- move some larger vars into a nested scope.
- replace memset with zero initializer.
- rempace VECCOPY macros with copy_v3v3
- change function args to give the float array length.
- use 'const float *' and array size in some function declarations.
- replace macros for BLI_math functions INPF, VECCOPY, VECADD etc.
- remove unused VertRen.clip struct member.
- remove static squared_dist() from 2 files, replace with BLI_math function len_squared_v3v3().
- use vertex arrays for drawing clipping background in the 3D viewport.
Integration is still very rough around the edges and WIP, but it works, and can render smoke (using new Smoke format in Voxel Data texture) --> http://vimeo.com/6030983
More to come, but this makes things much easier to work on for me :)
- 1st stage: Linear Workflow
This implements automatic linear workflow in Blender's renderer. With the
new Colour Management option on in the Render buttons, all inputs to the
renderer and compositor are converted to linear colour space before
rendering, and gamma corrected afterwards. In essence, this makes all
manual gamma correction with nodes, etc unnecessary, since it's done
automatically through the pipeline.
It's all explained much better in the notes/doc here, so please have a look:
http://wiki.blender.org/index.php/Dev:Source/Blender/Architecture/Colour_Management
And an example of the sort of difference it makes:
http://mke3.net/blender/devel/rendering/b25_colormanagement_test01.jpg
This also enables Colour Management in the default B.blend, and changes the
default lamp falloff to inverse square, which is more correct, and much
easier to use now it's all gamma corrected properly.
Next step is to look into profiles/soft proofing for the compositor.
Thanks to brecht for reviewing and fixing some oversights!
due to jittering of the start position for antialiasing in a pixel.
Now it distributes the start position over the fixed osa sample
positions, instead of of random positions in space. The ugly bit is
that a custom ordering was defined for osa 8/11/16 to ensure that the
first 4 are distributed relatively fair for adaptive sampling to decide
if more samples need to be taken.
* Now it's possible to render with the camera inside a volume. I'm not sure how this goes with overlapping volumes yet, will look at it. But it allows nice things like this :)
http://mke3.net/blender/devel/rendering/volumetrics/clouds_sky.mov
* Sped up shading significantly by not doing any shading if the density
of the current sample is less than 0.01 (there's nothing to shade there anyway!) Speeds up around 200% on that clouds scene.
* Fixed a bug in global texture coordinates for volume textures
Now other objects (and sky) correctly render if they're partially
inside or behind a volume. Previously all other objects were ignored,
and volumes just rendered on black. The colour of surfaces inside or
behind the volume gets correctly attenuated by the density of the
volume in between - i.e. thicker volumes will block the light coming
from behind. However, other solid objects don't receive volume shadows
yet, this is to be worked on later.
http://mke3.net/blender/devel/rendering/volumetrics/vol_inside_behind.png
Currently this uses raytracing to find intersections within the volume,
and rays are also traced from the volume, heading behind into the
scene, to see what's behind it (similar effect to ray transp with IOR
1). Because of this, objects inside or behind the volume will not be
antialiased. Perhaps I can come up with a solution for this, but until
then, for antialiasing, you can turn on Full OSA (warning, this will
incur a slowdown). Of course you can always avoid this by rendering
volumes on a separate renderlayer, and compositing in post, too.
Another idea I've started thinking about is to calculate an alpha
value, then use ztransp to overlay on top of other objects. This won't
accurately attenuate and absorb light coming from objects behind the
volume, but for some situations it may be fine, and faster too.
This is an initial commit to get it in SVN and make it easier to work on.
Don't expect it to work perfectly, it's still in development and there's
plenty of work still needing to be done. And so no I'm not very interested
in hearing bug reports or feature requests at this stage :)
There's some info on this, and a todo list at:
http://mke3.net/weblog/volume-rendering/
Right now I'm trying to focus on getting shading working correctly (there's
currently a problem in which 'surfaces' of the volume facing towards or away
from light sources are getting shaded differently to how they should be),
then I'll work on integration issues, like taking materials behind the volume
into account, blending with alpha, etc. You can do simple testing though,
mapping textures to density or emission on a cube with volume material.
the renderer could lead to results being reused for unrelated
points, result was one wrong pixel or strand per part. Now instead
of setting the sample counter to 0 multiple times, it keeps a global
counter per thread for the whole render.
This completes the pipeline make-over, as started in 2006. With this
option, during rendering, each sample for every layer and pass is being
saved on disk (looks like non-antialiased images). Then the composite
and color correction happens, then a clip to 0-1 range, and only in end
all samples get combined - using sampling filters such as gauss/mitch/catmul.
This results in artefact-free antialiased images. Even Z-combine or
ID masks now work perfect for it!
This is an unfinished commit btw; Brecht will finish this for strands.
Also Halo doesnt work yet.
To activate FSA: press "Save Buffers" and the new button next to it. :)
=============================
A new approximate ambient occlusion method has been added, next to the
existing one based on raytracing. This method is specifically targetted
at use in animations, since it is inherently noise free, and so will
not flicker across frames.
http://www.blender.org/development/current-projects/changes-since-244/approximate-ambient-occlusion/http://peach.blender.org/index.php/approximate-ambient-occlusion/
Further improvements are still needed, but it can be tested already. There
are still a number of known issues:
- Bias errors on backfaces.
- For performance, instanced object do not occlude currently.
- Sky textures don't work well, the derivatives for texture evaluation
are not correct.
- Multiple passes do not work entirely correct (they are not accurate
to begin with, but could be better).
=================
Big commit, but little user visible changes.
- Dupliverts and duplifaces are now rendered as instances, instead
of storing all of the geometry for each dupli, now an instance is
created with a matrix transform refering to the source object.
This should allow us to render tree leaves more memory efficient.
- Radiosity and to some degree raytracing of such objects is not
really efficient still. For radiosity this is fundamentally hard
to solve, but raytracing an octree could be created for each object,
but the current octree code with it's fixed size doesn't allow this
efficiently.
- The regression tests survived, but with I expect that some bugs will
pop up .. hopefully not too many :).
Implementation Notes
====================
- Dupligroups and linked meshes are not rendered as instances yet,
since they can in fact be different due to various reasons,
instancing of these types of duplis that are the same can be added
for them at a later point.
- Each ObjectRen now stores it's own database, instead of there being
one big databases of faces, verts, .. . Which objects that are actually
rendered are defined by the list of ObjectRenInstances, which all refer
to an ObjectRen.
- Homogeneous coordinatess and clipping is now not stored in vertices
anymore, but instead computed on the fly. This couldn't work for
instances. That does mean some extra computation has to be done, but
memory lookups can be slow too, and this saves some memory. Overall
I didn't find a significant speed impact.
- OSA rendering for solid and ztransp now is different. Instead of e.g.
going 8 times over the databases times and rendering the z-buffer, it
now goes over the database once and renders each polygon 8 times. That
was necessary to keep instances efficient, and can also give some
performance improvement without instances.
- There was already instancing support in the yafray export code, now it
uses Blender's render instances for export.
- UV and color layer storage in the render was a bit messy before, now
should be easier to understand.
- convertblender.c was reorganized somewhat. Regular render, speedvector
and baking now use a single function to create the database, previously
there was code duplicated for it.
- Some of these changes were done with future multithreading of scene
and shadow buffer creation in mind, though especially for scene creation
much work remains to be done to make it threadsafe, since it also involves
a lot of code from blenkernel, and there is an ugly conflict with the way
dupli groups work here .. though in the render code itself it's almost there.
=========
- Fix crash in particle transform with the particle system not editable.
- Particle child distribution and caching is now multithreaded.
- Child particles now have a separate Render Amount next to the existing
Amount. The render amount particles are now only distributed and cached
at render time, which should make editing with child particles faster.
- Two new options for diffuse strand shading:
- Surface Diffuse: computes the strand normal taking the normal at
the surface into account.
- Blending Distance: the distance in Blender units over which to
blend in the normal at the surface.
- Special strand rendering for more memory efficient and faster hair and
grass. This is a work in progress, and has a number of known issues,
don't report bugs to me for this feature yet.
More info:
http://www.blender.org/development/current-projects/changes-since-244/particles/
Added support for multiple UVs in the render engine. This also involved
changing the way faces are stored, to allow data to be added optionally
per 256 faces, same as the existing system for vertices.
A UV layer can be specified in the Map Input panel and the Geometry node
by name. Leaving this field blank will default to the active UV layer.
Also added sharing of face selection and hiding between UV layers, and at
the same time improved syncing with editmode selection and hiding.
Still to do:
- Multi UV support for fastshade.
- Multires and NMesh preservation of multiple UV sets.
- Bug: material emit was ignored (showed in preview render backdrop)
- Bug: world exposure was ignored
- Bug: lamp halo was ignoring 'render layer light override'.
Further reshuffled the way shadows are being pre-calculated, this to enable
more advanced (and faster) usage of Material lightgroups. Now shadows are
being cached in lamps, using a per-sample counter to check if a recalc is
needed. Will also work (later) for Raytracing node shaders.
- New: Material LightGroup option "Always", which always shades the lights
in the group, independent of visibility layer. (so it allows to move such
lights to hidden layer, not influencing anything).