Realtime modifiers applied on mesh objects will be supported in
the game engine with the following limitations:
- Only real time modifiers are supported (basically all of them!)
- Virtual modifiers resulting from parenting are not supported:
armature, curve, lattice. You can still use these modifiers
(armature is really not recommended) but in non parent mode.
The BGE has it's own parenting capability for armature.
- Modifiers are computed on the host (using blender modifier
stack).
- Modifiers are statically evaluated: any possible time dependency
in the modifiers is not supported (don't know enough about
modifiers to be more specific).
- Modifiers are reevaluated if the underlying mesh is deformed
due to shape action or armature action. Beware that this is
very CPU intensive; modifiers should really be used for static
objects only.
- Physics is still based on the original mesh: if you have a
mirror modifier, the physic shape will be limited to one half
of the resulting object. Therefore, the modifiers should
preferably be used on graphic objects.
- Scripts have no access to the modified mesh.
- Modifiers that are based on objects interaction (boolean,..)
will not be dependent on the objects position in the GE.
What you see in the 3D view is what you get in the GE regardless
on the object position, velocity, etc.
Besides that, the feature is compatible with all the BGE features
that affect meshes: armature action, shape action, relace mesh,
VideoTexture, add object, dupligroup.
Known problems:
- This feature is a bit hacky: the BGE uses the derived mesh draw
functions to display the object. This drawing method is a
bit slow and is not 100% compatible with the BGE. There may
be some problems in multi-texture mode: the multi-texture
coordinates are not sent to the GPU.
Texface and GLSL on the other hand should be fully supported.
- Culling is still based on the extend of the original mesh.
If you have a modifer that extends the size of the mesh,
the object may disappear while still in the view frustrum.
- Derived mesh is not shared between replicas.
The derived mesh is allocated and computed for each object
with modifiers, regardless if they are static replicas.
- Display list are not created on objects with modifiers.
I should be able to fix the above problems before release.
However, the feature is already useful for game development.
Once you are ready to release the game, you can apply the modifiers
to get back display list support and mesh sharing capability.
MSVC, scons, Cmake, makefile updated.
Enjoy
/benoit
This changes how the BGE classes and Python work together, which hasnt changed since blender went opensource.
The main difference is PyObjectPlus - the base class for most game engine classes, no longer inherit from PyObject, and cannot be cast to a PyObject.
This has the advantage that the BGE does not have to keep 2 reference counts valid for C++ and Python.
Previously C++ classes would never be freed while python held a reference, however this reference could be problematic eg: a GameObject that isnt in a scene anymore should not be used by python, doing so could even crash blender in some cases.
Instead PyObjectPlus has a member "PyObject *m_proxy" which is lazily initialized when python needs it. m_proxy reference counts are managed by python, though it should never be freed while the C++ class exists since it holds a reference to avoid making and freeing it all the time.
When the C++ class is free'd it sets the m_proxy reference to NULL, If python accesses this variable it will raise a RuntimeError, (check the isValid attribute to see if its valid without raising an error).
- This replaces the m_zombie bool and IsZombie() tests added recently.
In python return values that used to be..
return value->AddRef();
Are now
return value->GetProxy();
or...
return value->NewProxy(true); // true means python owns this C++ value which will be deleted when the PyObject is freed
Hiding faces is a editing option like selection and should not change rendering, it wasn't even working right because meshes without UVs ignored it.
I thought this was needed for compatibility with old files but just noticed this messes up 2 of the files in demos-2.42.zip
Clamp objects min/max velocity.
Accessed with bullet physics from the advanced button with dynamic and rigid body objects.
- useful for preventing unstable physics in cases where objects move too fast.
- can add linear velocity with the motion actuator to give smooth motion transitions, without moving too fast.
- minimum velocity means objects don't stop moving.
- python scripts can adjust these values speedup or throttle velocity in the existing direction.
Also made copy properties from an object with no properties work (in case you want to clear all props)
Added occlusion culling capability in the BGE.
More info: http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.49/Game_Engine#BGE_Scenegraph_improvement
MSVC, scons, cmake, Makefile updated.
Other minor performance improvements:
- The rasterizer was computing the openGL model matrix of the objects too many times
- DBVT view frustrum culling was not properly culling behind the near plane:
Large objects behind the camera were sent to the GPU
- Remove all references to mesh split/join feature as it is not yet functional
- Only try and remove light objects from the light list.
- Only loop over mesh verts once when getting the bounding box
- dont return None from python attribute localInertia when theres no physics objects. better return a vector still.
- add names to send message PyArg_ParseTuple functions.
This commit contains a number of performance improvements for the
BGE in the Scenegraph (parent relation between objects in the
scene) and view frustrum culling.
The scenegraph improvement consists in avoiding position update
if the object has not moved since last update and the removal
of redundant updates and synchronization with the physics engine.
The view frustrum culling improvement consists in using the DBVT
broadphase facility of Bullet to build a tree of graphical objects
in the scene. The elements of the tree are Aabb boxes (Aligned
Axis Bounding Boxes) enclosing the objects. This provides good
precision in closed and opened scenes. This new culling system
is enabled by default but just in case, it can be disabled with
a button in the World settings. There is no do_version in this
commit but it will be added before the 2.49 release. For now you
must manually enable the DBVT culling option in World settings
when you open an old file.
The above improvements speed up scenegraph and culling up to 5x.
However, this performance improvement is only visible when
you have hundreds or thousands of objects.
The main interest of the DBVT tree is to allow easy occlusion
culling and automatic LOD system. This will be the object of further
improvements.
* Where possible use vec.setValue(x,y,z) to assign values to a vector instead of vec= MT_Vector3(x,y,z), for MT_Point and MT_Matrix types too.
* Comparing TexVerts was creating 10 MT_Vector types - instead compare as floats.
* Added SG_Spatial::SetWorldFromLocalTransform() since the local transform is use for world transform in some cases.
* removed some unneeded vars from UpdateChildCoordinates functions
* Py API - Mouse, Ray, Radar sensors - use PyObjectFrom(vec) rather then filling the lists in each function. Use METH_NOARGS for get*() functions.
- variables that shadow vers declared earlier
- Py_Fatal print an error to the stderr
- gcc was complaining about the order of initialized vars (for classes)
- const return values for ints and bools didnt do anything.
- braces for ambiguous if statements
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.
Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
1) Anisotropic friction works for static and dynamic objects
2) For soft bodies, assume triangle mesh if no bounds a chosen
3) Form factor == inertia scaling factor, it was actually hooked up in Bullet
4) Only show 'radius' if sphere is chosen, or no bounds+dynamics (== sphere bounds)
add -nojoystick commandline option: it takes 5 seconds everytime to start the game engine, while there IS no joystick.
In other words: blender -noaudio -nojoystick improves workflow turnaround times for P - ESC from 7 seconds to 1 second!
Improved Bullet soft body advanced options, still work-in-progress. Make sure to create game Bullet soft bodies from scratch, it is not compatible with last weeks builds.
Three features that were on the main UI interface are now
moved to the Advanced Settings panel:
Margin, Actor (that becomes Sensor Actor) and No sleeping.
Sensor Actor is now a feature: it can be turned on and off
for all types of objects, and not just static objects.
Select the Sensor Actor button to make the object visible
to Near and Radar sensor.
The button is selected by default for dynamic objects
and unselected by default for static objects, to match
previous behavior.
correct if there was more than one camera. It shoots rays from the
active camera, but used the viewport from whichever camera was drawn
last, now it uses the correct vieport.
The Physics button controls the creation of a physics representation
of the object when starting the game. If the button is not selected,
the object is a pure graphical object with no physics representation
and all the other physics buttons are hidden.
Selecting this button gives access to the usual physics buttons.
The physics button is enabled by default to match previous Blender
behavior.
The margin parameter allows to control the collision margin from
the UI. Previously, this parameter was only accessible through
Python. By default, the collision margin is set to 0.0 on static
objects and 0.06 on dynamic objects.
To maintain compatibility with older games, the collision margin
is set to 0.06 on all objects when loading older blend file.
Note about the collision algorithms in Bullet 2.71
--------------------------------------------------
Bullet 2.71 handles the collision margin differently than Bullet 2.53
(the previous Bullet version in Blender). The collision margin is
now kept "inside" the object for box, sphere and cylinder bound
shapes. This means that two objects bound to any of these shape will
come in close contact when colliding.
The static mesh, convex hull and cone shapes still have their
collision margin "outside" the object, which leaves a space of 1
or 2 times the collision margin between objects.
The situation with Bullet 2.53 was more complicated, generally
leading to more space between objects, except for box-box collisions.
This means that running a old game under Bullet 2.71 may cause
visual problems, especially if the objects are small. You can fix
these problems by changing some visual aspect of the objects:
center, shape, size, position of children, etc.
player did not enable mipmapping when falling back to texfaces.
Also commented out code that disabled mipmapping in the player on
Mac OS X. If that is a workaround for a bug it is a really poor one,
and hopefully fixed now since this code is from 2002 or earlier.
* Fix issue with add transparency mode with blender materials.
* Possible fix at frontface flip in the game engine.
* Fix color buffering clearing for multiple viewports, it used
to clear as if there was one.
* Fix for zoom level in user defined viewports, it was based on
the full window before, now it is based on the viewport itself.
* For user defined viewports, always use Expose instead of
Letterbox with bars, the latter doesn't make sense then.
the features that are needed to run the game. Compile tested with
scons, make, but not cmake, that seems to have an issue not related
to these changes. The changes include:
* GLSL support in the viewport and game engine, enable in the game
menu in textured draw mode.
* Synced and merged part of the duplicated blender and gameengine/
gameplayer drawing code.
* Further refactoring of game engine drawing code, especially mesh
storage changed a lot.
* Optimizations in game engine armatures to avoid recomputations.
* A python function to get the framerate estimate in game.
* An option take object color into account in materials.
* An option to restrict shadow casters to a lamp's layers.
* Increase from 10 to 18 texture slots for materials, lamps, word.
An extra texture slot shows up once the last slot is used.
* Memory limit for undo, not enabled by default yet because it
needs the .B.blend to be changed.
* Multiple undo for image painting.
* An offset for dupligroups, so not all objects in a group have to
be at the origin.
With this patch, only sensors that are connected to
active states are actually registered in the logic
manager. Inactive sensors won't take any CPU,
especially the Radar and Near sensors that use a
physical object for the detection: these objects
are removed from the physics engine.
To take advantage of this optimization patch, you
need to define very light idle state when the
objects are inactive: make them transparent, suspend
the physics, keep few sensors active (e,g a message
sensor to wake up), etc.
=======================================
Alpha blending + sorting was revised, to fix bugs and get it
to work more predictable.
* A new per texture face "Sort" setting defines if the face
is alpha sorted or not, instead of abusing the "ZTransp"
setting as it did before.
* Existing files are converted to hopefully match the old
behavior as much as possible with a version patch.
* On new meshes the Sort flag is disabled by the default, to
avoid unexpected and hard to find slowdowns.
* Alpha sorting for faces was incredibly slow. Sorting faces
in a mesh with 600 faces lowered the framerate from 200 to
70 fps in my test.. the sorting there case goes about 15x
faster now, but it is still advised to use Clip Alpha if
possible instead of regular Alpha.
* There still various limitations in the alpha sorting code,
I've added some comments to the code about this.
Some docs at the bottom of the page:
http://www.blender.org/development/current-projects/changes-since-246/realtime-glsl-materials/
Merged some fixes from the apricot branch, most important
change is that tangents are now exactly the same as the rest
of Blender, instead of being computed in the game engine with a
different algorithm.
Also, the subversion was bumped to 1.
Blender duplicates groups in the 3D view at the location of objects having the DUPLIGROUP option set. This feature is now supported in the BGE: the groups will be instantiated as in the 3D view when the scene is converted. This is useful to populate a scene with multiple enemies without having to actually duplicate the objects in the blend file.
Notes: * The BGE applies the same criteria to instantiate the group as Blender to display them: if you see the group in the 3D view, it will be instantiated in the BGE.
* Groups are instantiated as if the object having the DUPLIGROUP option (usually an empty) executed an AddObject actuator on the top objects of the group (objects without parent).
* As a result, only intra-group parent relationship is supported: the BGE will not instantiate objects that have parents outside the group.
* Intra-group logic bricks connections are preserved between the duplicated objects, even between the top objects of the group.
* For best result, the state engine of the objects in the group should be self-contained: logic bricks should only have intra-group connections. Use messages to communicate with state engines outside the group.
* Nested groups are supported: if one or more objects in the group have the DUPLIGROUP option set, the corresponding groups will be instantiated at the corresponding position and orientation.
* Nested groups are instantiated as separate groups, not as one big group.
* Linked groups are supported as well as groups containing objects from the active layers.
* There is a difference in the way Blender displays the groups in the 3D view and how BGE instantiates them: Blender does not take into account the parent relationship in the group and displays the objects as if they were all children of the object having the DUPLIGROUP option. That's correct for the top objects of the group but not for the children. Hence the orientation of the children objects may be different in the BGE.
* An AddGroup actuator will be added in a future release.
=============================
* Clean up and optimizations in skinned/deformed mesh code.
* Compatibility fixes and clean up in the rasterizer.
* Changes related to GLSL shadow buffers which should have no
effect, to keep the code in sync with apricot.
New Add mode for Ipo actuator
=============================
A new Add button, mutually exclusive with Force button, is available in
the Ipo actuator. When selected, it activates the Add mode that consists
in adding the Ipo curve to the current object situation in world
coordinates, or parent coordinates if the object has a parent. Scale Ipo
curves are multiplied instead of added to the object current scale.
If the local flag is selected, the Ipo curve is added (multiplied) in
the object's local coordinates.
Delta Ipo curves are handled identically to normal Ipo curve and there
is no need to work with Delta Ipo curves provided that you make sure
that the Ipo curve starts from origin. Origin means location 0 for
Location Ipo curve, rotation 0 for Rotation Ipo curve and scale 1 for
Scale Ipo curve.
The "current object situation" means the object's location, rotation
and scale at the start of the Ipo curve. For Loop Stop and Loop End Ipo
actuators, this means at the start of each loop. This initial state is
used as a base during the execution of the Ipo Curve but when the Ipo
curve is restarted (later or immediately in case of Loop mode), the
object current situation at that time is used as the new base.
For reference, here is the exact operation of the Add mode for each
type of Ipo curve (oLoc, oRot, oScale, oMat: object's loc/rot/scale
and orientation matrix at the start of the curve; iLoc, iRot, iScale,
iMat: Ipo curve loc/rot/scale and orientation matrix resulting from
the rotation).
Location
Local=false: newLoc = oLoc+iLoc
Local=true : newLoc = oLoc+oScale*(oMat*iLoc)
Rotation
Local=false: newMat = iMat*oMat
Local=true : newMat = oMat*iMat
Scale
Local=false: newScale = oScale*iScale
Local=true : newScale = oScale*iScale
Add+Local mode is very useful to have dynamic object executing complex
movement relative to their current location/orientation. Of cource,
dynamics should be disabled during the execution of the curve.
Several corrections in state system
===================================
- Object initial state is taken into account when adding object
dynamically
- Fix bug with link count when adding object dynamically
- Fix false on-off detection for Actuator sensor when actuator is
trigged on negative event.
- Fix Parent actuator false activation on negative event
- Loop Ipo curve not restarting at correct frame when start frame is
different from one.
To take advantage of this feature, you must have a mesh with
relative shape keys and shape Ipo curves with drivers referring
to bones of the mesh's parent armature.
The BGE will automatically detect the dependency between the
shape keys and the armature and execute the Ipo drivers during
the rendering of the armature actions.
This technique is used to make the armature action more natural:
the shape keys compensate in places where the armature deformation
is uggly and the drivers make sure that the shape correction
is synchronized with the bone position.
Note: This is not compatible with shape actions; BLender does
not allow to have Shape Ipo Curves and Shape actions at the same
time.