There is not enough time before the release to improve Random Walk to handle
all cases this was used for, so restore it for now.
Since there is no more path splitting in cycles-x, this can increase noise in
non-flat areas for the sample number of samples, though fewer rays will be traced
also. This is fundamentally a trade-off we made in the new design and why Random
Walk is a better fit. However the importance resampling we do now does help to
reduce noise.
Differential Revision: https://developer.blender.org/D12800
Move texture nodes to C++ and use new socket declaration
Brick, Checker, Image, Magic and Wave
Differential Revision: https://developer.blender.org/D12778
Goal is to add the length attribute to the Hair Info node, for better control over color gradients or similar along the hair.
Reviewed By: #eevee_viewport, brecht
Differential Revision: https://developer.blender.org/D10481
This implements the update logic for the vizualization of which
sockets pass data or constants directly, and which pass functions.
The socket shapes may still have to be updated. That should be
done separately, because it might be a bit more involved, because
socket shapes are currently linked to keyframe shapes. Currently
the circle and diamond shapes are used with the following meanings:
- Input Sockets:
- Circle: Required to be a single value.
- Diamond: This input supports fields.
- Output Sockets:
- Circle: This output is a single value.
- Diamond: This output may be a field.
Connecting a field to a circle input socket is an error, since a
field cannot be converted to a single value. If the socket shape
is a diamond with a dot in the middle, it means it is currently
a single value, but could be a field.
In addition to socket shapes, the intention is to draw node links
differently based on the field status. However, the exact method for
conveying that isn't decided yet.
Differential Revision: https://developer.blender.org/D12584
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.
Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.
Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycleshttps://wiki.blender.org/wiki/Source/Render/Cycles
Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)
For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.
Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
This makes the Noise Texture node available in geometry nodes.
It should behave the same as in shader node, with the exception
that it does not have an implicit position input yet. That will
be added separately.
Differential Revision: https://developer.blender.org/D12467
The multi-function network system was able to compose multiple
multi-functions into a new one and to evaluate that efficiently.
This functionality was heavily used by the particle nodes prototype
a year ago. However, since then we only used multi-functions
without the need to compose them in geometry nodes.
The upcoming "fields" in geometry nodes will need a way to
compose multi-functions again. Unfortunately, the code removed
in this commit was not ideal for this different kind of function
composition. I've been working on an alternative that will be added
separately when it becomes needed.
I've had to update all the function nodes, because their interface
depended on the multi-function network data structure a bit.
The actual multi-function implementations are still the same though.
ID data-blocks that could be accessed from Python and weren't freed
using BKE_id_free_ex did not release the Python reference count.
Add BKE_libblock_free_data_py function to clear the Python reference
in this case.
Add asserts to ensure no Python reference is held in situations
when ID's are copied for internal use (not exposed through the RNA API),
to ensure these kinds of leaks don't go by unnoticed again.
The menu lists all socket types that are valid for the node tree.
Changing a socket type updates all instances of the group and keeps
existing links to the socket.
If changing the socket type leads to incorrect node connections the
links are flagged as invalid (red) and ignored but not removed. This is
so users don't lose information and can then fix resulting issues.
For example: Changing a Color socket to a Shader socket can cause an
invalid Shader-to-Color connection.
Implementation details:
The new `NODE_OT_tree_socket_change_type` operator uses the generic
`rna_node_socket_type_itemf` function to list all eligible socket types.
It uses the tree type's `valid_socket_type` callback to test for valid
types. In addition it also checks the subtype, because multiple RNA
types are registered for the same base type. The `valid_socket_type`
callback has been modified slightly to accept full socket types instead
of just the base type enum, so that custom (python) socket types can be
used by this operator.
The `nodeModifySocketType` function is now called when group nodes
encounter a socket type mismatch, instead of replacing the socket
entirely. This ensures that links are kept to/from group nodes as well
as group input/output nodes. The `nodeModifySocketType` function now
also takes a full `bNodeSocketType` instead of just the base and subtype
enum (a shortcut `nodeModifySocketTypeStatic` exists for when only
static types are used).
Differential Revision: https://developer.blender.org/D10912
Prepare node for conversion to Geometry Nodes.
There should be no functional changes.
Reviewed By: HooglyBoogly
Differential Revision: https://developer.blender.org/D11506
Cycles, Eevee, OSL, Geo, Attribute
This operator provides consistency with the standard math node. Allows users to use a single node instead of two nodes for this common operation.
Reviewed By: HooglyBoogly, brecht
Differential Revision: https://developer.blender.org/D10808
EEVEE uses hashing to sync aov names and types with the gpu.
For the type a hashed value was overridden making `decalA`
and `decalB` choose the same hash. This patches fixes this
by removing the most significant bit.
EEVEE uses hashing to sync aov names and types with the gpu. For the type a hashed value was overridden making `decalA` and `decalB` choose the same hash. This patches fixes this by removing the most significant bit.
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.
Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.
The storage structs can hold 4 channels (r, g, b and a).
Usage:
Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```
The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.
- Conversions between spaces (theme <=> scene linear) should always be done by
invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
`unpremultiply_alpha` methods.
# Encoding.
Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.
# Precision
Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).
# Alpha conversion
Alpha conversion is only supported in SceneLinear space.
Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.
Reviewed By: JacquesLucke, brecht
Differential Revision: https://developer.blender.org/D10978
Colors are often thought of as being 4 values that make up that can make any color.
But that is of course too limited. In C we didn’t spend time to annotate what we meant
when using colors.
Recently `BLI_color.hh` was made to facilitate color structures in CPP. CPP has possibilities to
enforce annotating structures during compilation and can adds conversions between them using
function overloading and explicit constructors.
The storage structs can hold 4 channels (r, g, b and a).
Usage:
Convert a theme byte color to a linearrgb premultiplied.
```
ColorTheme4b theme_color;
ColorSceneLinear4f<eAlpha::Premultiplied> linearrgb_color =
BLI_color_convert_to_scene_linear(theme_color).premultiply_alpha();
```
The API is structured to make most use of inlining. Most notable are space
conversions done via `BLI_color_convert_to*` functions.
- Conversions between spaces (theme <=> scene linear) should always be done by
invoking the `BLI_color_convert_to*` methods.
- Encoding colors (compressing to store colors inside a less precision storage)
should be done by invoking the `encode` and `decode` methods.
- Changing alpha association should be done by invoking `premultiply_alpha` or
`unpremultiply_alpha` methods.
# Encoding.
Color encoding is used to store colors with less precision as in using `uint8_t` in
stead of `float`. This encoding is supported for `eSpace::SceneLinear`.
To make this clear to the developer the `eSpace::SceneLinearByteEncoded`
space is added.
# Precision
Colors can be stored using `uint8_t` or `float` colors. The conversion
between the two precisions are available as methods. (`to_4b` and
`to_4f`).
# Alpha conversion
Alpha conversion is only supported in SceneLinear space.
Extending:
- This file can be extended with `ColorHex/Hsl/Hsv` for different representations
of rgb based colors. `ColorHsl4f<eSpace::SceneLinear, eAlpha::Premultiplied>`
- Add non RGB spaces/storages ColorXyz.
Reviewed By: JacquesLucke, brecht
Differential Revision: https://developer.blender.org/D10978