Monthly cleaning round to make it compile warning free.
Mostly it was const stuff (strings, Context), but also
a couple useful fixes, like wrong use of temp pointers.
Only Mathutils callback struct I left alone... design issue.
Suposedly usefull for creating trees of objects (where objects have very diferent size-NumFaces and shape-BB)
Altought the implemented costs maybe not be very correct (for now), as i didnt cared about following a specific "corrected" model
I think its something like:
old was: 4*nlogn + 3*(n*6)
new is: (2*nlogn + 3*(n*6)) * f, with f<1
Still missing changing the sorting function to an introsort instead of qsort
Other options like bucketing sort may be worth trying (for very large trees)
only for 2childs splits
with "worse case heuristic" means each child is considered to have a cost linear on the number of leafs
no termination criteria
number of BB test/hits expected to "reduced" by some factor
tree building is also expected to be slower as previous split was "object mean", which is quite fast to evaluate
*"Added" SCE_PASS_RAYHITS to visually see each pixel primitive and BB tests (not-completed for UI)
*Added runtime exchange of tree structure
*Removed FLOAT_EPSILON from BLI_bvhkdop BB's
* Baked normal particles can now use the "Path" visualization.
* Path "max length" & "abs length" are now history:
- New option to set path start & end times + random variation to length.
- Much more flexible (and calculated better) than previous options.
- This works with parents, children, hair & normal particles unlike old length option.
- Only known issue for now is that children from faces don't get calculated correctly when using path start time.
* New option "trails" for "halo", "line" and "billboard" visualizations:
- Draws user controllable number of particle instances along particles path backwards from current position.
- Works with children too for cool/weird visualizations that weren't possible before.
* Normal particle children's velocities are now approximated better when needed so that "line" visualization trails will look nice.
* New particle instance modifier options:
- "path"-option works better and has controllable (max)position along path (with random variation possible).
- "keep shape"-option for hair, keyed, or baked particles allows to place the instances to a single point (with random variation possible) along particle path.
- "axis" option to make rotation handling better (still not perfect, but will have to do for now).
Some fixes & cleanup done along the way:
* Random path length didn't work for non-child particles.
* Cached & unborn particles weren't reset to emit locations.
* Particle numbers weren't drawn in the correct place.
* Setting proper render & draw visualizations was lost somewhere when initializing new particle settings.
* Changing child mode wasn't working correctly.
* Some cleanup & modularization of particle child effector code and particle drawing & rendering code.
* Object & group visualizations didn't work.
* Child simplification didn't work.
point is that other structures like trees can then distiguish between other nodes or rayobject primitives
withouth needing any other variable.
(Note yet used but will reduce memory by a nice factor (linear to the number of primitives))
* Based on what happens during simulation the cache is marked (also in cache panel, this could possibly be extended to 3d view as well) as:
- exact (not marked)
- outdated (simulation is not done completely with current settings)
- non-exact (frames were skipped during simulation)
* The parameter "cache step" effects the number of frames between saved cache frames.
- This can save a lot of memory (or disk space) if absolutely frame accurate simulation is not required.
- Speeds up the "quick caching" very much.
- Frames between cached frames are interpolated from the cached frames.
- Current default value of 10 frames works nicely with up/down-arrows (skip 10 frames forwards/backwards on timeline), but can be changed if wanted.
* The caching can work in normal or "quick" mode:
[Normal cache]
- Basic: Calculate what even happens (settings change, big frame steps etc.) and cache results, if possible try to use "cache step" when saving cache frames.
- Becomes non-exact: After larger than 1 frame steps.
- Becomes outdated: After any change effecting the simulation other than frame steps.
- Pros/cons: Freedom of doing anything and playing with particles, but exact results have to calculated from the beginning.
[Quick cache]
- Basic: Calculate simulation up to current frame automatically on changes with cache step sized jumps in simulation. With multiple "quick cached" simulations the smallest cache step is used.
- Becomes non-exact: Always from frame 1 (unless cache step = 1).
- Becomes outdated: Never.
- Pros/cons: Not very accurate, but super fast!
- Todo: Transform of any animated (non-autokeyed) object is locked! Probably needs some tinkering with anim sys overrides.
* The simulation can be run forwards or backwards even if it's cache is outdated or non-exact, the following rules apply in these situations:
- step forwards (to unknown) -> simulate from last exact frame, store result
- step backwards (to known) -> result is interpolated from existing frames, store result, clear cache forwards if current frame is after last exact frame
* "Calculate to current frame" runs the simulation from start to current frame with a frame steps of 1.
- Baking does the same, but runs the simulation all the way to the end of simulation.
- Rendering does this automatically if the simulation is outdated of non-exact, so all rendered simulations will always be updated and exact.
* Every cache panel also holds buttons to "Bake all dynamics", "Free all dynamics" and "Update all dynamics to current frame".
* Cloth simulation supports the new cache too.
Using LightGroups override for material doesn't work for preview
renders. Code didn't correctly return correct light listbase then,
crashing Blender on preview render.
* removed radiosity render code, DNA and RNA (left in radio render pass options), we'll get GI to replace this probably, better allow baking to vertex colors for people who used this.
* removed deprecated solid physics library, sumo integrations and qhull, a dependency
* removed ODE, was no longer being build or supported
* remove BEOS and AMIGA defines and references in Makefiles.
* Allows moving, rotating & scaling of particle simulations.
* Setting in particle render options.
* Changes viewed & rendered particles from global space to parent space.
* Doesn't effect simulations at all.
* Particles support larger than 1 frame changes, bigger frame changes can result in inaccurate results, but it's super fast and you get a nice feeling of how the particles behave!
* "Cache to current frame" button calculates the exact result of particles at current frame.
* Current state of cache can be protected by making it a bake.
* Cache is now in memory by default, disk cache is an option.
* Only "viewport %" number of particles are calculated and cached in viewport, baking and rendering calculate all particles.
* Info on cached frames and memory usage given in ui.
* Support for exact "autocaching" of changes and large frame changes(disabled for now until exact place in event system is decided)
* "Continue physics" is probably deprecated after this and should be removed once sb & cloth use the new cache code.
Todo:
* Make softbody & cloth use the new cache things.
Other changes:
* Some cleanup of particle buttons.
* Added support for additional file types in the voxel data texture. I added
support for 8 bit raw files, but most notably for image sequences.
Image sequences generate the voxel grid by stacking layers of image slices on top
of each other to generate the voxels in the Z axis - the number of slices in the
sequence is the resolution of the voxel grid's Z axis.
i.e. http://mke3.net/blender/devel/rendering/volumetrics/skull_layers.jpg
The image sequence option is particularly useful for loading medical data into
Blender. 3d medical data such as MRIs or CT scans are often stored as DICOM
format image sequences. It's not in Blender's scope to support the DICOM format,
but there are plenty of utilities such as ImageMagick, Photoshop or OsiriX that
can easily convert DICOM files to formats that Blender supports, such as PNG or JPEG.
Here are some example renderings using these file formats to load medical data:
http://vimeo.com/5242961http://vimeo.com/5242989http://vimeo.com/5243228
Currently the 8 bit raw and image sequence formats only support the 'still'
rendering feature.
* Changed the default texture placement to be centred around 0.5,0.5,0.5, rather
than within the 0.0,1.0 cube. This is more consistent with image textures, and it
also means you can easily add a voxel data texture to a default cube without
having to mess around with mapping.
* Added some more extrapolation modes such as Repeat and Extend rather than just clipping
http://mke3.net/blender/devel/rendering/volumetrics/bradybunch.jpg
* Changed the voxel data storage to use MEM_Mapalloc (memory mapped disk cache)
rather than storing in ram, to help cut down memory usage.
* Refactored and cleaned up the code a lot. Now the access and interpolation code
is separated into a separate voxel library inside blenlib. This is now properly
shared between voxel data texture and light cache (previously there was some
duplicated code).
* Made volume light cache support non-cubic voxel grids. Now the resolution
specified in the material properties is used for the longest edge of the volume
object's bounding box, and the shorter edges are proportional (similar to how
resolution is calculated for fluid sim domains).
This is *much* more memory efficient for squashed volume regions like clouds
layer bounding boxes, allowing you to raise the resolution considerably while
still keeping memory usage acceptable.
Checker: FORWARD_NULL (help)
File: base/src/source/blender/render/intern/source/texture.c
Function: do_lamp_tex
Description: Variable "dx" tracked as NULL was dereferenced.
Also found a typo the 3rd check was checking projx instead of projz
I also expanded the elses to set dyt as well as dxt.
Kent