_quest
Maniphest Tasks: T54726
Differential Revision: https://developer.blender.org/D3174
Dithering the output color for 8bit precision framebuffer with bayer matrix.
On my tests the bayer matrux patterns are not noticeable at all.
Note that it also does that in opengl rendered mode which can be in a much
higher bitdepth. We can fix that if that's a problem in the future but I
doubt it will.
Brecht authored this commit, but he gave me the honours to actually
do it. Here it goes; Blender Internal. Bye bye, you did great!
* Point density, voxel data, ocean, environment map textures were removed,
as these only worked within BI rendering. Note that the ocean modifier
and the Cycles point density shader node continue to work.
* Dynamic paint using material shading was removed, as this only worked
with BI. If we ever wanted to support this again probably it should go
through the baking API.
* GPU shader export through the Python API was removed. This only worked
for the old BI GLSL shaders, which no longer exists. Doing something
similar for Eevee would be significantly more complicated because it
uses a lot of multiplass rendering and logic outside the shader, it's
probably impractical.
* Collada material import / export code is mostly gone, as it only worked
for BI materials. We need to add Cycles / Eevee material support at some
point.
* The mesh noise operator was removed since it only worked with BI
material texture slots. A displacement modifier can be used instead.
* The delete texture paint slot operator was removed since it only worked
for BI material texture slots. Could be added back with node support.
* Not all legacy viewport features are supported in the new viewport, but
their code was removed. If we need to bring anything back we can look at
older git revisions.
* There is some legacy viewport code that I could not remove yet, and some
that I probably missed.
* Shader node execution code was left mostly intact, even though it is not
used anywhere now. We may eventually use this to replace the texture
nodes with Cycles / Eevee shader nodes.
* The Cycles Bake panel now includes settings for baking multires normal
and displacement maps. The underlying code needs to be merged properly,
and we plan to add back support for multires AO baking and add support
to Cycles baking for features like vertex color, displacement, and other
missing baking features.
* This commit removes DNA and the Python API for BI material, lamp, world
and scene settings. This breaks a lot of addons.
* There is more DNA that can be removed or renamed, where Cycles or Eevee
are reusing some old BI properties but the names are not really correct
anymore.
* Texture slots for materials, lamps and world were removed. They remain
for brushes, particles and freestyle linestyles.
* 'BLENDER_RENDER' remains in the COMPAT_ENGINES of UI panels. Cycles and
other renderers use this to find all panels to show, minus a few panels
that they have their own replacement for.
Folders removed entirely:
* //extern/recastnavigation
* //intern/decklink
* //intern/moto
* //source/blender/editors/space_logic
* //source/blenderplayer
* //source/gameengine
This includes DNA data and any reference to the BGE code in Blender itself.
We are bumping the subversion.
Pending tasks:
* Tile/clamp code in image editor draw code.
* Viewport drawing code (so much of this will go away because of BI removal
that we can wait until then to remove this.
The depsgraph was always created within a fixed evaluation context. Passing
both risks the depsgraph and evaluation context not matching, and it
complicates the Python API where we'd have to expose both which is not so
easy to understand.
This also removes the global evaluation context in main, which assumed there
to be a single active scene and view layer.
Differential Revision: https://developer.blender.org/D3152
I can see how it's slowing things down: glFinish make sure that every query
are finished but the first query may have been finished a long time ago.
This might create bubbles because of the PIL_sleep_ms.
- Disable scissor test for fast clear. This could lead to some issues but
I cannot think of one and could not find one either.
- Manually wait for queries to be available instead of making the driver
wait and issue warnings.
Replace the 12 iterations of UI_draw_roundbox_4fv with only one batch.
This mean less overdraw and less drawcalls.
I had to hack the opacity falloff curve manually to get approximatly the
same result as previous technique. I'm sure with a bit more brain power
somebody could find the perfect function.
Now use a list of preset batches with a function to add new ones to this
list.
This removes the need of new functions all over the place to reset/exit.
Special shader to draw nodelinks for the node editor.
We only pass bezier points to the GPU and vertex position is handled inside
the vertex shader.
The arrow is also part of the batch to avoid separate drawcalls for it.
We still draw 2 pass one for shadow and one for the link color on top.
One variation to draw instances of theses links so that we only do one
drawcall.
For this we use a new shader that gets it's data from a uniform array.
Vertex shader position the vertices using these data.
Using glUniform is way faster than using imm for that matter.
Like BLF rendering, UI icons are always (as far as I know) non occluded and
displayed above everything else. They also does not overlap with texts so
they can be batched at the same time.
I've made a separate version of the geom shader that works with full
3D modelviewmat.
This commit also includes some fixup inside blf_batching_start().