These warnings can reveal errors in logic, so quiet them by checking
if the features are enabled before using variables or by assigning
empty strings in some cases.
- Check CMAKE_THREAD_LIBS_INIT is set before use as CMake docs
note that this may be left unset if it's not needed.
- Remove BOOST/OPENVDB/VULKAN references when disable.
- Define INC_SYS even when empty.
- Remove PNG_INC from freetype (not defined anywhere).
Previously, `ParamsBuilder` lazily allocated an array for an
output when it was unused, but the called multi-function
wanted to access it. Now, whether the multi-function supports
an output to be unused is part of the signature. This way, the
allocation can happen earlier when the parameters are build.
The benefit is that this makes all methods of `MFParams`
thread-safe again, removing the need for a mutex.
This moves all multi-function related code in the `functions` module
into a new `multi_function` namespace. This is similar to how there
is a `lazy_function` namespace.
The main benefit of this is that many types names that were prefixed
with `MF` (for "multi function") can be simplified.
There is also a common shorthand for the `multi_function` namespace: `mf`.
This is also similar to lazy-functions where the shortened namespace
is called `lf`.
This avoids a move of the signature after building it. Tthe value had
to be moved out of `MFSignatureBuilder` in the `build` method.
This also makes the naming a bit less confusing where sometimes
both the `MFSignature` and `MFSignatureBuilder` were referred
to as "signature".
* New `build_mf` namespace for the multi-function builders.
* The type name of the created multi-functions is now "private",
i.e. the caller has to use `auto`. This has the benefit that the
implementation can change more freely without affecting
the caller.
* `CustomMF` does not use `std::function` internally anymore.
This reduces some overhead during code generation and at
run-time.
* `CustomMF` now supports single-mutable parameters.
When these declarations are built without the help of the special
builder class, it's much more convenient to set them directly rather
than with a constructor, etc. In most other situations the declarations
should be const anyway, so theoretically this doesn't affect safety too
much. Most construction of declarations should still use the builder.
The main goal here is to move towards more self contained node
definitions. Previously, one would have to change `blenkernel` to
add a new node which is not necessary anymore. There is no need
for all these register functions to "leak out" of the nodes module.
Differential Revision: https://developer.blender.org/D16612
This is the conventional way of dealing with unused arguments in C++,
since it works on all compilers.
Regex find and replace: `UNUSED\((\w+)\)` -> `/*$1*/`
Previously, all implicit inputs where stored in a centralized place.
Now the information which nodes have which implicit inputs is
stored in the nodes directly.
The purpose of `NodeTreeRef` was to speed up various queries on a read-only
`bNodeTree`. Not that we have runtime data in nodes and sockets, we can also
store the result of some queries there. This has some benefits:
* No need for a read-only separate node tree data structure which increased
complexity.
* Makes it easier to reuse cached queries in more parts of Blender that can
benefit from it.
A downside is that we loose some type safety that we got by having different
types for input and output sockets, as well as internal and non-internal links.
This patch also refactors `DerivedNodeTree` so that it does not use
`NodeTreeRef` anymore, but uses `bNodeTree` directly instead.
To provide a convenient API (that is also close to what `NodeTreeRef` has), a
new approach is implemented: `bNodeTree`, `bNode`, `bNodeSocket` and `bNodeLink`
now have C++ methods declared in `DNA_node_types.h` which are implemented in
`BKE_node_runtime.hh`. To make this work, `makesdna` now skips c++ sections when
parsing dna header files.
No user visible changes are expected.
Differential Revision: https://developer.blender.org/D15491
This applies the same optimization as b8bd304bd4 to the separate
color node. I observed about a 50% improvement with 10 million values
when only extracting one channel-- from about 17ms to 11ms.
Inspired by D12936 and D12929, this patch adds general purpose
"Combine Color" and "Separate Color" nodes to Geometry, Compositor,
Shader and Texture nodes.
- Within Geometry Nodes, it replaces the existing "Combine RGB" and
"Separate RGB" nodes.
- Within Compositor Nodes, it replaces the existing
"Combine RGBA/HSVA/YCbCrA/YUVA" and "Separate RGBA/HSVA/YCbCrA/YUVA"
nodes.
- Within Texture Nodes, it replaces the existing "Combine RGBA" and
"Separate RGBA" nodes.
- Within Shader Nodes, it replaces the existing "Combine RGB/HSV" and
"Separate RGB/HSV" nodes.
Python addons have not been updated to the new nodes yet.
**New shader code**
In node_color.h, color.h and gpu_shader_material_color_util.glsl,
missing methods hsl_to_rgb and rgb_to_hsl are added by directly
converting existing C code. They always produce the same result.
**Old code**
As requested by T96219, old nodes still exist but are not displayed in
the add menu. This means Python scripts can still create them as usual.
Otherwise, versioning replaces the old nodes with the new nodes when
opening .blend files.
Differential Revision: https://developer.blender.org/D14034
Goals:
* Better high level control over where devirtualization occurs. There is always
a trade-off between performance and compile-time/binary-size.
* Simplify using array devirtualization.
* Better performance for cases where devirtualization wasn't used before.
Many geometry nodes accept fields as inputs. Internally, that means that the
execution functions have to accept so called "virtual arrays" as inputs. Those
can be e.g. actual arrays, just single values, or lazily computed arrays.
Due to these different possible virtual arrays implementations, access to
individual elements is slower than it would be if everything was just a normal
array (access does through a virtual function call). For more complex execution
functions, this overhead does not matter, but for small functions (like a simple
addition) it very much does. The virtual function call also prevents the compiler
from doing some optimizations (e.g. loop unrolling and inserting simd instructions).
The solution is to "devirtualize" the virtual arrays for small functions where the
overhead is measurable. Essentially, the function is generated many times with
different array types as input. Then there is a run-time dispatch that calls the
best implementation. We have been doing devirtualization in e.g. math nodes
for a long time already. This patch just generalizes the concept and makes it
easier to control. It also makes it easier to investigate the different trade-offs
when it comes to devirtualization.
Nodes that we've optimized using devirtualization before didn't get a speedup.
However, a couple of nodes are using devirtualization now, that didn't before.
Those got a 2-4x speedup in common cases.
* Map Range
* Random Value
* Switch
* Combine XYZ
Differential Revision: https://developer.blender.org/D14628
Connecting to some sockets of a few nodes via the drag link search
would fail and trigger an assert, because the picked socket wasn't
available. This was due to some sockets only being available with
certain settings.
This patch fixes these cases by adding the availability conditions of
the socket to the node declaration with the `make_available` method
or manually adding a `node_link_gather_search` function.
Differential Revision: https://developer.blender.org/D14283
This commit removes the implementations of legacy nodes,
their type definitions, and related code that becomes unused.
Now that we have two releases that included the legacy nodes,
there is not much reason to include them still. Removing the
code means refactoring will be easier, and old code doesn't
have to be tested and maintained.
After this commit, the legacy nodes will be undefined in the UI,
so 3.0 or 3.1 should be used to convert files to the fields system.
The net change is 12184 lines removed!
The tooltip for legacy nodes mentioned that we would remove
them before 4.0, which was purposefully a bit vague to allow
us this flexibility. In a poll in a devtalk post showed that the
majority of people were okay with removing the nodes.
https://devtalk.blender.org/t/geometry-nodes-backward-compatibility-poll/20199
Differential Revision: https://developer.blender.org/D14353
This patch reverses the dependency between `BLI_math_vec_types.hh` and
`BLI_math_vector.hh`. Now the higher level `blender::math` functions
depend on the header that defines the types they work with, rather than
the other way around.
The initial goal was to allow defining an `enable_if` in the types header
and using it in the math header. But I also think this operations to types
dependency is more natural anyway.
This required changing the includes some files used from the type
header to the math implementation header. I took that change a bit
further removing the C vector math header from the C++ header;
I think that helps to make the transition between the two systems
clearer.
Differential Revision: https://developer.blender.org/D14112
Use a shorter/simpler license convention, stops the header taking so
much space.
Follow the SPDX license specification: https://spdx.org/licenses
- C/C++/objc/objc++
- Python
- Shell Scripts
- CMake, GNUmakefile
While most of the source tree has been included
- `./extern/` was left out.
- `./intern/cycles` & `./intern/atomic` are also excluded because they
use different header conventions.
doc/license/SPDX-license-identifiers.txt has been added to list SPDX all
used identifiers.
See P2788 for the script that automated these edits.
Reviewed By: brecht, mont29, sergey
Ref D14069
Previously, macros were ifdefed using the cmake option `WITH_INTERNATIONAL`
However, the is unnecessary as withen the functions themselves have checks for building without internationalization.
This also means that many `add_definitions(-DWITH_INTERNATIONAL)` are also unnecessary.
Reviewed By: mont29, LazyDodo
Differential Revision: https://developer.blender.org/D13929
Currently the Boolean Math node only has 3 basic logic gates:
AND, OR, and NOT. This commit adds 6 additional logic gates
for convenience and ease of use.
- **Not And (NAND)** returns true when at least one input is false.
- **Nor (NOR)** returns true when both inputs are false.
- **Equal (XNOR)** returns true when both inputs are equal.
- **Not Equal (XOR)** returns true when both inputs are different.
- **Imply (IMPLY)** returns true unless the first input is true and
the second is false.
- **Subtract (NIMPLY)** returns true when the first input is true and
the second is false.
Differential Revision: https://developer.blender.org/D13774
The search list only displayed the "Result" output socket in this
case, which is unexpected since dragging from an input gives the
operations in the list as well. Also use integer mode when
connecting to boolean sockets.
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:`float2`) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the `blender::math` namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
####Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others
we currently don't have (uintX, intX). All these variations were
asking for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector
functions should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the `BLI_(float|double|mpq)(2|3|4).hh` is a
bit of a let down. Most clases are incomplete, out of sync with each
others with different codestyles, and some functions that should be
static are not (i.e: `float3::reflect()`).
####Upsides:
- Still support `.x, .y, .z, .w` for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types
and can be restricted to certain types. Also template specialization
let us define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance
is the same.
####Downsides:
- Might impact debugability. Though I would arge that the bugs are
rarelly caused by the vector class itself (since the operations are
quite trivial) but by the type conversions.
- Might impact compile time. I did not saw a significant impact since
the usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length.
For instance, one can't call `len_squared_v3v3` in
`math::length_squared()` and call it a day.
- Type cast does not work with the template version of the `math::`
vector functions. Meaning you need to manually cast `float *` and
`(float *)[3]` to `float3` for the function calls.
i.e: `math::distance_squared(float3(nearest.co), positions[i]);`
- Some parts might loose in readability:
`float3::dot(v1.normalized(), v2.normalized())`
becoming
`math::dot(math::normalize(v1), math::normalize(v2))`
But I propose, when appropriate, to use
`using namespace blender::math;` on function local or file scope to
increase readability.
`dot(normalize(v1), normalize(v2))`
####Consideration:
- Include back `.length()` method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement. It felt
like too much for what we need and would be difficult to extend / modify
to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches `delaunay_2d.cc` and the intersection code. I would like
to know @howardt opinion on the matter.
- The `noexcept` on the copy constructor of `mpq(2|3)` is being removed.
But according to @JacquesLucke it is not a real problem for now.
I would like to give a huge thanks to @JacquesLucke who helped during this
and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: https://developer.blender.org/D13791
This patch implements the vector types (i.e:float2) by making heavy
usage of templating. All vector functions are now outside of the vector
classes (inside the blender::math namespace) and are not vector size
dependent for the most part.
In the ongoing effort to make shaders less GL centric, we are aiming
to share more code between GLSL and C++ to avoid code duplication.
Motivations:
- We are aiming to share UBO and SSBO structures between GLSL and C++.
This means we will use many of the existing vector types and others we
currently don't have (uintX, intX). All these variations were asking
for many more code duplication.
- Deduplicate existing code which is duplicated for each vector size.
- We also want to share small functions. Which means that vector functions
should be static and not in the class namespace.
- Reduce friction to use these types in new projects due to their
incompleteness.
- The current state of the BLI_(float|double|mpq)(2|3|4).hh is a bit of a
let down. Most clases are incomplete, out of sync with each others with
different codestyles, and some functions that should be static are not
(i.e: float3::reflect()).
Upsides:
- Still support .x, .y, .z, .w for readability.
- Compact, readable and easilly extendable.
- All of the vector functions are available for all the vectors types and
can be restricted to certain types. Also template specialization let us
define exception for special class (like mpq).
- With optimization ON, the compiler unroll the loops and performance is
the same.
Downsides:
- Might impact debugability. Though I would arge that the bugs are rarelly
caused by the vector class itself (since the operations are quite trivial)
but by the type conversions.
- Might impact compile time. I did not saw a significant impact since the
usage is not really widespread.
- Functions needs to be rewritten to support arbitrary vector length. For
instance, one can't call len_squared_v3v3 in math::length_squared() and
call it a day.
- Type cast does not work with the template version of the math:: vector
functions. Meaning you need to manually cast float * and (float *)[3] to
float3 for the function calls.
i.e: math::distance_squared(float3(nearest.co), positions[i]);
- Some parts might loose in readability:
float3::dot(v1.normalized(), v2.normalized())
becoming
math::dot(math::normalize(v1), math::normalize(v2))
But I propose, when appropriate, to use
using namespace blender::math; on function local or file scope to
increase readability. dot(normalize(v1), normalize(v2))
Consideration:
- Include back .length() method. It is quite handy and is more C++
oriented.
- I considered the GLM library as a candidate for replacement.
It felt like too much for what we need and would be difficult to
extend / modify to our needs.
- I used Macros to reduce code in operators declaration and potential
copy paste bugs. This could reduce debugability and could be reverted.
- This touches delaunay_2d.cc and the intersection code. I would like to
know @Howard Trickey (howardt) opinion on the matter.
- The noexcept on the copy constructor of mpq(2|3) is being removed.
But according to @Jacques Lucke (JacquesLucke) it is not a real problem
for now.
I would like to give a huge thanks to @Jacques Lucke (JacquesLucke) who
helped during this and pushed me to reduce the duplication further.
Reviewed By: brecht, sergey, JacquesLucke
Differential Revision: http://developer.blender.org/D13791
Dragging from a color socket would hit an assert in a debug build.
The node does not have a color mode currently, so use the vector mode
instead when connecting to a color socket.
This flag is only used a few small cases, so instead
of setting the flag for every node only set the
required flag for the nodes that require it.
Mostly the flag is used to set `ntype.flag = NODE_PREVIEW`
For nodes that should have previews by default which
is only some compositor nodes and some texture nodes.
The frame node also sets the `NODE_BACKGROUND` flag.
All other nodes were setting a flag of 0 which has no purpose.
Reviewed By: JacquesLucke
Differential Revision: https://developer.blender.org/D13699
Exposes compare operations via rna emums.
This uses the rna enum to build the search list using
named operations linked to socket A.
This also weights the Math Node comparison operations lower
for geometry node trees.
Differential Revision: https://developer.blender.org/D13695
Unity build saves 5 seconds off the total build time when compiling `bf_nodes_function`.
Total build times went from 25s to 20s (20% reduction),
tested with ninja on linux running i5 8250U.