This patch adds a new Cycles device with similar functionality to the
existing GPU devices. Kernel compilation and runtime interaction happen
via oneAPI DPC++ compiler and SYCL API.
This implementation is primarly focusing on Intel® Arc™ GPUs and other
future Intel GPUs. The first supported drivers are 101.1660 on Windows
and 22.10.22597 on Linux.
The necessary tools for compilation are:
- A SYCL compiler such as oneAPI DPC++ compiler or
https://github.com/intel/llvm
- Intel® oneAPI Level Zero which is used for low level device queries:
https://github.com/oneapi-src/level-zero
- To optionally generate prebuilt graphics binaries: Intel® Graphics
Compiler All are included in Linux precompiled libraries on svn:
https://svn.blender.org/svnroot/bf-blender/trunk/lib The same goes for
Windows precompiled binaries but for the graphics compiler, available
as "Intel® Graphics Offline Compiler for OpenCL™ Code" from
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html,
for which path can be set as OCLOC_INSTALL_DIR.
Being based on the open SYCL standard, this implementation could also be
extended to run on other compatible non-Intel hardware in the future.
Reviewed By: sergey, brecht
Differential Revision: https://developer.blender.org/D15254
Co-authored-by: Nikita Sirgienko <nikita.sirgienko@intel.com>
Co-authored-by: Stefan Werner <stefan.werner@intel.com>
Workaround for a compilation issue preventing kernels compiling for AMD GPUs: Avoid problematic use of templates on Metal by making `gpu_parallel_active_index_array` a wrapper macro, and moving `blocksize` to be a macro parameter.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D14081
* Replace license text in headers with SPDX identifiers.
* Remove specific license info from outdated readme.txt, instead leave details
to the source files.
* Add list of SPDX license identifiers used, and corresponding license texts.
* Update copyright dates while we're at it.
Ref D14069, T95597
This patch contains many small leftover fixes and additions that are
required for Metal-enablement:
- Address space fixes and a few other small compile fixes
- Addition of missing functionality to the Metal adapter headers
- Addition of various scattered `__KERNEL_METAL__` blocks (e.g. for
atomic support & maths functions)
Ref T92212
Differential Revision: https://developer.blender.org/D13263
This patch adapts the shared kernel entrypoints so that they can be compiled as MSL (Metal Shading Language). Where possible, the adaptations avoid changes in common code.
In MSL, kernel function inputs are explicitly bound to resources. In the case of argument buffers, we declare a struct containing the kernel arguments, accessible via device pointer. This differs from CUDA and HIP where kernel function arguments are declared as traditional C-style function parameters. This patch adapts the entrypoints declared in kernel.h so that they can be translated via a new `ccl_gpu_kernel_signature` macro into the required parameter struct + kernel entrypoint pairing for MSL.
MSL buffer attribution must be applied to function parameters or non-static class data members. To allow universal access to the integrator state, kernel data, and texture fetch adapters, we wrap all of the shared kernel code in a `MetalKernelContext` class. This is achieved by bracketing the appropriate kernel headers with "context_begin.h" and "context_end.h" on Metal. When calling deeper into the kernel code, we must reference the context class (e.g. `context.integrator_init_from_camera`). This extra prefixing is performed by a set of defines in "context_end.h". These will require explicit maintenance if entrypoints change. We invite discussion on more maintainable ways to enforce correctness.
Lambda expressions are not supported on MSL, so a new `ccl_gpu_kernel_lambda` macro generates an inline function object and optionally capturing any required state. This yields the same behaviour. This approach is applied to all parallel_... implementations which are templated by operation. The lambda expressions in the film_convert... kernels don't adapt cleanly to use function objects. However, these entrypoints can be macro-generated more concisely to avoid lambda expressions entirely, instead relying on constant folding to handle the pixel/channel conversions.
A separate implementation of `gpu_parallel_active_index_array` is provided for Metal to workaround some subtle differences in SIMD width, and also to encapsulate some required thread parameters which must be declared as explicit entrypoint function parameters.
Ref T92212
Reviewed By: brecht
Maniphest Tasks: T92212
Differential Revision: https://developer.blender.org/D13109
Remove prefix of filenames that is the same as the folder name. This used
to help when #includes were using individual files, but now they are always
relative to the cycles root directory and so the prefixes are redundant.
For patches and branches, git merge and rebase should be able to detect the
renames and move over code to the right file.
NOTE: this feature is not ready for user testing, and not yet enabled in daily
builds. It is being merged now for easier collaboration on development.
HIP is a heterogenous compute interface allowing C++ code to be executed on
GPUs similar to CUDA. It is intended to bring back AMD GPU rendering support
on Windows and Linux.
https://github.com/ROCm-Developer-Tools/HIP.
As of the time of writing, it should compile and run on Linux with existing
HIP compilers and driver runtimes. Publicly available compilers and drivers
for Windows will come later.
See task T91571 for more details on the current status and work remaining
to be done.
Credits:
Sayak Biswas (AMD)
Arya Rafii (AMD)
Brian Savery (AMD)
Differential Revision: https://developer.blender.org/D12578
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.
Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.
Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycleshttps://wiki.blender.org/wiki/Source/Render/Cycles
Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)
For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.
Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800