resolutions to render, to a "start resolution" which gives the resolution
to start at.
This avoids unnecessary rendering of small resolutions in small viewports,
and avoids long waiting on big viewports.
Regular rendering now works tiled, and supports save buffers to save memory
during render and cache render results.
Brick texture node by Thomas.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Brick_Texture
Image texture Blended Box Mapping.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Image_Texturehttp://mango.blender.org/production/blended_box/
Various bug fixes by Sergey and Campbell.
* Fix for reading freed memory in some node setups.
* Fix incorrect memory read when synchronizing mesh motion.
* Fix crash appearing when direct light usage is different on different layers.
* Fix for vector pass gives wrong result in some circumstances.
* Fix for wrong resolution used for rendering Render Layer node.
* Option to cancel rendering when doing initial synchronization.
* No more texture limit when using CPU render.
* Many fixes for new tiled rendering.
The particle data used by the Particle Info node was stored in cycles as a list in each object. This is a problem when the particle emitter mesh is hidden: Objects in cycles are only intended as instances of renderable meshes, so when hiding the emitter mesh the particle data doesn't get stored either. Also the particle data can potentially be copied to multiple instances of the same object, which is a waste of texture space.
The solution in this patch is to make a completely separate list of particle systems in the Cycles scene data. This way the particle data can be generated even when the emitter object itself is not visible.
direct and indirect lighting differently. Rather than picking one light for each
point on the path, it now loops over all lights for direct lighting. For indirect
lighting it still picks a random light each time.
It gives control over the number of AA samples, and the number of Diffuse, Glossy,
Transmission, AO, Mesh Light, Background and Lamp samples for each AA sample.
This helps tuning render performance/noise and tends to give less noise for renders
dominated by direct lighting.
This sampling mode only works on the CPU, and still needs proper tile rendering
to show progress (will follow tommorrow or so), because each AA sample can be quite
slow now and so the delay between each update wil be too long.
other places, was mainly due to instancing not working, but also found
issues in procedural textures.
The problem was with --use_fast_math, this seems to now have way lower
precision for some operations. Disabled this flag and selectively use
fast math functions. Did not find performance regression on GTX 460 after
doing this.
Most of the changes are related to adding support for motion data throughout
the code. There's some code for actual camera/object motion blur raytracing
but it's unfinished (it badly slows down the raytracing kernel even when the
option is turned off), so that code it disabled still.
Motion vector export from Blender tries to avoid computing derived meshes
when the mesh does not have a deforming modifier, and it also won't store
motion vectors for every vertex if only the object or camera is moving.
=== BVH build time optimizations ===
* BVH building was multithreaded. Not all building is multithreaded, packing
and the initial bounding/splitting is still single threaded, but recursive
splitting is, which was the main bottleneck.
* Object splitting now uses binning rather than sorting of all elements, using
code from the Embree raytracer from Intel.
http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/
* Other small changes to avoid allocations, pack memory more tightly, avoid
some unnecessary operations, ...
These optimizations do not work yet when Spatial Splits are enabled, for that
more work is needed. There's also other optimizations still needed, in
particular for the case of many low poly objects, the packing step and node
memory allocation.
BVH raytracing time should remain about the same, but BVH build time should be
significantly reduced, test here show speedup of about 5x to 10x on a dual core
and 5x to 25x on an 8-core machine, depending on the scene.
=== Threads ===
Centralized task scheduler for multithreading, which is basically the
CPU device threading code wrapped into something reusable.
Basic idea is that there is a single TaskScheduler that keeps a pool of threads,
one for each core. Other places in the code can then create a TaskPool that they
can drop Tasks in to be executed by the scheduler, and wait for them to complete
or cancel them early.
=== Normal ====
Added a Normal output to the texture coordinate node. This currently
gives the object space normal, which is the same under object animation.
In the future this might become a "generated" normal so it's also stable for
deforming objects, but for now it's already useful for non-deforming objects.
=== Render Layers ===
Per render layer Samples control, leaving it to 0 will use the common scene
setting.
Environment pass will now render environment even if film is set to transparent.
Exclude Layers" added. Scene layers (all object that influence the render,
directly or indirectly) are shared between all render layers. However sometimes
it's useful to leave out some object influence for a particular render layer.
That's what this option allows you to do.
=== Filter Glossy ===
When using a value higher than 0.0, this will blur glossy reflections after
blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good
starting value to tweak.
Some light paths have a low probability of being found while contributing much
light to the pixel. As a result these light paths will be found in some pixels
and not in others, causing fireflies. An example of such a difficult path might
be a small light that is causing a small specular highlight on a sharp glossy
material, which we are seeing through a rough glossy material. With path tracing
it is difficult to find the specular highlight, but if we increase the roughness
on the material the highlight gets bigger and softer, and so easier to find.
Often this blurring will be hardly noticeable, because we are seeing it through
a blurry material anyway, but there are also cases where this will lead to a
loss of detail in lighting.
but this makes it more reliable for now.
Also add an integrator "Clamp" option, to clamp very light samples to a maximum
value. This will reduce accuracy but may help reducing noise and speed up
convergence.
disk to be reused by the next render.
This is useful for rendering animations where only the camera or materials change.
Note that saving the BVH to disk only to be removed for the next frame is slower
if this is not the case and the meshes do actually change.
For a render, it will save bvh files to the cache user directory, and remove all
cache files from other renders. The files are named using a MD5 hash based on the
mesh, to verify if the meshes are still the same.
The rendering device is now set in User Preferences > System, where you can
choose between OpenCL/CUDA and devices. Per scene you can then still choose
to use CPU or GPU rendering.
Load balancing still needs to be improved, now it just splits the entire
render in two, that will be done in a separate commit.
lower than 1.3, since we're not officially supporting these. We're already not
providing CUDA binaries for these, so better make it clear when compiling from
source too.
Fix#29475: remove node from properties editor crash on windows. This was a bug
in the UI code, which code access removed data.
Fix OpenCL still being used in a case where Experimental was disabled.
Fix msvc debug warning in md5 code.
* Compile all of cycles with -ffast-math again
* Add scons compilation of cuda binaries, tested on mac/linux.
* Add UI option for supported/experimental features, to make it
more clear what is supported, opencl/subdivision is experimental.
* Remove cycles xml exporter, was just for testing.
* Passes renamed to samples
* Camera lens radius renamed to aperature size/blades/rotation
* Glass and fresnel nodes input is now index of refraction
* Glossy and velvet fresnel socket removed
* Mix/add closure node renamed to mix/add shader node
* Blend weight node added for shader mixing weights
There is some version patching code for reading existing files, but it's not
perfect, so shaders may work a bit different.
* Fix missing update when editing objects with emission materials.
* Fix preview pass rendering set to 1 not showing full resolution.
* Fix CUDA runtime compiling failing due to missing cache directory.
* Use settings from first render layer for visibility and material override.
And a bunch of incomplete and still disabled code mostly related to closure
sampling.
* Add max diffuse/glossy/transmission bounces
* Add separate min/max for transparent depth
* Updated/added some presets that use these options
* Add ray visibility options for objects, to hide them from
camera/diffuse/glossy/transmission/shadow rays
* Is singular ray output for light path node
Details here:
http://wiki.blender.org/index.php/Dev:2.5/Source/Render/Cycles/LightPaths
* Add alpha pass output, to use set Transparent option in Film panel.
* Add Holdout closure (OSL terminology), this is like the Sky option in the
internal renderer, objects with this closure show the background / zero
alpha.
* Add option to use Gaussian instead of Box pixel filter in the UI.
* Remove camera response curves for now, they don't really belong here in
the pipeline, should be moved to compositor.
* Output full float values for rendering now, previously was only byte precision.
* Add a patch from Thomas to get a preview passes option, but still disabled
because it isn't quite working right yet.
* CUDA: don't compile shader graph evaluation inline.
* Convert tabs to spaces in python files.
* auto/fixed threads option is used now, patch by Thomas.
* remove unused CUDA_LIBRARIES, library is dynamically loaded
* fix mesh XML export operator for API update