This required some small changes to the data display shaders so that they match the way the object mode renders them.
Strangely enough, I had to remove the normal attribute from the display code because it was being not bound as soon as I created another rendering call in object mode. The problem may be deeper but I did not have time for this so I derive the normal from the sphere pos.
This adds TAA to eevee. The only thing important to note is that we need to keep the unjittered depth buffer so that the other engines are composited correctly.
- Replace poisson by concentric samples: Less variance. They are sorted by radius then by angle.
- Separate filtering into 2 blur. First blur is 3x3 box blur. Second is user dependant.
- Group fetches by group of 4.
This brings some data structure changes.
Shared shadow data are stored in ShadowData (in glsl) (aka EEVEE_Shadow in C).
This structure contains the array indices of the first shadow element of this shadow "object".
It also contains how many shadow to evaluate (to be used for Multiple shadow maps).
The filtering is noisy and needs improvement.
- Use only one 2d texture array to store all shadowmaps.
- Allow to change shadow maps resolution.
- Do not output radial distance when rendering shadowmaps. This will allow fast rendering of shadowmaps when we will drop the use of geometry shaders.
This means we have less overall noise for rendered image.
SSR, AO, and Refraction are affected by this change.
SSR still exhibit artifacts because the reconstruction pattern needs to change every frame (TODO).
It's purpose is to limit the amount of light that spread across the screen.
Not entierly sure if it's very usefull, but it sure help to avoid to drown the screen in bloom.
This function was called to recreate the lower mip level of the probe texture. But this is not it's usage and it introduced a stall.
This patch add cubemap mipmap level regeneration in eevee_effects.c
This includes big improvement:
- The horizon search is decoupled from the BSDF evaluation. This means using multiple BSDF nodes have a much lower impact when enbaling AO.
- The horizon search is optimized by splitting the search into 4 corners searching similar directions to help which GPU cache coherence.
- The AO options are now uniforms and do not trigger shader recompilation (aka. freeze UI).
- Include a quality slider similar to the SSR one.
- Add a switch for disabling bounce light approximation.
- Fix problem with Bent Normals when occlusion get very dark.
- Add a denoise option to that takes the neighbors pixel values via glsl derivatives. This reduces noise but exhibit 2x2 blocky artifacts.
The downside : Separating the horizon search uses more memory (~3MB for each samples on HD viewport). We could lower the bit depth to 4bit per horizon but it produce noticeable banding (might be fixed with some dithering).
Theses Materials are rendered after the SSR pass.
The only difference with previous method is that they have a depth prepass (less overdraw) and are not sorted.
For the moment the only way to enable this is to:
- enable Screen Space REFLECTIONS.
- enable Screen Space Refraction in the SSR parameters.
- enable Screen Space Refraction in the material tab.
Since we are working with non power of 2 textures, the mipmap level UV does not line up perfectly.
This resulted in skewed filtering and bad sampling of the min/max depth buffer.
It now uses a quality slider instead of stride.
Lower quality takes larger strides between samples and use lower mips when tracing rough rays.
Now raytracing is done entierly in homogeneous coordinate space. This run much faster.
Should be fairly optimized. We are still Bandwidth bound.
Add a line-line intersection refine.
Add a ray jitter between the multiple ray per pixel to fill some undersampling in mirror reflections.
The tracing now stops if it goes behind an object. This needs some work to allow it to continue even if behind objects.
This add the possibility to use planar probe informations to create SSR.
This has 2 advantages:
- Tracing is less expensive since the hit is found much quicker.
- We have much less artifact due to missing information.
There is still area for improvement.
This commit separate the depth texture into another texture array.
This remove the need to output radial depth into alpha.
Unfortunatly it's difficult to recover position from the non linear depth buffer when applying reflection without adding a bunch of stuff.
This is in preparation of SSR planar reflections.
Output in 2 buffers Normals, Specular Color and roughness.
This way we can raytrace in a defered fashion and blend the exact contribution of the specular lobe on top of the opaque pass.
Hashed Alpha transparency offers a noisy output but has the benefit of being correctly ordered. Noise can be attenuated with Multisampling / AntiAliasing.