The implementation is pretty straightforward.
In Cycles, sampling the shapes is currently done w.r.t. area instead of solid angle.
There is a paper on solid angle sampling for disks [1], but the described algorithm is based on
simply sampling the enclosing square and rejecting samples outside of the disk, which is not exactly
great for Cycles' RNG (we'd need to setup a LCG for the repeated sampling) and for GPU divergence.
Even worse, the algorithm is only defined for disks. For ellipses, the basic idea still works, but a
way to analytically calculate the solid angle is required. This is technically possible [2], but the
calculation is extremely complex and still requires a lookup table for the Heuman Lambda function.
Therefore, I've decided to not implement that for now, we could still look into it later on.
In Eevee, the code uses the existing ltc_evaluate_disk to implement the lighting calculations.
[1]: "Solid Angle Sampling of Disk and Cylinder Lights"
[2]: "Analytical solution for the solid angle subtended at any point by an ellipse via a point source radiation vector potential"
Reviewers: sergey, brecht, fclem
Differential Revision: https://developer.blender.org/D3171
OVERVIEW
* In 2.7 terminology, all layers and groups are now collection datablocks.
* These collections are nestable, linkable, instanceable, overrideable, ..
which opens up new ways to set up scenes and link + override data.
* Viewport/render visibility and selectability are now a part of the collection
and shared across all view layers and linkable.
* View layers define which subset of the scene collection hierarchy is excluded
for each. For many workflows one view layer can be used, these are more of an
advanced feature now.
OUTLINER
* The outliner now has a "View Layer" display mode instead of "Collections",
which can display the collections and/or objects in the view layer.
* In this display mode, collections can be excluded with the right click menu.
These will then be greyed out and their objects will be excluded.
* To view collections not linked to any scene, the "Blender File" display mode
can be used, with the new filtering option to just see Colleciton datablocks.
* The outliner right click menus for collections and objects were reorganized.
* Drag and drop still needs to be improved. Like before, dragging the icon or
text gives different results, we'll unify this later.
LINKING AND OVERRIDES
* Collections can now be linked into the scene without creating an instance,
with the link/append operator or from the collections view in the outliner.
* Collections can get static overrides with the right click menu in the outliner,
but this is rather unreliable and not clearly communicated at the moment.
* We still need to improve the make override operator to turn collection instances
into collections with overrides directly in the scene.
PERFORMANCE
* We tried to make performance not worse than before and improve it in some
cases. The main thing that's still a bit slower is multiple scenes, we have to
change the layer syncing to only updated affected scenes.
* Collections keep a list of their parent collections for faster incremental
updates in syncing and caching.
* View layer bases are now in a object -> base hash to avoid quadratic time
lookups internally and in API functions like visible_get().
VERSIONING
* Compatibility with 2.7 files should be improved due to the new visibility
controls. Of course users may not want to set up their scenes differently
now to avoid having separate layers and groups.
* Compatibility with 2.8 is mostly there, and was tested on Eevee demo and Hero
files. There's a few things which are know to be not quite compatible, like
nested layer collections inside groups.
* The versioning code for 2.8 files is quite complicated, and isolated behind
#ifdef so it can be removed at the end of the release cycle.
KNOWN ISSUES
* The G-key group operators in the 3D viewport were left mostly as is, they
need to be modified still to fit better.
* Same for the groups panel in the object properties. This needs to be updated
still, or perhaps replaced by something better.
* Collections must all have a unique name. Less restrictive namespacing is to
be done later, we'll have to see how important this is as all objects within
the collections must also have a unique name anyway.
* Full scene copy and delete scene are exactly doing the right thing yet.
Differential Revision: https://developer.blender.org/D3383https://code.blender.org/2018/05/collections-and-groups/
We handle doversion for the scene properties, but not for the
view layer overrides.
Overrides will be implemented in a different way via dynamic overrides.
For now this data is completely lost.
This means only one texture to draw to and only one sprite per pixel.
The texture is twice as large and near and far planes are side by side.
The sprite choose the biggest coc to expand to and is redirected to the
area (layer) it belongs to.
The fragment shader discard every pixel that does not belong to the correct
layer.
Due to the scatter operation being done at half resolution, undersampling
is visible at bokeh shape edges (because of the hard cut).
This commit adds a smoothing function to minimize the problem.
Also optimize the bokeh shape parametrization by precomputing a lot of
constants.
This was the otherway around before. But since we can have a different size*
for cube texture now, we can compute the correct-ish texture size.
This will give us on average the same texture appearance when we will add
support for real cubemap shadows.
This mean we can now have different shadow resolutions for both.
However each shadow type keep the same size accross all lamps because of
future "real" Cube Shadowmaps limitation and to save texture sampler slots.
That said the cascade shadow resolution could (in the future) still be
changed to be adjustable per sun lamp.
Works on every probe type.
The function to see is EEVEE_lightprobes_obj_visibility_cb.
Set pinfo->vis_data.cached to true makes the computation faster for multiple
views using the same group.
We could even sort the probes by group for that mater to speed things up
even more (only applies to dynamic probes like the planar reflections because
other probes are only rendered one at a time).
This "improve" the viewport experience by reducing the noise from random
sampling effects (SSAO, Contact Shadows, SSR) when moving the viewport or
during playback.
This does not do Anti Aliasing because this would conflict with the outline
pass. We could enable AA jittering in "only render" mode though.
There are many things to improve but this is a solid basis to build upon.
This pass create a velocity buffer which is basically a 2D motion vector
texture. This is not yet used for rendering but will be usefull for motion
blur and temporal reprojection.
This gets rid of the need of a geom shader and instancing.
Both are pretty slow compared to the new method.
The only moment the old method could be better is when scene is filled
with lots of objects and most of the objects in the shadow map appear
on every layer.
But even then, we could optimize the culling and minimize the overhead.
This refactor modernise the use of framebuffers.
It also touches a lot of files so breaking down changes we have:
- GPUTexture: Allow textures to be attached to more than one GPUFrameBuffer.
This allows to create and configure more FBO without the need to attach
and detach texture at drawing time.
- GPUFrameBuffer: The wrapper starts to mimic opengl a bit closer. This
allows to configure the framebuffer inside a context other than the one
that will be rendering the framebuffer. We do the actual configuration
when binding the FBO. We also Keep track of config validity and save
drawbuffers state in the FBO. We remove the different bind/unbind
functions. These make little sense now that we have separate contexts.
- DRWFrameBuffer: We replace DRW_framebuffer functions by GPU_framebuffer
ones to avoid another layer of abstraction. We move the DRW convenience
functions to GPUFramebuffer instead and even add new ones. The MACRO
GPU_framebuffer_ensure_config is pretty much all you need to create and
config a GPUFramebuffer.
- DRWTexture: Due to the removal of DRWFrameBuffer, we needed to create
functions to create textures for thoses framebuffers. Pool textures are
now using default texture parameters for the texture type asked.
- DRWManager: Make sure no framebuffer object is bound when doing cache
filling.
- GPUViewport: Add new color_only_fb and depth_only_fb along with FB API
usage update. This let draw engines render to color/depth only target
and without the need to attach/detach textures.
- WM_window: Assert when a framebuffer is bound when changing context.
This balance the fact we are not track ogl context inside GPUFramebuffer.
- Eevee, Clay, Mode engines: Update to new API. This comes with a lot of
code simplification.
This also come with some cleanups in some engine codes.
Instead of creating a new instancing shading group without attrib, we now have instancing calls. The benefits is that they can be culled.
They can be used in conjuction with the standard and generate calls but shader must support it (which is generally not the case).
We store a pointer to the actual count so that the number can be tweaked between redraw.
This will makes multi layer rendering more efficient.
Technically the original issue is that xof/yof in render result is calculated
for drawing border render. So a simpler patch could be:
```
- rr->xof = re->disprect.xmin;
+ rr->xof = re->disprect.xmin + BLI_rcti_cent_x(&re->disprect) - (re->winx / 2);
```
However everywhere in the code we are getting border directly from re->disprect
which we may as well do here too.
Besides I'm taking this as a chance to get rid of RenderResult in the internal
loop of eevee, to help prepare the code to the upcoming rendering pipeline
changes.
We need to move the render result logic outside the render engine code.
It makes no sense for Eevee/Clay/... to have to re-implement the render resilt
creation logic. Beside the original implementation really got it wrong, by
ignoring the different render layers needed for the final render.
Finally, there is no need to re-create the logic for views. So this was also
fixed.
Note 1: This will break still if the depsgraph of the needed view layers is not
updated / created. We need to address this separately. For now if users want
to test this, just show each view layer in the viewport at least once.
Note 2: We are still getting depsgraph from scene and creating if needed.
`BKE_scene_get_depsgraph(scene, view_layer, true);` according to Sergey we need
to move the render depsgraph for the Render struct instead. I will do it
separately as well.
This leads to a huge improvement of AntiAliasing quality.
There is no other distribution now and there is not settings displayed to the user. That's for another commit.
Main idea is to make specific engine types be a subclass of generic
ObjectEngineData structure.
This required following changes:
- Have extra size argument to engine data allocation function.
Not sure whether there is less error-prone way of doing this.
- Add init() callback to engine data allocation function.
Additionally, added some extra checks to Eevee's engine data getters, so we do
not silently cast lamp data to lightprobe data.
Reviewers: dfelinto, fclem
Differential Revision: https://developer.blender.org/D3027
This is an optimization / cleanup commit.
The use of a global ubo remove lots of uniform lookups and only transfert data when needed.
Lots of renaming for more consistent codestyle.
This leads to a ~3ms improvement of CPU time during drawing.
This prevent the rendering from being stalled waiting for the texture data to be transfered.