This make the limited wireframe not a performance problem anymore.
However, this does change the number of edges displayed as the threshold
is now computed per vertex instead of per edges.
For this reason we extended (internaly) the range of the slider so that the
users can hide more edge.
This commit restores support for Motion Path drawing in 2.8 (as it wasn't ported over
to the new draw engines earlier, and the existing space_view3d/drawanimviz.c code was
removed during the Blender Internal removal).
Notes:
* Motion Paths are now implemented as an overlay (enabled by default).
Therefore, you can turn all of them on/off from the "Overlays" popover
* By and large, we have kept the same draw style as was used in 2.7
Further changes can happen later following further design work.
* One change from 2.7 is that thicker lines are used by default (2px vs 1px)
Todo's:
* There are some bad-level calls introduced here (i.e. the actgroup_to_keylist() stuff).
These were introduced to optimise drawing performance (by avoiding full keyframes -> keylist
conversion step on each drawcall). Instead, this has been moved to the calculation step
(in blenkernel). Soon, there will be some cleanups/improvements with those functions,
so until then, we'll keep the bad level calls.
Credits:
* Clément Foucault (fclem) - Draw Engine magic + Shader Conversion/Optimisation
* Joshua Leung (Aligorith) - COW fixes, UI integration, etc.
Revision History:
See "tmp-b28-motionpath_drawing" branch (rBa12ab5b2ef49ccacae091ccb54d72de0d63f990d)
This overlay is showing mesh topology. It is usable with transparency
even if the mesh order can mess up with the expected result (some object
more prominent than others).
Edge thickness and alpha values are hardcoded for now but can easily be
added to theme or object settings.
This new system use transform feedback to compute subdivided hair points
position. For now no smoothing is done between input points.
This new system decouple the strands data (uv, mcol) with the points
position, requiring less update work if only simulation is running.
In the future, we can have compute shader do the work of the feedback
transform pass since it's really what it's meant to. Also we could generate
the child particles during this pass, releasing some CPU time.
draw_hair.c has been created to handle all of the Shading group creations
as well as subdivision shaders.
We store one final batch per settings combination because multiple viewport
or render could use the same particle system with a different subdivision
count or hair shape type.
Gets edit more from the current object and displays it as a path.
this is how both hair and particle edit modes are supposed to work.
This only covers path itself, it doesn't do anything like keys
visualization or selection. However, it's already possible to
comb and such.
Only implements particle mode. There are also some settings to
do soft body and cloth. No idea yet what that all is about.
Copy-on-write is not supported either, this is due to some
edit mode ownership problems which are to be addressed from
dependency graph side.
Shading is dead-simple: uses tangent as a color. This is where
i hope to get some help from Clément.
The actual code is a bit convoluted but allows good and "pseudo efficient"
drawing. (pseudo efficient because rendering instances with that amount of
vertices is really inneficient. We should go full procedural but need to
have bufferTexture implemented first) But drawing speed is not a bottleneck
here and it's already a million time less crappy than the old (2.79) immediate
mode method.
Instead of drawing actual wires with different width we render a triangle
fan batch (containing 3 fans: bone, head, tail) which is then oriented in
screen space to the bone direction. We then interpolate a float value
accross vertices giving us a nice blend factor to blend the colors and
gives us really smooth interpolation inside the bone.
The outside edge still being geometry will be antialiased by MSAA if enabled.
Now the axes are displayed correctly at the tip of the bone and with the
axes names.
I've made some modifications though:
- Axes are colored. (should not be in object mode but that's TODO)
- Axes ends are not flat arrows anymore. Replaced with a small diamond.
- Axes names are now scale by their respective axes instead of being
affected by other axes.
- Changed axes names "font" to be a bit more sexy.
This will enable us to do more nice stuff in future commits.
This commit is a temporary commit, it will compile but will crash if
trying to display any armature. Next commit does work.
The actual weighting calculation is not smooth as the bone display.
The bone itself can be smooth for esthetic purpose but the distance display
should match the underlying weighting formula.
Past shader was too slow and had bad artifacts. This method is much simpler
and eficient and only exhibit some popping when the raidus of the head/tail
is changed.
We now use a more pleasant and efficient way to display enveloppe bones
and their radius.
For this we use a capsule geometry that is displaced (in the vertex shader)
to a signed distance field that represents the bone shape.
The bone distance radius are now drawn in 3D using a "pseudo-fresnel" effect.
This gives a better understanding of what is inside the radius of influence.
When capsules are not needed, we switch to default raytraced points.
The capsules are not distorded by the bone's matrix (same as their actual
influence radius) and are correctly displayed even with complex scaled
parents hierarchy.
Here is how it works:
We render a high poly disc that we orient & scale towards the camera so that
it covers the same pixel of the sphere it's supposed to represent.
Then the pixel shader raytrace the sphere (effectively starting from
the poly disc depth) and outputs the depth to gl_FragDepth.
This approach has many benefit:
- high quality obviously: per pixel accurate depth!
- compatible with MSAA: since the sphere horizon is delimited by polygons,
we get the coverage computed by the rasterizer. However we still gets
aliasing if the sphere intersect directly other meshes.
- virtually no overdraw: there is no backface to shade but we still get
overdraw because by little triangle [gpus rasterize pixel by groups of 4].
- allows early depth test: since the poly disc is set at the nearest depth
we can output, we can use GL_ARB_conservative_depth to enable early depth
test and discard pixels that are already behind geometry.
- can draw outline pretty easily without geometry shader.
This fix the issue with the zfighting we were getting at bones edges.
Moreover, this enables us to render arbitrarly large outline with
varying thickness.
- Removed the depth pass as it will reuse the depth pass of the render
engine
- Used gl_FrontFacing to determine the facing
- Blender the result with the render engine result
Implemented the face orientation overlay for testing.
Overlay mode is only drawn when there are overlays to be rendered.
The overlay mode is rendered before the object mode.
This is by default. We can still enable the thicker outlines for high dpi
screens or personnal preference but it's not used atm. This also improve
the performance removing 1/3 of the outline cost.